复合函数的零点个数问题
- 格式:docx
- 大小:221.47 KB
- 文档页数:5
复合函数零点问题举例张伟钦【期刊名称】《高中数理化》【年(卷),期】2016(000)013【总页数】2页(P10-11)【作者】张伟钦【作者单位】山东省寿光市圣都中学【正文语种】中文近年活跃在各地高考中的复合函数零点问题,考查方式独特、题型新颖,成为高三复习的一个热门话题.本文结合实例探讨解决复合函数零点问题的基本策略.A 当k>0时,有3个零点;当k<0时,有2个零点;B 当k>0时,有4个零点;当k<0时,有1个零点;C 无论k为何值,均有2个零点;D 无论k为何值,均有4个零点令f(x)=t1,由图知有2个解.令f(x)=t2,由图知也有2解.故当k>0时,y=f[f(x)]+1有4个零点.当k<0时,f(x)的图象如图2所示,由图知f(x)=-1仅有1个根0<t<1.故f(x)=t也仅有1根.故选B.具体解析过程如下:因为由图象可得当f(x)在(0,4]上任意取一个值时,都有4个不同的x与其值对应.再结合条件函数y=[f(x)]2-bf(x)+1有8个不同的零点,可得关于k的方程k2-bk+1=0有2个不同的实数根k1、k2,且0<k1≤4, 0<k2≤4,所以A 15;B 20;C 30;D 35作函数的图象如图4所示,则由函数有5个不同的零点知,解得.解得f(x)=1或.若f(x)=1,则x=2或x=3或x=1;若,则x=0或x=4.故故选C.当|x|≥16时,f(x)≥1.已知关于x的方程[f(x)]2+af(x)+b=0有且只有7个实数根,设t=f(x),则t2+at+b=0必有根t1、t2,其中,所以,所以). 故答案为).A (0,1/2);B (1/2,1);C (1,2);D (2,3)设t=f(x)-log2x,则f(x)=log2x+t, 且f(t)=3,即log2t+t=3,可得t值,于是求得f(x)的解析式.对f(x)求导得f′(x),将f(x)与f′(x)代入f(x)-f′(x)=2,变形化简可得.令,由二分法分析可得h(x) 的零点所在的区间为(1,2),结合函数的零点与方程根的关系,即可得答案.具体解答过程如下:因为对∀x∈(0,+∞),都有f[f(x)-log2x]=3,且f(x)是定义在(0,+∞)上的单调函数,所以f(x)-log2x为定值.设t=f(x)-log2x,则f(x)=log2x+t.又因为f(t)=3,所以log2t+t=3, t=2,所以f(x)=log2x+2,求导得,代入f(x)-f′(x)=2可得,所以令,则,所以的零点在区间(1,2)内,即方程f(x)-f′(x)=2的解所在区间是(1,2). 故正确选项为C.。
速解复合函数中的零点个数问题作者:徐靖婷来源:《科教导刊·电子版》2017年第24期摘要函数问题中涉及复合函数的题目向来是高中数学考试乃至高考的热点、重点、难点,这种问题考察了学生的逻辑思维能力以及综合理解能力,需要学生冷静的分析,理清层次,熟悉基本题型并能随机应变,复合函数的理解本身就是一个难点,而复合函数中零点个数问题,更是直接反映了学生对该类题的掌握能力,要求较高。
关键词复合函数零点个数问题中图分类号:G632 文献标识码:A基本解题思路如下:(1)辨认复合方程,如:当复合函数F(x)=f2(x)+af(x)+b=0时的这个式子f2(x)+af(x)+b=0就是“复合方程”,而复合函数中零点个数就是这里复合方程的根。
当没有明确指出有中间变量时,需要观察,幷设出。
(2)理解并简化,映射x→f(x)→f2(x)+af(x)+b,设中间变量f(x)=u,最终变量f(x)=y,y=u2+au+b=0即。
(3)画图并解出y=u2+au+b=0,解出u1,u2,又u1=f(x1),u2=f(x2)分别解得x1,x2而在具体问题中,想要一点不出错,也并不是一件易事,下面,就让我们以几个题目为例来探讨一下如何才能对这类题做到“快、准、狠”。
例1、(2005年上海考题)设定义域为R的函数,则关于x的方程f2(x)+bf(x)+c有7个不同实数解的充要条件是。
分析:由题意得,函数f(x)是具体的,应先画出,根据图像分析方程f2(x)+bf(x)+c=0的解的情况,讨论两同根或两异根,根据图像写范围,得解画出图像如下:f2(x)+bf(x)+c=0,设f(x)=u,则u2+bu+c=0I当u1=u2=u0,不可能有7个x满足,舍II当有两解u1,u2时,u1=0,u2>0即,u1 u2=c=0,u1+u2=-b>0,故c=0,b综上可知:充要条件是c=0,b评注:解决本题关键是图像要画对,几十分类讨论,利用根与系数关系得出最后答案,掌握了方法,此题很简单,也就是说,本题是——画图,观察。
复合函数零点个数问题的求解策略摘要:复合函数的零点个数问题的求解一直以来作为数学学习的重要课题与问题,也是数学教学中的一个重要的知识点。
