3 .正方形(基础)知识讲解+练习
- 格式:doc
- 大小:334.00 KB
- 文档页数:12
正方形中的数学知识点总结1. 正方形的定义正方形是一个四边相等且四个角均为直角的四边形。
换句话说,正方形是一种特殊的矩形,具有边长相等的特点。
正方形的对角线相等且互相平分,对角线垂直且互相垂直平分。
2. 正方形的性质(1) 边长:正方形的四条边长均相等。
(2) 对角线:正方形的对角线相等。
(3) 对角线相交:正方形的对角线互相垂直且互相平分。
(4) 内角:正方形的四个内角均为直角。
(5) 周长:正方形的周长等于四条边长之和。
(6) 面积:正方形的面积等于边长的平方。
3. 正方形的面积和周长计算正方形的面积计算公式为:S=a²,其中a表示正方形的边长。
周长计算公式为:C=4a,即正方形的四条边长之和。
4. 正方形的重要定理(1) 正方形的对角线垂直平分定理:正方形的对角线相互垂直且相互平分。
(2) 正方形的对角线相等定理:正方形的对角线相等。
(3) 正方形的四边相等定理:正方形的四条边相等。
5. 正方形的应用(1) 基本建筑设计中经常采用正方形的形状,如房屋的平面设计、花园的规划等。
(2) 研究正方形的性质和定理有助于培养学生的逻辑思维和数学推理能力。
6. 正方形与其他几何图形的关系(1) 正方形是一种特殊的矩形,具有边长相等的特点。
(2) 正方形是一种特殊的菱形,具有四个内角均为直角的特点。
(3) 正方形是一种特殊的平行四边形,具有四边相等的特点。
7. 正方形的扩展(1) 三维几何:正方形可以扩展到三维空间中,形成长方体。
(2) 应用领域:正方形的应用可以扩展到不同的领域,如工程设计、艺术设计、数学研究等。
总的来说,正方形是数学中一个重要的基本图形,具有许多重要的性质和定理。
通过研究正方形的性质和应用,可以帮助学生更好地理解几何学知识,提高数学推理能力和应用能力。
同时,正方形在现实生活中有着广泛的应用,可以帮助人们更好地应用数学知识解决实际问题。
希望本文的介绍可以帮助读者更好地了解正方形的数学知识点。
正方形的判定应用一、旧知回顾正方形的判定判定方法1:有的平行四边形.....是正方形.判定方法2:有的矩形..是正方形.判定方法3:有的菱形..是正方形.判定方法4:对角线的菱形..是正方形.判定方法5:对角线的矩形..是正方形.一、基础知识:1. 矩形ABCD加上一个条件:_____ ____,就可以得到正方形ABCD.2. 菱形ABCD加上一条条件:______ ___,就可以得到正方形ABCD.3. 下列条件中,能判定四边形是正方形的有().A.四个角都是直角 B.对角线互相平分且垂直C.对角线相等且互相平分 D.对角线相等、互相垂直,且互相平分4. 下列条件中,不能判定四边形是正方形的是().A.对角线互相垂直且相等的四边形 B.一条对角线平分一组对角的矩形C.对角线相等的菱形 D.对角线互相垂直的矩形5. 下列命题中是真命题的是()A.对角线互相垂直且相等的四边形是正方形B.有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形 D.两边相等的平行四边形是菱形6.下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形;B.两条对角线相等的四边形是矩形;C.两条对角线互相垂直的矩形是正方形;D.两条对角线相等的菱形是正方形.7.下列命题中错误的是A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形11.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BDE FA B C D 二、典例精讲1.已知:分别延长等腰直角三角形OAB 的两条直角边A O 和BO ,使AO=OC ,BO=OD ,求证:四边形ABCD 是正方形。
2.如图,E 、F 、G 、H 分别是正方形ABCD 四边的中点,试判断四边形EFGH 的形状,并给出证明。
小学数学认识长方形和正方形练习题及答案在学习数学的过程中,认识并理解几何图形是非常重要的。
其中,长方形和正方形是常见且基础的几何图形。
通过练习题,我们可以巩固对这两个图形的认识,并提高对其特性和性质的理解。
接下来,我将为大家提供一系列小学数学的长方形和正方形练习题及答案。
一、长方形练习题及答案1. 一个长方形的长为5cm,宽为3cm,求它的周长和面积。
答案:周长=2(长+宽)=2(5+3)=16cm,面积=长×宽=5×3=15cm²。
2. 一个长方形的周长为18cm,宽为4cm,求它的长。
答案:设长为x,则2(x+4)=18,化简得2x+8=18,2x=18-8=10,x=10/2=5。
所以,长为5cm。
3. 一个长方形的周长为44cm,面积为132cm²,求它的长和宽。
答案:设长为x,宽为y,则2(x+y)=44,化简得x+y=22;且xy=132。
解方程组x+y=22和xy=132,得到x=11,y=12。
所以,长为11cm,宽为12cm。
二、正方形练习题及答案1. 一个正方形的边长为6cm,求它的周长和面积。
答案:周长=4×边长=4×6=24cm,面积=边长²=6²=36cm²。
2. 一个正方形的面积为49cm²,求它的边长。
答案:设边长为x,则x²=49,开平方得到x=7。
所以,边长为7cm。
3. 一个正方形的周长为20cm,求它的边长和面积。
答案:设边长为x,则4x=20,化简得到x=5。
所以,边长为5cm,面积=边长²=5²=25cm²。
通过这些练习题,我们可以更深入地理解长方形和正方形的相关概念。
长方形的周长等于两倍的长和宽之和,面积等于长乘以宽;而正方形的周长等于四倍的边长,面积等于边长的平方。
掌握了这些定理,我们就能更好地应用于日常生活中的计算和问题解决。
人教版三年级上册期末数学复习《长方形和正方形》专题讲义(知识概括+典例解说 +同步测试)(含分析)姓名 :________班级:________成绩:________小朋友,带上你一段时间的学习成就,一同来做个自我检测吧,相信你必定是最棒的!一、选择题1 . 一个长方形,长 6 米,宽 3 米,它的周长是多少?正确列式是()。
A.6×3B.( 6+3)×2C.6×3+6×32 . 小强取出自己零花费的捐给舟曲灾区,小斌也取出自己零花费的捐给灾区.两人捐的钱数()A.相同多B.不相同多C.可能相同多,也可能不相同多3 . 将边长是 1 分米的正方形的四个角剪去边长是 1 厘米的正方形,所得图形的周长()A.增添 4 厘米B.减少 4 厘米C.与本来相同4 . 一个长方形框架组成平行四边形后,周长()。
A.不变B.变大C.变小5 . 五星红旗是()。
A.正方形B.长方形C.平行四边形6 . 一张长 8 厘米、宽 5 厘米的长方形纸,从中剪出一个最大的正方形,正方形的边长是()。
A.8 厘米B.5 厘米C.6 厘米7 . 一个正方形和一个长方形的周长相等,长方形的周长是32 分米,正方形的边长是()分米。
A. 4 B. 16 C. 88 . 一个长方形的长是 5 厘米,宽是 4 厘米,它的周长是()厘米.第1页共8页9 .从长是4厘米,宽是3 厘米的长方形中截出一个最大的正方形,正方形的周长是()厘米. A. 12B. 14C. 1610 . 长方形和正方形的周长都是30 米,()的面积大.A.长方形B.正方形C.相同大11 . 下面各图形中,正确画出图形的高的是()。
A.B.C.D.12 . 把一个正方形对折二次后,每一份是它的()。
A.B.C.13 .一个周长是20 厘米的长方形,它的长不行能是()A.10 厘米B.6 厘米C.8 厘米二、填空题14 .下面各组直线中, 在相互平行的下面画“∥”, 在相互垂直的下面画“⊥”。
正方形的判定专项练习30题(有答案)1.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.2.已知:如图,CE、CF分别是△ABC的内外角平分线,过点A作CE、CF的垂线,垂足分别为E、F.(1)求证:四边形AECF是矩形;(2)当△ABC满足什么条件时,四边形AECF是正方形?3.已知:如图,点D、E分别为△ABC的边AB、AC的中点,将△ADE绕点D旋转180°至△BDF.(1)小明发现四边形BCEF的形状是平行四边形,请你帮他把说理过程补齐.理由是:因为△BDF是由△ADE绕点D旋转180°得到的所以△ADE与△BDF全等且点A、D、B在同一条直线上点E、D、F也在同一条直线上.所以BF=AE,∠F=∠_________可得BF∥_________又因为E是AC的中点,所以EC=AE,所以BF= _________因此,四边形BCEF是平行四边形(根据_________ )(2)小明还发现在原有的△ABC中添加一个条件后,就可以使四边形BFEC成为一种特殊的平行四边形.你也来试试.你认为添加条件_________ 后,四边形BFEC是_________ .(友情提示:我们将根据你所提出问题的难易程度,给予不同的分值.)理由是:_________ .4.如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN是正方形.5.