六年级数学反比例习题
- 格式:doc
- 大小:30.00 KB
- 文档页数:1
用反比例解决问题第1关练速度1.下面每题中的两种量是否成比例?如果成比例,成什么比例?(1)装配一批电池,每天的装配数量与所需天数。
()(2)正方形的面积与边长。
()(3)水池的容积一定,水管每小时的注水量与所用的时间。
()(4)在一定的时间内,加工每个零件所用的时间与加工的零件数。
()(5)体积一定,圆柱的底面积和高。
()(6)书的总页数一定,看过的页数与未看过的页数。
()(7)每天修路200m,修路的天数与修完路的长度。
()2.填表。
一种圆锥,它的体积(V)一定。
(1)根据表中数据判断,平行四边形的底和高成什么比例?为什么?(2)如果小红画的平行四边形的底是7.2cm,那么高是多少厘米?4.同学们排队做广播操,如果每行站24人,正好站15行;如果每行站20人,可以站几行?(1)我会分析:本题中,每行人数和行数是两种相关联的量。
()是一定的。
每行人数和行数成()比例。
(2)我会解答:第2关练准确率5.下面是铺一间房屋的地面所用地砖的规格和块数的关系示意图。
(1)从图中可以看出,所需地砖的块数是随着()的变化而变化的,这两种量成()比例。
(2)当用每块面积为0.6m²的地砖铺地时,需要这种地砖()块。
(3)当用每块面积为()m²的地砖铺地时,需要这种地砖120块。
6.某工厂生产一种零件,现在生产每个零件所用的时间由技术革新前的8分钟减少到了5分钟,原来生产60个零件的时间现在能生产多少个?7.有一个班的同学到公园去划船,他们已提前租好了若干条船,现在如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
这个班共有多少人?8.甲、乙两人骑自行车从A、B两地同时相向而行,甲行完全程要6小时,甲、乙相遇时所行的路程比是3∶2,乙行完全程要多少时间?9.如图,平行四边形ABCD的周长为75cm,以BC为底时,高是14cm;以CD为底时,高是16cm。
那么平行四边形ABCD的面积是多少?10.制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4∶3,那么乙单独完成要多长时间?第3关练思维11.一架飞机所带的燃料最多可以用6小时,飞机去时顺风每小时可以飞行1500km,返回时逆风每小时可以飞行1200km。
小学六年级数学比例和反比例测试题含答案及知识点一、比例和反比例1.同一时间、同一地点测得的树高和它的影长如下表:树高/米2346…影长/米1.62.43.24.8…(2)树高和影长成什么比例?为什么?(3)量得一颗大树的影长是10.4米,这棵大树有多高?【答案】(1)(2)解:成正比例。
因为 =1.25, =1.25, =1.25, =0.8(一定),所以,树高和影长成正比例。
(3)解:设这棵大树的高度是x米。
=1.6x=2×10.41.6x=20.81.6x÷1.6=20.8÷1.6x=13答:这棵大树的高度是13米。
【解析】【分析】(1)观察统计图可知,横轴表示树高,竖轴表示影长,据此先描点,再连线,据此作图;(2)分别用树高:影长,求出比值,当比值一定时,成正比例,据此判断;(3)根据题意可知,设这棵大树的高度是x米,用树高:影长=树高:影长,据此列正比例解答.2.把一瓶果汁平均分成若干杯,分的杯数和每杯的果汁量如下表。
分的杯数/杯6543每杯的果汁量/mL100120()200(2)分的杯数和每杯的果汁量有什么关系?为什么?(3)如果把这些果汁平均分成10杯,每杯的果汁量是多少毫升?【答案】(1)150(2)解:成反比例,因为每杯的果汁量×分的杯数=果汁总量。
(3)解:6×100÷10=60(毫升)答:每杯的果汁量是60毫升。
【解析】【解答】解:(1)100×6÷4=150(mL)【分析】(1)这瓶果汁的总量不变,用总量除以4即可求出每杯的容量;(2)根据正反比例关系的意义确定这两个量的关系;(3)用果汁总量除以10即可求出每杯果汁的容量。
3.甲乙两地相距440千米,一辆汽车从甲地开往乙地,3时行了240千米,照这样计算,几小时可以到达乙地?(用比例解)【答案】解:设小时可以到达乙地,答:5.5小时可以到达乙地。