复合函数的零点个数问题常作为学生考试的内容,属于考试范围中的重点与难点。
因此,如何通过巧妙的策略与思想帮助学者能够更快的理清思路,辩证的看待问题,找到解决问题的方法成为了当前数学教学中亟需解决的问题。
因此,本文主要通过论述复合函数零点个数问题求解的教学策略与目标,列举相关复合函数类型与例子,对如何进行复合函数零点求解提供解决策略,为日后数学教学的发展以及帮助学生提升数学解题能力提供借鉴,为国家人才的培养建设贡献自身的一份力量。
关键词:复合函数;零点;个数;求解策略;方法引言:在所有的学科门类中,数学是一门对学生考察抽象思维能力要求度极高的学科,经常需要学生能够辩证的看待数学问题,抽象的转化为其他问题进行论证,复合函数的零点个数求解问题更是如此,坐标法、图像法等无不要求学生能够充分的实现数形结合,将抽象的问题具体化,降低解题的难度。
同时,对于复合函数零点个数求解不仅需要能够让学生学会做该类题,更是为了让学生领悟解题的思想与方法,面对类似的问题能够触类旁通,真正掌握解题的思想,这对于我国数学教学事业的发展来说具有重要的建设性意义。
一、基础预备知识不同的版本对于函数f(x)的零点定义不同,但是本质是相同的。
在人教版的教材中,其中对于方程f(x)的零点定义如下:一般是在函数y=f(x)中,将f(x)=0,解出此方程获得的实数根X就是函数y=f(x)的零点。
这个零点也是f(x)=0的实数根。
在图像上的表现是,当函数y=f(x)在直角坐标系中与横轴x有交点,那么就证明函数y=f(x)有零点,并且这个交点的x值就是方程f(x)=0的实数根。
从人教版的定义来看,这个定义是具有概括性的。
同时课程中还有两个命题,这两个命题对于帮助找到复合函数的零点有重要意义,命题如下:命题一:如果开始让方程f(x)=0,假设这个时候方程有m个不同的实数根,分别可以定义为X1、X2……Xm,并且令f(x)等于任意的Xi,i是在1到m的范围内,这个时候假设方程有Ni个不一样的实数根,这个时候则可以得出,函数f[f (x)]的零点个数为(N保留下标:1+N保留下标:2+……N保留下标:m)个。
复合函数零点个数的探究
《复合函数零点个数的探究》
复合函数是指由两个或两个以上函数组合而成的函数,它在函数分析学中占有重要地位。
其中,复合函数的零点个数是研究复合函数的重要组成部分,也是比较重要的研究内容。
首先,要求复合函数的零点个数,就必须先确定复合函数的组成函数,然后求出每个函数的零点个数,最后把每个函数的零点个数相加,得到复合函数的零点个数。
其次,复合函数的零点个数受到组成函数的影响,如果组成函数中有多项式函数,则可以用多项式的零点公式求出零点个数;如果组成函数中有指数函数,则可以用指数函数的零点公式求出零点个数;如果组成函数中有对数函数,则可以用对数函数的零点公式求出零点个数。
最后,复合函数的零点个数也受到复合函数的结构影响,如果复合函数是由两个函数相乘组成的,则其零点个数等于两个函数零点个数的乘积;如果复合函数是由两个函数相加组成的,则其零点个数等于两个函数零点个数的和。
研究复合函数的零点个数是一项复杂的工作,必须充分考虑复合函数的结构、组成函数的性质和零点公式等因素,才能准确求出复合函数的零点个数。
分段复合函数零点个数问题是一个复杂的问题,需要考虑函数的定义域、分段函数的性质以及复合函数的性质等多个因素。
以下是一些可能有用的提示和步骤,帮助您解决这个问题:确定函数的定义域:首先,您需要确定函数的定义域,以确保您在正确的范围内求解零点。
分析分段函数的性质:分段函数可能在不同的区间内具有不同的性质。
您需要仔细分析这些性质,并找出可能影响零点个数的关键点。
分析复合函数的性质:复合函数可能具有更复杂的性质,例如连续性、可导性等。
您需要分析这些性质,以确定如何找到零点。
使用代数方法求解零点:一旦您确定了函数的定义域、分段函数的性质和复合函数的性质,您可以使用代数方法(例如因式分解、求解方程等)来求解零点。
考虑特殊情况:在某些情况下,函数可能在某些特定的x值处具有特定的性质(例如奇函数、偶函数等)。
您需要仔细考虑这些特殊情况,并确定它们是否会影响零点的个数。
需要注意的是,解决分段复合函数零点个数问题可能需要一定的数学技巧和经验。
如果您不确定如何解决这个问题,建议请教数学专家或查阅相关的数学教材和文献。