如图,△ABC中,∠ACB=90°,D为AB中点,四边形BCED为平行四边形,DE、AC相交于点F.求证:(1)点F为AC中点;(2)试确定四边形ADCE的形状,并说明理由;(3)若四边形ADCE为正方形,△ABC应添加什么条件?并证明你的结论.6.求证:对角线相等的菱形是正方形.已知:四边形ABCD是菱形,且AC=BD (又:AC,BD互相平分)求证:四边形ABCD是正方形.7.在△ACD中,∠D=90°,∠D的平分线交AC于点E,EF⊥AD交AD于点F,EG⊥DC交DC于点G,请你说明四边形EFDG是正方形.8.已知:如图,点M是矩形ABCD的边AD的中点,点P是BC边上的一动点,PE⊥CM,PF⊥BM,垂足分别为E、F.(Ⅰ)当四边形PEMF为矩形时,矩形ABCD的长与宽满足什么条件?试说明理由.(Ⅱ)在(Ⅰ)中当点P运动到什么位置时,矩形PEMF变为正方形?为什么?9.如图,D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(2)当∠A=90°时,求证:四边形AFDE是正方形.10.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED,点G是BC、AE延长线的交点,AG 与CD相交于点F.求证:四边形ABCD是正方形.11.如图,在△ABC中,AB=AC,点D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别是E、F.(1)求证:DE=DF;(2)若再添加一个条件,即可证得四边形AEDF为正方形,这个条件是_________ .12.在△ABC中,∠C=90°,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F,求证:四边形CFDE是正方形.13.已知:如图,在△ABC是,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为EF,求证:四边形CFDE 是正方形.14.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F.(2)若∠A=90°,判断四边形AEDF的形状,并说明理由.15.如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.(1)说明 EO=FO.(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?16.如图,在△ABC中,AB=AC,P是边BC的中点,PD⊥AB,PE⊥AC,垂足分别为D、E(1)求证:PD=PE;(2)DE与BC平行吗?请说明理由;(3)请添加一个条件,使四边形ADPE为正方形,并加以证明.17.如图,在直角三角形ABC中,∠C=90°,∠CAB、∠CBA的平分线交于点D,DE⊥BC于E,DF⊥AC于F,(1)求∠ADB的度数;(2)试说明四边形CEDF是什么形状的特殊四边形.18.证明:对角线相等的菱形是正方形.19.已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.21.如图所示,在Rt△ABC中,CF为直角的平分线,FD⊥CA于D,FE⊥BC于E,则四边形CDFE是怎样的四边形,为什么?22.如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB.求证:四边形BEDF是正方形.23.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.24.已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.25.如图所示,四边形EFGH是由矩形ABCD的外角平分线围成的.求证:四边形EFGH是正方形.26.如图所示,E、F、G、H分别是四边形ABCD的边AB、BC、CD、AD的中点,当四边形ABCD满足什么条件时,四边形EFGH为正方形?并说明理由.27.已知四边形ABCD中,AB=CD,AC=BD,试添加适当的条件使四边形ABCD成为特殊的平行四边形,并说明理由.28.如图,已知在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)若∠DAC=∠EAD+∠AED,求证:四边形ABCD是正方形.29.如图,在△ABC中,点D、E、F分别在BC、AB、AC边上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°那么四边形AEDF是_________ 形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是_________ 形;(3)如果∠BAC=90°,AD是△ABC的角平分线,那么四边形AEDF是_________ 形,证明你的结论(仅需证明第3)题结论)30.如图,分别以△ABC的三边为边在BC的同侧作三个等边三角形,即△ABD,△BCE,△ACF.请回答下列问题:(1)说明四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,四边形ADEF是正方形?(5)当△ABC满足什么条件时,以A,D,E,F为顶点的四边形不存在?(第(2)(3)(4)(5)题不必说明理由)矩形的判定30题参考答案:1.(1)∵四边形ABCD是平行四边形,∴AO=CO.∵△ACE是等边三角形,∴AE=CE.∴BE⊥AC.∴四边形ABCD是菱形.(2)从上易得:△AOE是直角三角形,∴∠AEB+∠EAO=90°∵△ACE是等边三角形,∴∠EAO=60°,∴∠AEB=30°∵∠AEB=2∠EAB,∴∠EAB=15°,∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.又∵四边形ABCD是菱形.∴∠BAD=2∠BAO=90°∴四边形ABCD是正方形.2.(1)证明:∵CE、CF分别是△ABC的内外角平分线,∴∠ACE+∠ACF=×180°=90°,∵AE⊥CE,AF⊥CF,∴∠AEC=∠AFC=90°,∴四边形AECF是矩形.(2)答:当△ABC满足∠ACB=90°时,四边形AECF是正方形,理由是:∵∠ACE=∠ACB=45°,∵∠AEC=90°,∴∠EAC=45°=∠ACE,∴AE=CE,∵四边形AECF是矩形,∴四边形AECF是正方形.3.(1)故答案为∠AED(1分);BF∥AC(2分);EC(3分);一组对边平行且相等的四边形为平行四边形.(2)A层次:(提出问题(1分),说理1分)添加条件∠C=90°后四边形BFEC为矩形.(5分)理由:由(1)得四边形BFEC为平行四边形,又∠C=90°,即有一个角是直角的平行四边形是矩形.(6分).B层次:(提出问题分,说理1分)添加条件AC=2BC后四边形BFEC为菱形.理由:由(1)得四边形BFEC为平行四边形又知AC=2CE,AC=2BC,所以EC=BC,即一组邻边相等的平行四边形是菱形.C层次:(提出问题(3分),说理3分)添加条件∠C=90°且AC=2BC时四边形BFEC为正方形.(7分)理由:由(1)得四边形BFEC为平行四边形,又∠C=90°,即有一个角是直角的平行四边形是矩形,所以此时四边形BFEC为矩形,又因为AC=2CE,AC=2BC,所以EC=BC,一组邻边相等的矩形是正方形,所以此时四边形BFEC为正方形.4.∵四边形ABCD是矩形,∴四个内角均为90°,∵AF,BE,CE,DF分别是四个内角的平分线,∴∠EBC=∠ECB=45°,∴△EBC为等腰直角三角形,∴∠E=90°,同理∠F=∠EMF=∠ENF=90°,∴四边形MFNE为矩形,∵AD=BC,∠E=∠F=90°,∠DAF=∠EBC=45°,∴△DAF≌△CBE(AAS)∴AF=BE,∵AM=BM,∴AF﹣AM=BE﹣BM,即FM=EM,∴四边形MFNE是正方形.5.(1)∵四边形DBEC是平行四边形,∴DE∥BC,∵D为AB中点,∴DF为△ABC的中位线,即点F为AC的中点;(2)∵平行四边形BDEC,∴CE平行等于BD.∵D为AB中点,∴AD=BD,∴CE平行且等于AD,∴四边形ADCE为平行四边形,又∵AD=CD=BD,∴四边形ADCE为菱形;(3)应添加条件AC=BC.证明:∵AC=BC,D为AB中点,∴CD⊥AB(三线合一的性质),即∠ADC=90°.∵四边形BCED为平行四边形,四边形ADCE为平行四边形,∴DE=BC=AC,∠AFD=∠ACB=90°.∴四边形ADCE为正方形.(对角线互相垂直且相等的四边形是正方形)6.∵四边形ABCD是菱形,∴四边形ABCD也是平行四边形,又∵AC=BD(且AC,BD互相平分),∴四边形ABCD也为矩形,又∵四边形ABCD是菱形,∴四边形ABCD是正方形.7.∵DE平分∠ADE,EF⊥AD,EF⊥AD,∴EF=EG,∵DE=DE,∴△DEF≌△DGE(HL),∴∠DEF=∠EDG,∠DEG=∠EDF,∴FE∥DG,GE∥DF,∴四边形EFDG是平行四边形,∵∠EFD=90°,∴四边形EFDG是矩形,∵EF=EG,∴四边形EFDG是正方形.8.