小学六年级数学比例和反比例测试题含答案及知识点一、比例和反比例1.一种药水是由药粉和水按照1:200的质量比配制而成的.药粉/克1246810水/克200400(1)补充表格.(2)根据表格中的数据在下面的方格纸上描点连线.(3)12克药粉需要加入多少克水?要把2.5千克水配成药水,需要药粉多少克?【答案】(1)解:填表如下:药粉/克1246810水/克200400800120016002000(2)解:作图如下:(3)解:200×12=2400(克)2.5千克=2500克2500× =12.5(克)答:12克药粉需要加水2400克,要把2.5千克水配成药水,需要药粉12.5克.【解析】【分析】(1)根据条件“ 一种药水是由药粉和水按照1:200的质量比配制而成的”可知,用药粉:水=1:200,据此列比例解答,然后填表即可;(2)根据统计表中的数据,在统计图中先描点,然后再连线,图中的统计图纵轴每格代表200克,据此作图;(3)根据条件可知,1克药粉要加入200克水,用药粉的质量×200=水的质量,据此用乘法计算;要把2.5千克水配成药水,需要药粉多少克,先统一单位,1千克=1000克,然后用水的质量×药粉占水的分率=药粉的质量,据此列式解答。
2.如果10千克菜籽可以榨6.5千克菜油,那么有这种菜籽360千克,可以榨多少千克油?(用比例解)【答案】解:设可以榨x千克油。
10:6.5=360:x10x=6.5×360x=2340÷10x=234答:可以榨油234千克。
【解析】【分析】菜籽的重量和榨油的质量的比值是不变的,二者成正比例,设出未知数,根据正比例关系列出比例,解比例求出可以榨油的重量即可。
3.把一瓶果汁平均分成若干杯,分的杯数和每杯的果汁量如下表。
分的杯数/杯6543每杯的果汁量/mL100120()200(2)分的杯数和每杯的果汁量有什么关系?为什么?(3)如果把这些果汁平均分成10杯,每杯的果汁量是多少毫升?【答案】(1)150(2)解:成反比例,因为每杯的果汁量×分的杯数=果汁总量。
2021-2022学年六年级数学下册典型例题系列之第六单元正比例和反比例在图表中的应用专项练习(解析版)一、填空题。
1.(2021·河北邯郸·小升初真题)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成()比例。
照这样计算,2.2小时行驶()千米。
【解析】(1)根据图可知:路程÷时间=速度(一定),商一定,所以路程和时间成正比例关系;(2)100÷1×2.2=100×2.2=220(千米)2.(2021·河北保定·小升初真题)观察关于购买衣服的统计表:购买衣服的数量和总价成( )比例。
【解析】70÷2=35105÷3=35140÷4=35175÷5=35210÷6=35总价÷数量=35(一定),商一定,所以购买衣服的数量和总价成正比例。
3.(2021·云南玉溪·六年级期末)如图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成( )比例。
照这样计算,该汽车6.6时行驶( )km。
【解析】6.6×100=660(千米)这辆汽车行驶的时间与路程成正比例。
照这样计算,该汽车6.6时行驶660km。
4.(2021·陕西·延安市宝塔区蟠龙镇初级中学六年级期末)莎莎骑车到相距5千米的书店买书,买完书立刻返回家中。
如图是她离开家的距离与时间的统计图。
(1)莎莎去书店每小时行( )千米,用了( )分钟,这段时间内她骑车的路程和时间成( )比例。
(2)莎莎从书店返回家中的速度是每小时( )千米,用了( )分钟。
(3)莎莎返回时的速度比去时慢( )%。
【解析】(1)5÷0.5=10(千米),所以,莎莎去书店每小时行10千米,用了30分钟,这段时间内她骑车的路程和时间成正比例;(2)5÷1.25=4(千米),所以,莎莎从书店返回家中的速度是每小时4千米,用了75分钟;(3)(10-4)÷10=6÷10=60%所以,莎莎返回时的速度比去时慢60%。
六年级反比例的练习题1. 某书店每本书的售价与购买数量成反比例关系,购买5本该书时需要25元,请问购买8本该书需要多少元?解析:购买5本书需要25元,即书的售价与购买数量的乘积等于常数,设该常数为k,则有 5 × 25 = k。
要求购买8本书的价格,即 8 ×x = k,其中x为该书的售价。