高一数学复习考点知识与题型专题讲解专题13 复合函数的零点问题【方法精讲】复合函数的零点问题一般用换元法,分别探讨内外函数的零点个数或范围即可.【典型例题】例1 已知函数ln ,0()1,0x x f x x x ⎧>=⎨+⎩,若方程(())0f f x a +=有6个不等实根,则实数a 的可能取值是( )A .12-B .0C .1-D .13- 【答案】AD【分析】作出函数ln ,0()1,0x x f x x x ⎧>=⎨+⎩的图象,结合选项逐一判断即可.【解析】作出函数ln ,0()1,0x x f x x x ⎧>=⎨+⎩的图象:直接验算法:当12a =-时,1(())2f f x =,所以11(),(),()2f x f x e f x e =-==, 所以方程(())0f f x a +=有6个不等实根;当0a =时,(())0f f x =,所以()1,()1f x f x =-=,所以12,,x x x e e=-==,所以方程(())0f f x a +=有3个不等实根; 当1a =-时,(())1f f x =,所以1()0,(),()f x f x e f x e===, 所以11,1,,e e x x x e x e =-===,且1()f x e =方程有3根, 所以方程(())0f f x a +=有7个不等实根;当13a =-时,1(())3f f x =,所以2(),()()3f x f x f x =-== 所以方程(())0f f x a +=有6个不等实根;故选:AD.例2 设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( ).A .0<b 且0>c ;B .0>b 且0<c ;C .0<b 且0=c ;D .0≥b 且0=c .【分析】观察所求解方程为关于()f x 的一元二次方程,设()=f x t ,问题进而转化为关于t 的一元二次方程20t bt c ++=解的问题.由函数图象得:(1)当0t >时,方程()=f x t 有不同的实数解4个;(2)当0t =时,方程()=f x t 有不同的实数解3个;(3)当<0t 时,方程()=f x t 没有实数解.所以,关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是方程02=++c bx x 有两个根,其中一个根等于0,另一个根大于0.此时应0<b 且0=c .【巩固练习】1.已知函数()20()ln 0x x f x x x -⎧⎪=⎨-<⎪⎩,≥,,,2()3,g x x =-则函数[()]y f g x =的零点个数是 . 2. 已知函数0()ln 0x m x f x x x +⎧=⎨>⎩,≤,,,其中0m >.若函数[()]1y f f x =-有3个不同零点,则实数m 的取值范围是 .3.已知函数1()ln x x m f x x x m +⎧=⎨>⎩,≤,,. 其中1m >,若函数[()]1y f f x =-有3个不同零点,则实数m 的取值范围是 .4.设定义在R 上的函数()⎪⎩⎪⎨⎧=≠-=3,13,31x x x x f ,若关于x 的方程()()02=++b x af x f 有5个不同的实数解,则实数a 的取值范围是 .5.若函数10()ln 0x x f x x x +⎧=⎨>⎩,≤,,.(1)函数[()]y f f x =的零点个数是 .(2)若函数[()]2y f f x m =-有3个不同零点,则实数m 的取值范围是 .【答案与提示】1.【答案】42.【答案】[1,e )3.【答案】(1,e]5.【答案】(1)4;(2)10,2⎛⎤⎥⎝⎦4.【答案】()(),22,1-∞-⋃--。
复合函数方程有解或根的个数问题类型一、(())=k f g x 或(())=k g f x方法:设()=t g x ,则()=k g t ,由()=k g t 求出t 的值或范围,然后结合图象由=y t 和y ()=g x 的交点个数即可。
例1(2019甘肃二诊文12)函数y =f (x )的图象关于直线x =2对称,如图所示,则方程(f(x ))2﹣5f (x )+6=0的所有根之和为( )A .8B .6C .4D .2例2.已知函数)(x f ,x ∈[﹣2,2]的图象如图,y =g (x )的图象如图,若函数y =f (g (x ))与y =g (f (x ))的零点个数分别为m ,n ,则m +n 的值是( )A .5B .6C .9D .12例3.已知函数()2,04sin ,0π⎧≤=⎨<≤⎩x x f x x x ,则集合{|(())0}==M x f f x 中元素的个数是( ) A .2 B .3 C .4 D .5例4.(2009•福建)函数2()(0)f x ax bx c a =++≠的图象关于直线2b x a=-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程2[()]()0m f x nf x p ++=的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}例5.已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是( )A .()2,0-B .()2,1--C .()0,1D .