Ⅰ)法1:答:当四边形PEMF为矩形时,矩形ABCD的长是宽的2倍.证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,又∵AM=DM,∴△AMB≌△DMC(SAS)∴∠AMB=∠DMC∵四边形PEMF为矩形,∴∠BMC=90°,∴∠AMB=∠DMC=45°∴AM=DM=DC,即AD=2DC.∴当四边形PEMF为矩形时,矩形ABCD的长是宽的2倍;法2:∵四边形PEMF为矩形,∴∠M为直角,∴B、C、M三点共圆,BC为直径,又∵M为AD的中点,∴BC=2CD,∴当四边形PEMF为矩形时,矩形ABCD的长是宽的2倍.(Ⅱ)答:当点P运动到BC中点时,四边形PEMF变为正方形.∵△AMB≌△DMC,∴MB=MC.∵四边形PEMF为矩形,∴PE∥MB,PF∥MC又∵点P是BC中点,∴PE=PF=MC∴四边形PEMF为正方形.9.(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,在Rt△BDF和Rt△CDE 中,,∴Rt△BDF≌Rt△CDE(HL);(2)答:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形10.∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形.11.(1)证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,又∵D是BC中点,AB=AC,∴BD=CD,在△BFD与△CED中,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:当△ABC为等腰直角三角形时,则有AE=DE=DF=AF,四边形AEDF为菱形,又∵∠A=90°,∴菱形AEDF为正方形12.过点D作DG⊥AB,垂足为G,∵∠CFD=∠CED=∠C=90°,∴四边形CEDF是矩形.∵AD,BD分别是∠CAB,∠CBA的平分线,∴DF=DG,DG=DE.∴DF=DE.∴四边形CFDE是正方形.13.∵∠ACB=90°,DE⊥BC,DF⊥AC,∴四边形CFDE是矩形..又∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF.∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形).14.(1)∵在△ABC中,AB=AC,∴∠B=∠C.∵D为BC边的中点,∴BD=CD.在△BED与△CFD中,∵,∴△BED≌△CFD(AAS);(2)四边形AEDF是正方形.理由如下:∵∠DEB=90°,∠A=90°,∴∠DEB=∠A,∴AF∥ED.同理,AE∥FD,∴四边形AEDF是矩形.又由(1)知,△BED≌△CFD,∴ED=FD,∴矩形AEDF是正方形15.(1)∵MN∥BC,∴∠ECB=∠CEO,∠GCF=∠CFO,∵CE,CF分别为∠BCA,∠GCA的角平分线,∴∠ECB=∠ECO,∠GCF=∠OCF,∴∠CEO=∠ECO,∠CFO=∠OCF,∴OC=OE,OC=OF,∴OE=OF,(2)当O点运动到AC的中点时,四边形AECF为矩形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∴四边形AECF是矩形,(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∵AC⊥BC,MN∥BC,∴AC⊥EF,∴四边形AECF是正方形.16.1)证明:∵AB=AC,∴∠B=∠C,∵PD⊥AB,PE⊥AC,∴∠PDB=∠PEC=90°,∵P是BC的中点,∴BP=PC,即∠BDP=∠PEC=90°,∠B=∠C,PB=PC,∴△PDB≌△PEC,∴PD=PE.(2)答:DE∥BC,理由是:∵△PDB≌△PEC,∴BD=CE,∵AB=AC,∴=,∴DE∥BC.(3)答:当∠A=90°时,使四边形ADPE为正方形,证明:∵∠A=∠ADP=∠AEP=90°,∴四边形ADPE是矩形,∵AB=AC,BD=CE,∴AD=AE,∴矩形ADPE是正方形,即当∠A=90°时,使四边形ADPE为正方形.17.(1)∵△ABC是直角三角形,∠C=90°,∴∠CAB+∠CBA=90°,∴∠DAB+∠DBA=(∠CAB+∠CBA)=×90°=45°,∴∠ADB=180°﹣45°=135°;(2)四边形CEDF是正方形.过D作DG⊥AB于G,∵AD、BD是∠CAB、∠CBA的平分线,∴DF=DG,DE=DG,∴DF=DE,∵△ABC是直角三角形,∠C=90°,DE⊥BC于E,DF⊥AC 于F,∴四边形CEDF是正方形.18.连接AC、BD相交于O∵菱形ABCD∴OA=OC=AC,OB=OD=BD∵AC=BD∴OA=OB∵OA⊥OB(菱形的对角线互相垂直)∴∠OAB=∠OBA=45°同理∠OBC=∠OCB=45°..∴∠OBA+∠OBC=90° ∴∠ABC=90°∴ABCD 是正方形.19.①∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形; ②∵四边形AEDF 为菱形, ∴AD 平分∠BAC ,则AD 平分∠BAC 时,四边形AEDF 为菱形; ③由四边形AEDF 为正方形,∴∠BAC=90°, ∴△ABC 是以BC 为斜边的直角三角形即可 20.∵DE ⊥AB ,DF ⊥AC ∴∠AED=90°,∠AFD=90° ∵∠BAC=90° ∴∠EDF=90° ∴□AEDF 是矩形 在△BDE 和△CDF 中 ∵AB=AC∴∠ABC=∠ACB ∵DE ⊥AB ,DF ⊥AC ∴∠DEB=∠DFC 又∵D 是BC 的中点 ∴BD=DC∴△BDE ≌△CDF ∴DE=DF∴□AEDF 是正方形21.四边形CDFE 是正方形 理由如下:∵FD ⊥AC ,FE ⊥BC ,AC ⊥BC ∴四边形CDFE 是矩形 ∵CF 平分∠ACB ∴∠FCD=45° ∴CD=DF∴四边形CDFE 是正方形22.∵∠ABC=90°,DE ⊥BC ,DF ⊥AB , ∴∠BFD=∠BED=∠ABC=90°. ∴四边形BEDF 为矩形.又∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB , ∴DF=DE .∴矩形BEDF 为正方形.23.∵四边形ABCD 是正方形,∴AB=BC=CD=DA ,∠EBF=∠HAE=∠GDH=∠FCG , 又∵BE=CF=DG=AH , ∴CG=DH=AE=BF∴△AEH ≌△CGF ≌△DHG ,∴EF=FG=GH=HE ,∠EFB=∠HEA , ∴四边形EFGH 为菱形,∵∠EFB+∠FEB=90°,∠EFB=∠HEA , ∴∠FEB+∠HEA=90°,∴四边形EFGH 是正方形.24.∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC , ∴DE=DF ,∠DFC=90°,∠DEC=90°, 又∵∠ACB=90°,∴四边形DECF 是矩形, ∵DE=DF ,∴矩形DECF 是正方形.25.∵矩形的ABCD 的外角都是直角,HE ,EF 都是外角平分线,∴∠BAE=∠ABE=45°. ∴∠E=90°.同理,∠F=∠G=90°. ∴四边形EFGH 为矩形.∵AD=BC ,∠HAD=∠HDA=∠FBC=∠FCB=45°, ∴△ADH ≌△BCF (AAS ). ∴AH=BF .又∵∠EAB=∠EBA , ∴AE=BE .∴AE+AH=EB+BF ,即EH=EF . ∴矩形EFGH 是正方形.26.四边形ABCD 满足AC=BD ,AC ⊥BD 时,四边形EFGH 为正方形. 理由如下:∵E 、F 、G 、H 分别是四边形ABCD 的边AB 、BC 、CD 、AD 的中点,∴EF ∥AC ,且EF=AC , EH ∥BD ,且EH=BD ,∵四边形EFGH 是正方形, ∴EF=EH ,EF ⊥EH , ∴AC=BD ,AC ⊥BD ,∴四边形ABCD 满足对角线互相垂直且相等时,四边形EFGH 是正方形...即四边形ABCD 满足AC=BD ,AC ⊥BD 时,四边形EFGH 为正方形.27.本题答案不唯一,以下是其中两种解法: (1)添加条件AB ∥DC ,可得出该四边形是矩形; 理由:∵AB ∥DC ,AB=DC , ∴四边形ABCD 是平行四边形. ∵AC=BD ,∴四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD ,那么该四边形是正方形. 理由:∵AC 垂直平分BD , ∴AB=AD ,BC=CD . ∵AB=DC ,∴AB=AD=BC=DC .∴四边形ABCD 是菱形. ∵AC 垂直BD ,∴四边形ABCD 是正方形.28.(1)∵四边形ABCD 是平行四边形, ∴AO=CO=AC ,∵EA=EC , ∴EO ⊥AC , 即BD ⊥AC ,∴平行四边形ABCD 是菱形;(2)∵∠1=∠EAD+∠AED ,∠DAC=∠EAD+∠AED , ∴∠1=∠DAC , ∴AO=DO ,∵四边形ABCD 是菱形, ∴AC=2AO ,DB=2DO , ∴AC=BD ,∴四边形ABCD 是正方形.29.