解方程可得 x = 5 × 25 ÷ 8 = 15.625。
所以购买8本该书需要15.625元。
2. 一辆汽车以60千米的时速行驶,需要6小时到达目的地。
请问以80千米的时速行驶,需要多少小时能够到达同样的目的地?解析:行驶的路程与速度成反比例关系,即路程与时间的乘积为常数。
假设常数为k,则有 60 × 6 = k。
要求以80千米的时速行驶的时间,即 80 × x = k,其中x为所需时间。
解方程可得 x = 60 × 6 ÷ 80 = 4.5。
所以以80千米的时速行驶,需要4.5小时能够到达同样的目的地。
3. 一个邮递员每天送快递,每天送100个快递需要2个小时。
请问如果他每天送150个快递,需要多少小时?解析:送快递的数量与所需时间成反比例关系,即数量与时间的乘积为常数。
设常数为k,则有 100 × 2 = k。
要求送150个快递所需时间,即 150 × x = k,其中x为所需时间。
解方程可得 x = 100 × 2 ÷ 150 =1.3333。
所以送150个快递需要1.3333小时。
4. 一辆汽车行驶了240千米所用的时间为4小时,请问行驶480千米需要多少小时?解析:行驶的路程与时间成反比例关系,即路程与时间的乘积为常数。
假设常数为k,则有 240 × 4 = k。
要求行驶480千米所需时间,即480 × x = k,其中x为所需时间。
解方程可得 x = 240 × 4 ÷ 480 = 2。
反比例是数学中的一个重要概念,它在实际生活中也有广泛的应用。
在六年级的数学教学中,反比例的学习是必不可少的。
今天,我们将为大家详细讲解数学六年级教案中的练习题,以及答案解析。
一、选择题1.一个矩形的长和宽成反比例,如果它的长为5,则宽为多少?A.1B.2C.3D.4答案:D。
解析:由于长和宽成反比例,长与宽呈现出一定的规律。
当长为5时,宽应该为原来的1/5,即5×1/5=1,宽为4。
2.有一条路程,如果两名工人同时开始走,第一名工人的速度是第二名工人的1.5倍,他们走到终点的时间是相同的。
如果第二名工人用了4小时,第一名工人用了多长时间?A.2.5小时B.3小时C.4.5小时D.6小时答案:A。
解析:设第二名工人的速度为v,则第一名工人的速度为1.5v。
设路程为S,则根据路程=速度×时间可以得到:v×4=1.5v×t。
解得:t=2.5小时。
3.一个需要从A地到达B地,已知需要走的路程是20米,走的最快速度为8m/s。
需要多长时间到达B地?A.2.5秒B.2.8秒C.3.0秒D.4秒答案:C。
解析:根据路程=速度×时间,可以得到时间为20÷8=2.5秒。
4.小红每天早上骑自行车去学校,行程固定为6公里。
如果她增加了速度,需要2分钟才能到达学校。
如果小红减速,需要5分钟才能到达学校。
求小红原来每小时的骑车速度是多少?A.20公里/小时B.25公里/小时C.30公里/小时D.35公里/小时答案:B。
解析:设小红原来的速度为v,则根据路程=速度×时间,可以得到6=vt。
已知小红增加速度后的时间为2/60=1/30小时,可以得到6=v×1/30,即v=6×30=180公里/小时。
同理,小红减速时的速度为6÷(5/60)=72公里/小时。
根据反比例的定义可知,速度与时间呈反比例关系,速度越快,所用时间越短。
小红原来的速度应该在这两个速度之间,取平均值即可得出答案:(180+72)÷2=126公里/小时,约等于25公里/小时。
一、选择题。
1. 成反比例的量是()。
A.A和B互为倒数
B.圆柱的高一定,体积和底面积
C.被减数一定,减数与差
D.除数一定,商和被除数
2. 如果=那么和()。
A.成正比例
B.成反比例
C.不成比例
3. 互为倒数的两个数()。
A.成正比例
B.成反比例
C.不成比例
4. 在同一个圆里,周长与直径()
A.成正比例
B.成反比例
C.不成比例
5. 路程一定,速度和时间()。
A.成正比例
B.成反比例
C.不成比例
二、下面两种量成什么比例,并说明理由。
①时间一定,每小时织布的米数和织布总米数。
②平行四边形面积一定,它的底和高。
③分子一定,分母和分数值。
④报纸的单价一定,总价与订阅的份数。
反比例解决问题
例1:小华读一本书,每天读6页,4天可以读完。
如果每天读8页,几天可以读完?