()0,2巩固练习:1.(1)已知函数()24=-f x x x ,若方程()()2-32=0+⎡⎤⎣⎦f x f x 的实根个数,(2)已知函数()24=-f x x x ,若方程()()22-32=0+⎡⎤⎣⎦f x af x a 的实根个数, 2.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题:(1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根(3)方程()0f f x =⎡⎤⎣⎦有且只有5个根(4)方程()0g g x =⎡⎤⎣⎦有且只有4个根 则正确命题的个数是( )A .1B .2C .3D .43.设集合A=[0,1),B=[1,2],已知函数⎩⎨⎧∈-∈+=B x x A x x x f ,241)(,,若A x ∈0且A x f f ∈))((0,则0x 的取值范围是( )A. ]2141,(B.]121,(C. )2141,( D .),(1214.(2019•西湖区校级模拟)函数||()(0,1)x b f x a a a -=>≠的图象关于直线x b =对称,据此可推测,对于任意的非零实数a ,b ,m ,n ,p ,关于x 的方程2[()]()0m f x nf x p ++=的解集不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}5.(2015•南充模拟)已知函数1||,0()0,0x x f x x x ⎧+≠⎪=⎨⎪=⎩,则关于x 的方程2()()0f x bf x c ++=有5个不同实数解的充要条件是( )A .2b <-且0c >B .2b >-且0c <C .2b <-且0c =D .2b -且0c =6.(2005•上海)设定义域为R 的函数||1||,1()0,1lg x x f x x -≠⎧=⎨=⎩,则关于x 的方程2()()0f x bf x c ++=有7个不同的实数解得充要条件是( )A .0b <且0c >B .0b >且0c <C .0b <且0c =D .0b 且0c =7.(2018•长安区二模)已知函数11,1|1|()3,1x x f x x ⎧+≠⎪-=⎨⎪=⎩关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则123(())f f x x x ++的值为( )A .12B .32C .2D .38.(2015秋•上海校级月考)设定义域为R 的函数1(1)|1|()1(1)x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x bf x c ++=有5个不同的实数解,则b c +值为( )A .0B .1C .1-D .不能确定9.(2014•泉州模拟)设定义在R 上的函数1,3|3|()1,3x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程2()()0f x af x b ++=有5个不同实数解,则实数a 的取值范围是( )A .(0,1)B .(,1)-∞-C .(1,)+∞D .(-∞,2)(2--⋃,1)-10.(2011•柳州一模)设函数22,0()21,0x x f x x x x ⎧=⎨-+>⎩若关于x 的方程2()()f x af x =恰有三个不同的实数解,则实数a 的取值范围为( )A .(,0)-∞B .(0,1)C .[0,1]D .(1,)+∞11.(2018秋•青羊区校级期中)设函数22,0()log ,0x x f x x x ⎧⎪=⎨>⎪⎩若关于x 的方程2(())([()]1)0f x a f x --=恰有四个不同的实数解,则实数a 的取值范围为( )A .(0,1)B .(-∞,0)(1⋃,)+∞C .(-∞,0](1,)+∞D .(-∞,1)(1--⋃,0](1,)+∞12.(2013秋•青羊区校级期中)已知函数1,0(),0x x f x lnx x +⎧=⎨>⎩,则函数[()1]y f f x =+的零点个数( ) A .2 B .3 C .4 D .513.(2012•荆州模拟)已知()f x 为偶函数,当0x 时,2()(1)1f x x =--+,满足[f f (a )1]2=的实数a 的个数为( )A .2B .4C .6D .814.(2019•陕西二模)已知函数2,0()(1),0x e x f x x x ⎧=⎨->⎩,又函数2()()()1()g x f x tf x t R =++∈有4个不同的零点,则实数t 的取值范围是( )A .(,2)-∞-B .(2,)+∞C .(2,2)-D .(2,4)15.