(1)∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 是平行四边形, 又∵∠BAC=90°,∴四边形AEDF 是矩形; (2)∵DE ∥AC ,DF ∥AB ,∴∠ADE=∠DAF ,四边形AEDF 是平行四边形, 又∵AD 是△ABC 的角平分线, ∴∠DAE=∠DAF , ∴∠ADE=∠DAE , ∴AE=DE ,∴▱AEDF 是菱形;(3)由(1)知四边形AEDF 是矩形,由(2)知四边形AEDF 是菱形,所以四边形AEDF 是正方形. 30.(1)四边形ADEF 是平行四边形. ∵等边三角形BCE 和等边三角形ABD , ∴BE=BC ,BD=BA .又∵∠DBE=60°﹣∠ABE ,∠ABC=60°﹣∠ABE , ∴∠DBE=∠ABC . 在△BDE 和△BCA 中,∴△BDE ≌△BCA .(2分) ∴DE=AC .∵在等边三角形ACF 中,AC=AF , ∴DE=AF . 同理DA=EF .∴四边形ADEF 是平行四边形.(2)当∠BAC=150°时,四边形ADEF 是矩形.(5分) 理由:∵∠DAF=360°﹣∠DAB ﹣∠BAC ﹣∠CAF=90°, ∴▱ADEF 是矩形.(3)当AB=AC ,或∠ABC=∠ACB=15°时,四边形ADEF 是菱形.(6分) 理由:∵AB=AC , ∴AD=AF ,∴▱ADEF 是菱形.(4)当∠BAC=150°且AB=AC ,或∠ABC=∠ACB=15°时,四边形ADEF 是正方形.(7分)(5)当∠BAC=60°时,以A ,D ,E ,F 为顶点的四边形不存在.(8分)。
类型一长方形与正方形【知识讲解】1. 特征长方形:对边相等,4个角都是直角的四边形。
正方形:四条边都相等,四个角都是直角的四边形。
2. 周长公式长方形的周长=(长+宽)×2正方形的周长=边长×43.面积公式长方形的面积=长×宽正方形的面积=边长×边长【典例精讲】【例1】用一条长16厘米的铁丝围一个长方形,若长与宽都是质数,则面积是()平方厘米。
A.6B. 10C. 15D.21【答案】C【解析】本题考查长方形的周长和面积公式及质数的相关概念问题。
根据长与宽的和是周长的一半,得出长与宽的和,正确列举得出长与宽,再根据长方形的面积=长×宽,正确计算出面积。
长与宽的和为16÷2=8(厘米),3+5=8,所以长为5厘米,宽为3厘米,面积为5×3=15(平方厘米)。
【例2】一个正方形的周长是32.3厘米,这个正方形的边长是多少厘米?【答案】32.3÷4=8.075(厘米)答:这个正方形的边长是8.075厘米。
【解析】正方形的周长=边长×4,由此用周长除以4,即可解决问题。
【巩固练习】一、选择题。
1.下面四个信封中分别装有一个硬纸板,并且硬纸板都已露出了一部分,从()号信封中抽出的硬纸板的形状可能是正方形.2.正方形的周长等于140厘米,边长为()A.30厘米 B.35厘米 C.40厘米3.12个相同的小正方形拼成不同的长方形,它们的()一定相同。
A.长 B.宽 C.周长 D.面积4.一幅画长12分米,宽8分米.这幅画放在下面第()个画架中最合适.A.长14分米宽6分米B.长16分米宽12分米C.长13分米宽9分米5.如图中有()个长方形,()个正方形.()A.5、3 B.7、2 C.6、36.小华沿着一个长80米,宽60米的长方形游泳池游了2圈,小华游了()米。
A.280B.560C.4800D.96007.一个长方形长8米,宽6米,如果把它的长和宽都增加2米,它的面积增加()。
不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.【典型例题】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、从不同方向看2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】如图所示的工件的主视图是()A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3. (浙江嘉兴)已知一个几何体的三视图如图所示,则该几何体是( )A.棱柱 B.圆柱 C.圆锥 D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】右图是某个几何体的三视图,该几何体是()A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D类型三、展开图4.如图四个图形中,每个均由六个相同的小正方形组成,折叠后能围成正方体的是( )【答案】C【解析】可动手折叠发现答案.【总结升华】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:举一反三:【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【答案】A.类型四、点、线、面、体5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).6.(2014秋•永川区期末)如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【答案与解析】连线如下:【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】(绍兴模拟)将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是( ).【答案】A【巩固练习】一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是().2.如图所示的四种物体中,哪种物体最接近于圆柱().3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a在展开前所对的面上的数字是().A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是().5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是()6.(2015•眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.二、填空题7.(2014秋•江阴市期末)四棱锥,五棱锥,四棱柱,五棱柱中,有五个面的是_____. 8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形. 12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.(2014秋•扶沟县期末)将图中的几何体进行分类,并说明理由.14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件的体积(π取底面积×高).3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.【答案与解析】一、选择题1.【答案】B2.【答案】A3.【答案】B【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. 【答案】C【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. 【答案】D【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6.【答案】B.二、填空题7.【答案】四棱锥.【解析】四棱锥有一个底面,四个侧面组成,共5个面.8. 【答案】圆柱,棱柱;圆锥,棱锥9. 【答案】自【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.【答案】三棱柱(或填正三棱柱)【解析】考查空间想象能力.11.【答案】圆,曲,扇【解析】动手操作或空间想象,便得答案.12.【答案】一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.【解析】解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体.14.【解析】解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).。