1、修路队修一段公路,每天修50米,6天修完。
如果每天修100米,几天可以修完?
2、一头牛每天吃草20千克,吃了6天。
如果每天吃了30千克,这些草可以吃几天?
3、一批零件,工人师傅每小时工7个,8小时加工完成。
如果每小时加工8个,几小时可以完成?
4、张老师打印一份文件,如果每行排24个字,需要排21行。
如果每行排28个字,需要排多少行?
5、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?
例2:食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天
6、某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天?
7、一堆煤,每天烧0.8吨,可以烧42天。
现在每天节约0.1吨,可以烧多少天?
8、一堆煤,计划每天烧0.6吨,30天烧完,实际多烧了6天,实际每天烧多少吨?
9、某机床厂计划每天生产6台机床,40天可完成一批任务。
由于技术革新,实际提前10天完成了任务,实际每天生产多少台机床?
例3:车队向灾区运送一批救灾物资,去时每小时行60千米,6.5小时到达。
回来时用了6小时,回来时比去时每小时多行多少
千米?
10、一辆汽车从甲地去乙地,每小时行驶60去千米,5.5小时到达。
返回时只用了5小时,返回时每小时行驶多少千米?。
六年级下册数学正反比例训练1、分数值一定,分子和分母(正)比例分母一定,分数值和分子(正)比例分子一定,分数值和分母(反)比例2、在长方形中,长一定,面积和宽(正)比例宽一定,面积和长(正)比例面积一定,长和宽(反)比例周长一定,长和宽(不成)比例长一定,周长和宽(不成)比例宽一定,周长和长(不成)比例3、在平行四边形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例4、在三角形里,底一定,面积和高(正)比例高一定,面积和底(正)比例面积一定,底和高(反)比例5、在正方形中,边长和周长(正)比例面积和边长(不成)比例6、在圆中,面积和半径(不成)比例周长和半径(正)比例直径和半径(正)比例直径和面积(不成)比例7、每公顷产量一定,总产量和公顷数(正)比例公顷数一定,每公顷产量和总产量(正)比例总产量一定,每公顷产量和公顷数(反)比例8、份数一定,每份数和总数(正)比例每份数一定,份数和总数(正)比例总数一定,每份数和份数(反)比例9、商一定,除数和被除数(正)比例除数一定,商和被除数(正)比例被除数一定,除数和商(反)比例10、积一定,两个因数(反)比例一个因数一定,另一个因数和积(正)比例11、甲×乙=丙,当丙一定时,甲和乙(反)比例当甲一定时,丙和乙(正)比例当乙一定时,甲和丙(正)比例12、车轮的周长(或半径、直径)一定,车轮前进路程和转数(正)比例13、一堆煤的总重量一定,烧去的和剩下的(不成)比例14、要行的总路程一定,已经走过的路程和剩下的路程(不成)比例15、在规定的时间里,制造每个零件的时间和制造零件的个数(反)比例16、一批纸总页数一定,装订练习本本数和每本练习本的页数(反)比例。