(2019•长沙一模)已知()|1|1x f x e =-+,若函数2()[()](2)()2g x f x a f x a =+--有三个零点,则实数a 的取值范围是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2)16.(2016•绍兴二模)已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 .17.(2011•鼓楼区校级模拟)设定义在R 上的函数1,1|1|()1, 1.x x f x x ⎧≠⎪-=⎨⎪=⎩若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则123x x x ++= .18.(2011•重庆模拟)已知函数()||3f x x =-,关于x 的方程2()4|()|0f x f x k -+=恰有8个不同的实根,则实数k 的取值范围是 .19.(2015•上海二模)设定义域为R 的函数,若关于x 的函数2||,0()2,0lgx x f x x x x >⎧=⎨--⎩,若关于x 的函数22()2()1y f x bf x =++有8个不同的零点,则实数b 的取值范围是 .。
复合函数的零点个数问
题
集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
复合函数、分段函数零点个数问题
1.(2013届八校联考理10)已知函数⎩⎨⎧<≥=)
0()-(log )
0(3)(3x x x x f x ,函数
)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确...
的是( )
A.若)(,41x g t =有一个零点
B.若)(,4
1
2-x g t <<有两个零
点
C.若)(,2-x g t =有三个零点
D.若)(,2-x g t <有四个零点
2、(2013届八校联考-文10)已知函数(0)
()lg()(0)x e x f x x x ⎧≥=⎨-<⎩,则实数2
t ≤-是关于x 的方程2()()0f x f x t ++=.有三个不同实数根的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 3(2013荆州市12月质量检测-8)设定义域为R 的函数
1251,0()44,0
x x f x x x x -⎧-≥⎪=⎨++<⎪⎩,若关于x 的方程22()(21)()0f x m f x m -++=有5个不
同的实数解,则m =
A 2
B 6
C 2或6
D 4或6
4.设定义域为R 的函数2lg (>0)
()-2(0)x x f x x x x ⎧=⎨-≤⎩
则关于x 的函数
1)(3-)(2y 2+=x f x f 的零点的个数为
________.
5.已知函数1
+
(0)()0(=0)
x x f x x
x ⎧≠⎪=⎨⎪⎩
则关于x 的方程 2()b ()0f x f x c ++=
有5个不同的实数解的充要条件是( )
A b<-2且c>0
B b>-2且c<0
C b<-2且c=0
D b 2c=0≥-且
6 已知函数31
+,>0
()3,0x x f x x x x ⎧⎪=⎨⎪+≤⎩, 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数
不可能...
为( ) A 3 B 4 C 5 D 6
7.(2012武汉市四月调考-10题)已知函数f(x)=⎩⎨
⎧
ax +1,x ≤0,
log 2x , x >0。
则下
列关于函数y =f(f(x))+1的零点个数的判断正确的是( ) (A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点 (C )无论a 为何值,均有2个零点 (D )无论a 为何值,均有4个零点
8.(2010·广东六校)若函数y =f (x )的图象如图所示,则函数y =f (1-x )的图象大致为
( )
9.若函数f (x )=⎩⎨⎧
2x x ≤1
log 1
2
x x >1,则函数y =f (2-x )的图象可以是
10.已知函数),4()0,(,,()(23+∞⋃-∞∈+++=k d c b d cx bx x x f 为常数),当时,
0)(=-k x f 只有一个实根;当k ∈(0,4)时,0)(=-k x f 只有3个相异实
根,
现给出下列4个命题:
①04)(=-x f 和0)(='x f 有一个相同的实根; ②0)(0)('==x f x f 和有一个相同的实根;
③03)(=-x f 的任一实根大于01)1(=-f 的任一实根; ④05)(=+x f 的任一实根小于02)(=-x f 任一实根. 其中正确命题的序号是________________
11.已知函数()f x 的定义域为[]15-,,部分对应值如下表.