正方形(基础)责编:康红梅【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】【高清课堂特殊的平行四边形(正方形)知识要点】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质1、(2016•台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75【思路点拨】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.【答案】C.【解析】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.【总结升华】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.举一反三:【变式1】已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.【答案】证明:∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°∵E为BC延长线上的点,∴∠DCE=90°,∴∠BCD=∠DCE.在△BCF 和△DCE 中,BC DC BCF DCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCF≌△DCE(SAS ),∴BF=DE .【高清课堂 特殊的平行四边形(正方形) 例1】【变式2】(2015•咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°【答案】B ;提示:∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD ,∠BAF=45°,∵△ADE 是等边三角形,∴∠DAE=60°,AD=AE ,∴∠BAE=90°+60°=150°,AB=AE , ∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B .2、如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF 的长.【思路点拨】要证明△ABE ≌△DAF ,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF 的长,需要求出AF 和AE 的长.【答案与解析】(1)证明:∵四边形ABCD 是正方形,∴AD=AB ,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD=∴A F∵△ABE≌△DAF,∴AE=DF=1,1【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.举一反三:【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC.【答案】证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,∵AB=2BC,即BC=BN=12 AB∴BN=12BE,即N为BE的中点,∴EN=NB=BC,∴△FNE≌△ECB,∴FN=EC.类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.举一反三:【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠CO B,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.【答案】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠CO B=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF 是正方形;理由如下:∵∠AOC=90°,AD =DC ,∴OD=DC ;又由(1)知四边形CDOF 是矩形,则四边形CDOF 是正方形;因此,当∠AOC=90°时,四边形CDOF 是正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy 中,边长为a (a 为大于0的常数)的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O),顶点C 、D 都在第一象限.(1)当∠BAO =45°时,求点P 的坐标;(2)求证:无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO =45°时,∠PAO =90°,在Rt △AOB 中,OA ,在Rt △APB 中,PA .∴ 点P 的坐标为,a ⎫⎪⎪⎝⎭. (2)如图过点P 分别作x 轴、y 轴的垂线垂足分别为M 、N ,则有∠PMA =∠PNB =∠NPM =∠BPA =90°,∵∠BPN +∠BPM =∠APM +∠BPM =90°∴∠APM =∠BPN ,又PA =PB ,∴ △PAM ≌△PBN ,∴ PM =PN ,又∵ PN ⊥ON ,PM ⊥OM于是,点P 在∠AOB 的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.。
专题03正方形的性质与判定(3个知识点8种题型1个易错点中考2种考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1:正方形的定义知识点2:正方形的性质(重难点)知识点3:正方形的判定(重难点)【方法二】实例探索法题型1:由正方形的性质求角的度数题型2:由正方形的性质求线段的长度题型3:由正方形的性质证明线段相等题型4:由正方形的性质解决正方形的周长与面积问题题型5:正方形的判定题型6:正方形的性质与判定综合运用题型7:与正方形有关的动态问题题型8:与正方形有关的存在性问题【方法三】差异对比法易错点1正方形的性质运用不正确导致出错【方法四】仿真实战法考法1:正方形性质考法2:正方形判定【方法五】成果评定法【知识导图】【方法一】脉络梳理法知识点1:正方形的定义有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形.知识点2:正方形的性质1.正方形即是矩形又是菱形,因而它具备两者所有的性质.2.正方形四个角都是直角,四条边都相等.3.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.4.正方形是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心知识点3:正方形的判定1.从平行四边形出发:有一个内角是直角,且有一组邻边相等的平行四边形是正方形。
2.从矩形出发:有一组邻边相等的矩形是正方形.3.从菱形出发:有一个内角是直角的菱形是正方形.例1.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分【方法二】实例探索法题型1:由正方形的性质求角的度数例2.(1)如图(1),已知P正方形ABCD对角线BD上一点,且BP=BC,则ACP度数是;(2)如图(2),正方形ABCD的对角线AC、BD相交于点O,E是OB延长线上一点,CE=BD,∠ECB的度数是_______.例3.正方形ABCD被两条分别与边AB、BC平行的线段EF、GH分割成4个小矩形,P是EF 与GH 的交点,若矩形PFCH 的面积恰好是矩形AGPE 面积的2倍,求∠HAF 的大小.A B CDE F G H P 题型2:由正方形的性质求线段的长度例4.如图,已知有一块面积为1的正方形ABCD ,M 、N 分别为AD 、BC 上的中点,将点C 折到MN 上,落在P 点的位置,折痕为BQ ,连结PQ .求:(1)MP 的长;(2)PQ的长.题型3:由正方形的性质证明线段相等例5.如图,正方形ABCD 的对角线AC 上截取CE =CD ,作EF ⊥AC 交AD 于点F .求证:AE =EF =FD .AB CDE F 例6.如图,已知E 是正方形ABCD 的边BC 上的任意一点,BF ⊥AE ,垂足为G ,交CD 于点F .求证:AE =BF .A B CDE F G例7.已知:Q 为正方形ABCD 的CD 边的中点,P 为CD 上一点,且∠BAP =2∠QAD .求证:AP =PC +BC .A BCD P Q 例8.已知:在正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N .求证:MD =MN .A B CD EM N G 题型4:由正方形的性质解决正方形的周长与面积问题例9.已知:如图边长为a 的正方形ABCD 的对角线AC 、BD 交于点O ,E 、F 分别为DC 、BC 上的点,且=DE CF .求证:(1)EO FO ⊥.(2)M 、N 分别在OE 、OF 延长线上,OM ON a ==,四边形MONG 与正方形ABCD 重合部分的面积等于214a.题型5:正方形的判定例10.如图所示,已知矩形ABCD的各内角平分线AQ、DF、BE、CH分别交BC、AD于点Q、F、E、H,试证明它们组成的四边形MNPO是正方形.题型6:正方形的性质与判定综合运用例11.如图,在线段AE上取一点B,使AB BE>,以AB、BE为边在AE同侧作正方形ABCD和BEFG,在AB上取AH BE=.=,在BC的延长线上取一点K,使CK BG求证:四边形HFKD为正方形.题型7:与正方形有关的动态问题例12.如图(1)所示,四边形ABCD是由两个全等的等腰直角三角形斜边重合在一起组成的平面图形.如图(2)所示,点P 是边BC 上一点,PH ⊥BC 交BD 于点H ,连接AP 交BD 于点E ,点F 为DH 中点,连接AF ;(1)求证:四边形ABCD 为正方形;(2)当点P 在线段BC 上运动时,∠PAF 的大小是否会发生变化?若不变,请求出∠PAF 的值;若变化,请说明理由;(3)求证:222BE DF EF +=.题型8:与正方形有关的探究问题例13.如图四边形ABCD 是正方形,点E、K 分别在BC,AB 上,点G 在BA 的延长线上,且CE=BK=AG.以线段DE、DG为边作 DEFG.(1)求证:DE=DG,且DE⊥DG.(2)连接KF,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想.例14.如图,在正方形ABCD中,点E在边AB上(点E与点A、B不重合),过点E作FG DE⊥,FG与边BC相交于点F,与边DA的延长线相交于点G.(1)由几个不同的位置,分别测量BF、AG、AE的长,从中你能发现BF、AG、AE的数量之间具有怎样的关系?并证明你所得到的结论.(2)联结DF,如果正方形的边长为2,设AE x=,DFG的面积为y,求y与x之间的函数解析式,并写出函数的定义域.(3)如果正方形的边长为2,FG的长为52,求点C到直线DE的距离.【方法三】差异对比法易错点1:正方形的性质运用不正确导致出错例15.如图所示,菱形PQRS内接于矩形ABCD,使得点P、Q、R、S分别为边AB、BC、CD、DA上的点.已知PB=15,BQ=20,PR=30,QS=40.求矩形ABCD的周长.【方法四】仿真实战法考法1:正方形性质1.(2022•黄石)如图,正方形OABC的边长为,将正方形OABC绕原点O顺时针旋转45°,则点B 的对应点B1的坐标为()A.(﹣,0)B.(,0)C.(0,)D.(0,2)2.(2022•广州)如图,正方形ABCD的面积为3,点E在边CD上,且CE=1,∠ABE的平分线交AD于点F,点M,N分别是BE,BF的中点,则MN的长为()A .B .C .2﹣D .3.(2022•青岛)如图,O 为正方形ABCD 对角线AC 的中点,△ACE 为等边三角形.若AB =2,则OE 的长度为()A .B .C .D .4.(2022•泰州)如图,正方形ABCD 的边长为2,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设DE =d 1,点F 、G 与点C 的距离分别为d 2、d 3,则d 1+d 2+d 3的最小值为()A .B .2C .2D .45.(2022•黔东南州)如图,在边长为2的等边三角形ABC 的外侧作正方形ABED ,过点D 作DF ⊥BC ,垂足为F ,则DF 的长为()A .2+2B .5﹣C .3﹣D .+16.(2022•重庆)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O .E 、F 分别为AC 、BD 上一点,且OE =OF ,连接AF ,BE ,EF .若∠AFE =25°,则∠CBE 的度数为()A.50°B.55°C.65°D.70°7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE 的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.18.(2022•益阳)如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A′满足AA′=AC,则所得正方形与原正方形重叠部分的面积是.9.(2022•海南)如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB =°;若△AEF的面积等于1,则AB的值是.10.(2022•黔东南州)如图,折叠边长为4cm的正方形纸片ABCD,折痕是DM,点C落在点E处,分别延长ME、DE交AB于点F、G,若点M是BC边的中点,则FG=cm.11.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC 上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH 沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.12.(2022•无锡)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE、BC 于点H、G,则BG=.13.(2022•贵阳)如图,在正方形ABCD中,E为AD上一点,连接BE,BE的垂直平分线交AB于点M,交CD于点N,垂足为O,点F在DC上,且MF∥AD.(1)求证:△ABE≌△FMN;(2)若AB=8,AE=6,求ON的长.14.(2022•遵义)将正方形ABCD和菱形EFGH按照如图所示摆放,顶点D与顶点H重合,菱形EFGH的对角线HF经过点B,点E,G分别在AB,BC上.(1)求证:△ADE≌△CDG;(2)若AE=BE=2,求BF的长.15.(2022•恩施州)如图,已知四边形ABCD是正方形,G为线段AD上任意一点,CE⊥BG于点E,DF ⊥CE于点F.求证:DF=BE+EF.16.(2022•雅安)如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若AB=3,BE=2,求四边形AECF的面积.考法2:正方形判定17.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有(填上所有正确结论的序号).18.(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE =DF,OE=OA.求证:四边形AECF是正方形.【方法五】成果评定法一、单选题1.(2023·江苏常州·统考二模)如图,把图1中边长为10的菱形沿对角线分成四个全等的直角三角形,且此菱形的一条对角线长为16,将这四个直角三角形拼成如图2所示的正方形,则图2中的阴影面积为()A .2B .4C .9D .162.(2023·上海崇明·统考二模)下列命题是真命题的是()A .四边都相等的四边形是正方形B .一组邻边相等的矩形是正方形C .对角线互相垂直平分的四边形是正方形D .对角线互相垂直且相等的四边形是正方形3.(2023·浙江台州·统考一模)如图,学校为美化校园环境,决定在一个边长为10m 的正方形花坛中,按图中所示的分布方式种植郁金香和雏菊.则种植郁金香的总面积是()A .232mB .240mC .248m D .250m 4.(2023·辽宁本溪·统考一模)下列命题中,是真命题的有()①对角线相等且互相平分的四边形是矩形②对角线互相垂直的四边形是菱形③对角线互相平分的四边形是平行四边形④对角线相等的菱形是正方形A .①②③B .①③④C .②③④D .①②④5.(2023·江苏苏州·统考二模)如图,已知正方形ABCD 的边长为4,G 是AD 边中点,F 在AB 边上,且45GCF ∠=︒,则FB 的长是()A .43B .6.(2023·山东威海·统考一模)如图,正方形针旋转45︒得到正方形1OA B 标为(1,0),则点2023B 的坐标为(A .()11-,B 7.(2023·山东济宁·统考一模)如图,点角边EF EG ,分别交BC ,()A .223n B .14n 8.(2023·河北承德·统考一模)和OC 上的点(不与点A 、O 、过点F 作IJ AC ⊥分别交CD 、+=始终成立.甲:随着AE长度的变化,GH IJ BD乙:随着AE长度的变化,四边形GHIJ可能为正方形.丙:随着AE长度的变化,四边形GHIJ的面积始终不变,都是菱形ABCD面积的一半.下列选项正确的是()A.甲、乙、丙都对B.甲、乙对,丙不对C.甲、丙对,乙不对D.甲不对,乙、丙对二、填空题10.(2023·黑龙江齐齐哈尔添加一个条件:11.(2023·北京通州点O与BC边上的中点形,则BE的长度为12.(2023·天津西青·统考一模)如图,点中点,连接DF,若AB=13.(2023·山东菏泽·统考一模)如图,四边形OABC 是边长为1的正方形,顶点A 在x 轴的负半轴上,顶点C 在y 轴的正半轴上,若直线2y kx =+与边AB 有公共点,则k 的取值范围是____________.14.(2023·天津和平·统考二模)如图,已知正方形ABCD 的边长为4,点E 为边BC 上一点,3BE =,在AE 的右侧,以AE 为边作正方形AEFG ,H 为BG 的中点,则AH 的长等于________.15.(2023·吉林长春·校考一模)如图,四个全等的直角三角形围成正方形ABCD 和正方形EFGH ,即赵爽弦图.连结AC 、FN ,分别交EF 、GH 于点M ,.N 已知3AH DH =,且21ABCD S =正方形,则图中阴影部分的面积之和为______.16.(2023·河南濮阳·统考一模)将大小不一的正方形纸片甲、乙、丙、丁放置在如图所示的长方形ABCD 内(相同纸片之间不重叠),其中,若正方形“乙”的边长是m ,阴影部分“戊”与阴影部分“己”的周长之差为___________.17.