()f x 的导函数()y f x '=的图象如图所示.
下列关于函数()f x 的命题: ① 函数()y f x =是周期函数; ② 函数()f x 在[]02,是减函数;
③ 如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ④ 当12a <<时,函数()y f x a =-有4个零点.
其中真命题的个数是 ( )
A .4个
B .3个
C .2个
D .1个
12.已知函数),0()0,()(+∞⋃-∞是定义在x f 上的偶函数,当0>x 时,
1)(4)(2),2(21,20,12)(|1|-=⎪⎩⎪⎨⎧>-≤<-=-x f x g x x f x x f x 则函数的零点个数为
A .4
B .6
C .8
D .10
13.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2
+f (x 2
)的最大值是( )
A .13
B .16
C .18
D .22
14.已知二次函数f (x )=ax 2
+bx +c (a ≠0)且满足f (-1)=0,对任意实数x ,恒有f (x )-
x ≥0,并且当x ∈(0,2)时,有f (x )≤⎝ ⎛⎭
⎪
⎫x +122.
(1)求f (1)的值; (2)证明a >0,c >0;
(3)当x ∈[-1,1]时,函数g (x )=f (x )-mx (x ∈R)是单调函数,求证:m ≤0或m ≥1.
15.已知函数()f x 的定义域为D ,若对任意12,x x D ∈,当12x x <时,都有
12()()f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[0,1]上为非
减函数,且满足以下三个条件:①(0)0f =;②1
()()32
x f f x =;③(1)2()f x f x -=-.则11()()3
8
f f += (A) 1
(B) 3
2
(C) 2 (D) 52
16.函数()f x 的定义域为R ,对任意实数x 满足(1)(3)f x f x -=-,且
(1)(3)f x f x -=-.当l ≤x ≤2时,函数()f x 的导数()0f x '>,则()f x 的
单调递减区间是 ( ) A .[2,21]()k k k Z +∈ B .[21,2]()k k k Z -∈ C .[2,22]()k k k Z +∈
D .[22,2]()k k k Z -∈
17.已知函数 2342013
()12342013
x x x x f x x =+-+-+⋅⋅⋅+,
2342013
()12342013
x x x x g x x =-+-+-⋅⋅⋅-,设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的
零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为
A .8
B .9
C . 10
D . 11
18.函数f (x )=234
20122013123420122013x x x x x x ⎛⎫
+-+-+
-+ ⎪⎝⎭
cos2x 在区间[-3,3]上的零点的个数为( )
A .3
B .4
C .5
D .6
19.O 是锐角三角形ABC 的外心,由O 向边BC ,CA ,AB 引垂线,垂足分别是
D ,
E ,
F ,给出下列命题: ①0OA OB OC ++=; ②0OD OE OF ++=; ③||OD :||OE :||OF =cosA :cosB :cosC; ④R λ∃∈,使得(
)||||AB AC
AD AB SINB AC SINC
λ=+。
以上命题正确的个数是 ( )
A .1
B .2
C .3
D .4;
20.()f x 是定义在()11-,上的函数,对于(),11x y ∀∈-,,有
()())1(xy
y
x f y f x f --=-成立,且当()1,0x ∈-时,()0f x >.给出下列命
题:
①()00f =; ②函数()f x 是偶函数;③函数()f x 只有一个零点;
④)4
1
()31()21(f f f <+.其中正确命题的个数是
A .1
B .2
C .3
D .4
21.已知直角三角形ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,且不
等式c
b a 111++
c
b a m
++≥
恒成立,则实数m 的最大值是___________. 22.某工厂产生的废气经过过滤后排放,过滤过程中废气的污染指数量
L /mg P 与时间t h 间的关系为kt e P P -=0.如果在前5个小时消除了10%
的污染物,则10小时后还剩__________%的污染物.。