(2023·天津东丽·统考一模)如图,正方形ABCD 的边长为4,点E 是BC 边中点,GH 垂直平分DE 且分别交AB 、DE 于点G 、H ,则AG 的长为______.18.(2023·辽宁葫芦岛沿AEAE,将ABE_____________;19.(2023春·安徽宣城·九年级校联考阶段练习)三、解答题20.(2023·吉林长春·统考一模)如图,在ABC=,点D是边BC的中点.过点A、D分别作BC中,AB AC、.与AB的平行线,并交于点E,连结EC AD(1)求证:四边形ADCE 是矩形.(2)当四边形ADCE 是正方形,8DE =时,BC =______.21.(2023·山东泰安·统考二模)在正方形ABCD 中,E 是BC 边上一点,在BC 延长线上取点F ,使EF ED =.过点F 作FG ED ⊥交ED 于点M ,交AB 于点G ,交CD 于点N .(1)求证:CDE MFE ≌;(2)若E 是BC 的中点,请判断BG 与MG 的数量关系,并说明理由.22.(2023·山西长治·统考一模)综合与实践问题情境:将正方形ABCD 的边BC 绕点B 逆时针旋转得到线段BE ,旋转角为(0180)αα︒<<︒,连接CE ,CBE ∠的平分线交直线AE 于点F .(2)深入探究:如图2,当①求AFB∠的度数;②求证:2=CE EF(1)操作判断操作一:在正方形纸片ABCD 的AD 边上取一点E ,沿CE 折叠,得到折线CE ,把纸片展平;操作二:对折正方形纸片ABCD ,使点C 和点E 重合,得到折线GF 把纸片展平.根据以上操作,判断线段CE GF ,的大小关系是______,位置关系是______.(2)深入探究如图2,设HE 与AB 交于点I .小华测量发现IE IB ED =+,经过思考,他连接IC ,并作EIC 的高CK ,尝试证明CKE CDE ≌△△,CBI CKI ≌△△.请你帮助完成证明过程.(3)拓展应用在(2)的探究中,已知正方形ABCD 的边长为10cm ,当点I 是AB 的三等分点时,请直接写出AE 的长.24.(2023·吉林长春·校考一模)图①、图②均是66⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB 为边画一个平行四边形ABCD.(1)平行四边形ABCD的面积为5.(2)图①、图②所画图形不全等.(3)点C、D均在格点上.25.(2023·安徽黄山·校考模拟预测)如图①,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD、、.(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN AM CM,是等边三角形吗?为什么?(1)连接MN BMN(2)求证:AMB ENB△≌△;+的值最小;(3)①当M点在何处时,AM CM②如图②,当M点在何处时,AM BM CM++的值最小,请你画出图形,并说明理由.26.(2023春·江西抚州·九年级临川一中校考期中)如图,E是正方形ABCD的边CD上一点,连接AE.请仅用无刻度的直尺完成画图.(保留画图痕迹,不写作法)(1)在图(1)中,平移线段AE,使E点与C点重合;(2)在图(2)中,将线段AE绕点A顺时针旋转90︒,得到线段AM.27.(2023·北京丰台·统考一模)在正方形ABCD中,点O为对角线AC的中点,点E在对角线AC上,连接EB,点F在直线AD上(点F与点D不重合),且EF EB=.(1)如图1,当点E在线段AO上(不与端点重合)时.①求证:AFE ABEÐ=Ð;②用等式表示线段AB,AE,AF的数量关系并证明;(2)如图2,当点E在线段OC上(不与端点重合)时,补全图形,并直接写出线段AB,AE,AF的数量关系.28.(2023·河南南阳·统考一模)综合与实践数学活动课上,同学们开展了以折叠为主题的探究活动,如图1.已知矩形纸片ABCD ,其中6AB =,11AD =.(1)操作判断将矩形纸片ABCD 按图1折叠,使点B 落在AD 边上的点E 处,可得到一个45︒的角,请你写出一个45︒的角.(2)探究发现将图1的纸片展平,把四边形EFCD 剪下来如图2,取FC 边的中点M ,将EFM △沿EM 折叠得到EF M '△,延长EF '交CD 于点N ,判断EDN △的周长是否为定值,若是,求出该定值;若不是,请说明理由.(3)拓展应用改变图2中点M 的位置,令点M 为射线FC 上一动点,按照(2)中方式将EFM △沿EM 折叠得到EF M '△,EF '所在直线交CD 于点N ,若点N 为CD 的三分点,请直接写出此时NF '的长.29.(2023·北京门头沟·统考一模)已知正方形ABCD 和一动点E ,连接CE ,将线段CE 绕点C 顺时针旋转90︒得到线段CF ,连接BE ,DF .(1)如图1,当点E在正方形ABCD内部时,①依题意补全图1;②求证:BE DF;(2)如图2,当点E在正方形ABCD外部时,连接AF,取AF中点M,连接AE,DM,用等式表示线段AE 与DM的数量关系,并证明.30.(2023·河南安阳·统考二模)综合与实践综合与实践课上,老师与同学们以“特殊的三角形”为主题开展数学活动.(1)操作判断:如图1,在ABC,,点∠=︒=ABC AB BC中,90将线段BP绕点P逆时针旋转90︒得到PD,连接DC,如图2.根据以上操作,判断:如图A重合时,则四边形ABCD的形状是;(2)迁移探究:①如图4,当点P与点C重合时,连接DB,判断四边形②当点P与点A,点C都不重合时,试猜想DC与BC的位置关系,并利用图(3)拓展应用:当点P与点A,点C都不重合时,若3,==AB AP。
正方形(基础)【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】【高清课堂特殊的平行四边形(正方形)知识要点】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.【典型例题】类型一、正方形的性质1、(2015•扬州校级一模)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形=2+.其中正确的个数为()ABCDA.1B.2C.3D.4【思路点拨】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【答案与解析】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.【总结升华】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.举一反三:【变式1】已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且CE=CF,连接DE,BF.求证:DE=BF.【答案】证明:∵四边形ABCD 是正方形,∴BC=DC ,∠BCD=90°∵E 为BC 延长线上的点,∴∠DCE=90°,∴∠BCD=∠DCE .在△BCF 和△DCE 中,BC DC BCF DCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∴△BCF≌△DCE(SAS ),∴BF=DE .【高清课堂 特殊的平行四边形(正方形) 例1】【变式2】(2015•咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°【答案】B ;提示:∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD ,∠BAF=45°,∵△ADE 是等边三角形,∴∠DAE=60°,AD=AE ,∴∠BAE=90°+60°=150°,AB=AE , ∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B .2、如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【思路点拨】要证明△ABE≌△DAF,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF的长,需要求出AF和AE的长.【答案与解析】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△DAF≌△ABE.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°-(∠1+∠3)=90°,∴DF⊥AG,∴DF=11 2AD=∴A F=3∵△ABE≌△DAF,∴AE=DF=1,∴EF=31-【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.举一反三:【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC.【答案】证明:在正方形ABEF中和正方形BCMN中,AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,∵AB=2BC,即BC=BN=12 AB∴BN=12BE,即N为BE的中点,∴EN=NB=BC,∴△FNE≌△ECB,∴FN=EC.要点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).类型二、正方形的判定3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE ⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.【答案与解析】解:是正方形,理由如下:作DG⊥AB于点G.∵ AD平分∠BAC,DF⊥AC,DG⊥AB,∴ DF=DG.同理可得:DG=DE.∴ DF=DE.∵ DF⊥AC,DE⊥BC,∠C=90°,∴四边形CEDF是矩形.∵ DF=DE.∴四边形CEDF是正方形.【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.举一反三:【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.(1)求证:四边形CDOF是矩形;(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.【答案】(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),∴∠AOC=2∠COD,∠CO B=2∠COF,∵∠AOC+∠BOC=180°,∴2∠COD+2∠COF=180°,∴∠COD+∠COF=90°,∴∠DOF=90°;∵OA=OC,OD平分∠AOC(已知),∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),∴∠CDO=90°,∵CF⊥OF,∴∠CFO=90°∴四边形CDOF是矩形;(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:∵∠AOC=90°,AD=DC,∴OD=DC;又由(1)知四边形CDOF是矩形,则四边形CDOF是正方形;因此,当∠AOC=90°时,四边形CDOF是正方形.要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.类型三、正方形综合应用4、如图,在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;【答案与解析】解:(1)当∠BAO=45°时,∠PAO=90°,在Rt△AOB中,OA=2AB=2a,在Rt△APB中,PA=2AB=2a.∴点P的坐标为22,22a a⎛⎫⎪ ⎪⎝⎭.(2)如图过点P分别作x轴、y轴的垂线垂足分别为M、N,则有∠PMA=∠PNB=∠NPM=∠BPA=90°,∵∠BPN+∠BPM=∠APM+∠BPM=90°∴∠APM=∠BPN,又PA=PB,∴△PAM≌△PBN,∴ PM=PN,又∵ PN⊥ON,PM⊥OM于是,点P在∠AOB的平分线上.【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.【巩固练习】 一.选择题 1. 正方形是轴对称图形,它的对称轴共有( )A .1条B .2条C .3条D .4条2. (2015•漳州一模)正方形具有而菱形不一定具有的性质是( )A. 四条边相等B. 对角线互相垂直平分C. 对角线平分一组对角D. 对角线相等3. 如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )2cm .A.6B.8C.16D.不能确定4. 顺次连结对角线互相垂直的四边形各边的中点,所得的四边形是 ( )A. 矩形B. 菱形C. 正方形D. 梯形5.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME =MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( )A .31- B.35- C.51+ D. 51-6.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰三角形有( )A .4个B .6个C .8个D .10个二.填空题7.若正方形的边长为a ,则其对角线长为______,若正方形ACEF 的边是正方形ABCD 的对角线,则正方形ACEF 与正方形ABCD 的面积之比等于______.8. 如图,在四边形ABCD 中,AB =BC =CD =DA ,对角线AC 与BD 相交于点O ,若不增加任何字母与辅助线,要使四边形ABCD 是正方形,则还需增加一个条件是_________.9. 如图,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A B C ''',若两个三角形重叠部分的面积是12cm ,则它移动的距离AA '等于____cm .10. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_______.11. 如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针旋转45°,则这两个正方形重叠部分的面积是______.12.(2015•长春)如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .三.解答题13.已知:如图,正方形ABCD 中,点E 、M 、N 分别在AB 、BC 、AD 边上,CE =MN , ∠MCE =35°,求∠ANM 的度数.14.(2015•铁力市二模)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E;PF⊥CD于点F,连接EF,给出下列五个结论:①AP=EF;②AP⊥EF;③∠PFE=∠BAP;④PD=EC;⑤PB2+PD2=2PA2,正确的有几个?.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后,得到正方形EFCG,EF 交AD于H,求DH的长.【答案与解析】一.选择题1.【答案】D;【解析】正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.2.【答案】D;【解析】正方形的性质:正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,并且每一条对角线平分一组对角;菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一条对角线平分一组对角;因此正方形具有而菱形不一定具有的性质是:对角线相等;故选:D.3.【答案】B;【解析】阴影部分面积为正方形面积的一半.4.【答案】A;5.【答案】D;【解析】利用勾股定理求出CM5即ME的长,有DM=DE,所以可以求出DE51,进而得到DG的长.6.【答案】C ; 二.填空题7.【答案】2a ,2∶1 ;【解析】正方形ACEF 与正方形ABCD 的边长之比为2:1.8.【答案】AC =BD 或AB⊥BC;【解析】∵在四边形ABCD 中,AB =BC =CD =DA∴四边形ABCD 是菱形∴要使四边形ABCD是正方形,则还需增加一个条件是AC =BD 或AB⊥BC .9.【答案】1;【解析】移动距离为B C x '=,重叠部分面积为CE ×1B C '=,所以()21x x -=,得()210x -=,所以1x =.10.【答案】1;【解析】由题可知△DEO≌△BFO,阴影面积就等于三角形BOC 面积.11.【答案】21-;【解析】21D E D C ''==-,重叠部分面积为()12121212⨯⨯⨯-=-. 12.【答案】5;【解析】解:过E 作EM ⊥AB 于M ,∵四边形ABCD 是正方形,∴AD=BC=CD=AB ,∴EM=AD ,BM=CE ,∵△ABE 的面积为8,∴×AB ×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.三.解答题13.【解析】解:作NF⊥BC 于F .∵ABCD 是正方形,∴CD =BC =FN则在Rt △BEC 和Rt △FMN 中,∠B=∠NFM=90°,CE MN BC FN=⎧⎨=⎩ ∴Rt △BEC≌Rt △FMN∴∠MNF=∠MCE=35°∴∠ANM=90°-∠MNF=55°14.【解析】解:①正确,连接PC ,可得PC=EF ,PC=PA ,∴AP=EF ;②正确;延长AP ,交EF 于点N ,则∠EPN=∠BAP=∠PCE=∠PFE ,可得AP ⊥EF ; ③正确;∠PFE=∠PCE=∠BAP ;④错误,PD=PF=CE ;⑤正确,PB 2+PD 2=2PA 2.所以正确的有3个:①②③.15.【解析】解:如图,连接CH ,∵正方形ABCD 绕点C 按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°,在Rt△CDH 和Rt△CFH 中,CH CH CD CF=⎧⎨=⎩ ∴Rt△C DH ≌Rt△CF H , ∴∠DCH=∠FCH=12∠DCF=30°, 在Rt △CDH 中,DH =x ,CH =2x ,CD =33x =,∴DH =3.。