风力发电机组及其控制系统--资料
- 格式:ppt
- 大小:3.58 MB
- 文档页数:68
风力发电机组的工作原理及主要组成部分1.风能捕捉:风力发电机组的核心部分是风轮或风叶,它们负责捕捉风能。
当风流通过风轮或风叶时,由于气流的动能和静压力的作用,会导致旋转力矩的产生。
2.动力传输:风能转化为旋转动能后,需要通过轴承和传动系统传输给发电机。
通常情况下,风轮转子和发电机的转子是相互连接的,通过传动系统将转动动能传递给发电机转子。
3.电能转化:传动系统将机械能转化为发电机的转动,进而通过电磁感应原理将机械能转化为电能。
发电机的转子通过旋转感应电流,再通过电磁感应产生电压,最终输出电能。
1.风轮:风力发电机组的核心部分,用于捕捉风能并转化为机械能。
通常采用多片叶片将风流导向转子,并利用气流的动能产生旋转力矩。
风轮的叶片材料通常采用复合材料或金属材料,以提高其耐久性和轻量化。
2.发电机:发电机负责将机械能转化为电能。
通常采用异步发电机或同步发电机来生成电能。
发电机的转子和风轮的转子相互连接,通过传动系统将旋转动能传递给发电机转子,产生电能输出。
3.传动系统:传动系统用于将风轮的旋转动能传递给发电机的转子。
传动系统通常由齿轮箱、轴承等组成。
齿轮箱用于调节风轮旋转速度,使其适应发电机的工作条件。
轴承则用于支撑风轮和发电机的转子。
4.控制系统:控制系统负责监测风力发电机组的工作状态,并控制风轮的转速和发电机的输出电压。
通过控制系统,可以使风力发电机组根据实际的风速和电网需求进行工作调节。
总结起来,风力发电机组通过捕捉风能、运用传动系统将机械能传递给发电机,并最终通过电磁感应将机械能转化为电能。
风力发电机组的主要部件包括风轮、发电机、传动系统和控制系统。
通过这些部件的协调工作,可以将风能高效地转化为电能,实现清洁能源的利用。
风力发电机控制系统介绍控制系统概述第一部分•风力发电机组的控制系统由各种传感器、控制器以及各种执行机构等组成。
各种传感器包括:风速传感器、风向传感器、转速传感器、位置传感器、各种电量变送器、温度传感器、振动传感器、限位开关、压力传感器以及各种操作开关和按钮等。
这些传感器信号将传送至控制器进行运算处理。
第一部分控制系统基础主控制器一般以PLC为核心,包括其硬件系统和软件系统。
上述传感器信号表征了风力发电机组目前的运行状态。
当机组的运行状态与设定状态不相一致时,经过PLC的适当运算和处理后,由控制器发出控制指令,将系统调整到设定运行状态,从而完成各种控制功能。
这些控制功能主要有:机组的启动和停机、变速恒频控制、变桨距控制、偏航控制等。
控制的执行机构可以采用电动执行机构,也可采用液压执行机构等。
•目前,风力发电机组主要有两种系统控制方式,即恒速恒频控制方式和变速恒频控制方式。
前者采用“恒速风力机+感应发电机”,常采用定桨距失速调节或主动失速调节来实现功率控制。
后者采用“变速风力机+变速发电机”,在额定风速以下时,控制发电机的转矩,使系统转速跟踪风速变化,以保持最佳叶尖速比,最大限度地捕获风能;在额定风速以上时,采用变速与变桨距双重控制,以便限制风力机所获取的风能,保证风电机组恒功率(一般为额定功率)输出。
PLC的控制顺序主控制系统(PLC)•WP4051 WPL110 WP4000 WPL150 WPL351 WPL351•触摸屏电源(通信)模块CPU模块电量测量模块I/O模块I/O模块可给8个存储、处理数据实时DSP 2个RS-485接口模块供电2个串口、电量测量16个DO、26个DI、4个AO光纤通信1个以太网接口可测量三相:4个计数器输入、以太网接口编程环境C、电压电流8个PT100、IEC61131-3 有功无功4个AI(±10V)功率因数4个AI(0~20mA)2个热敏电阻输入•目前,风力发电机组主要有两种系统控制方式,即恒速恒频控制方式和变速恒频控制方式。
风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
风力发电机基础知识及电气控制1. 引言风力发电是一种常见的可再生能源的发电方式,利用风力驱动风力发电机转动发电机,将风能转换为电能。
本文将介绍风力发电机的基础知识及其电气控制系统。
2. 风力发电机的工作原理风力发电机的工作原理基于风能转换为机械能,然后通过发电机将机械能转换为电能。
其主要构成包括风轮、发电机、传动系统和控制系统。
2.1 风轮风轮是风力发电机的核心部件,其作用是捕捉和利用风能来驱动转子旋转。
风轮一般由数个风叶组成,风叶的形状和材料会影响风轮的效率和性能。
2.2 发电机发电机是将机械能转换为电能的设备。
在风力发电机中,常使用的发电机类型有直流发电机和交流发电机。
直流发电机一般用于小规模的风力发电机组,而交流发电机则广泛应用于大型风力发电场。
发电机的输出功率与风速、风轮的转速以及发电机的效率有关。
2.3 传动系统传动系统将风轮的转动力矩传递给发电机,使发电机能够进行电能的转换。
传动系统一般由减速器和轴承组成,减速器的作用是将风轮高速旋转转化为发电机所需的合适速度。
2.4 控制系统控制系统对风力发电机进行监测和控制,使其在不同的风速条件下都能够运行稳定,并提高其发电效率。
控制系统一般包括风速测量、风向测量、发电机输出功率控制等模块。
3. 风力发电机的电气控制系统风力发电机的电气控制系统主要负责监测和控制发电机的运行状态,以实现稳定的发电性能。
3.1 风速与风向测量风速和风向测量是风力发电机电气控制系统的基础。
通过安装风速测量装置和风向测量装置,可以实时监测风力的大小和方向,并将数据传输给控制系统进行处理和分析。
3.2 发电机输出功率控制发电机输出功率控制是保证风力发电机稳定运行的关键。
通过对发电机输出功率进行控制,可以使其在不同的风速条件下都能够保持合适的输出功率。
3.3 电网连接与逆变控制风力发电机一般需要将产生的电能输送到电网中,供用户使用。
因此,电气控制系统还需要实现电网连接和逆变控制功能,以确保发电机输出的电能能够与电网进行正常连接。
风力发电机原理与机组控制
风力发电机是一种将风能转换为电能的设备,其基本原理是利用风力驱动风轮旋转,通过传动系统将旋转的机械能传递给发电机,最终产生电能。
风力发电机主要由叶片、轮毂、传动系统、发电机、控制系统等组成。
叶片是风力发电机的关键部件,其形状和材料会影响到风力发电机的效率和性能。
轮毂是连接叶片和传动系统的部件,传动系统包括齿轮箱和联轴器等,用于将叶片旋转的机械能传递给发电机。
发电机则是将机械能转换为电能的核心部件。
风力发电机组的控制主要包括对风轮转速、发电机输出功率和机组运行状态的控制。
控制系统的核心是控制器,其通过传感器和执行器等部件,对风轮转速、发电机输出功率和机组运行状态进行实时监测和控制。
控制风力发电机组的目的是在保证发电机组安全运行的前提下,实现对发电机组输出功率的优化控制,从而提高发电效率和可靠性。
为此,控制器需要对风速、风向、叶片角度、发电机转速和输出功率等参数进行实时监测和控制。
总之,风力发电机组的控制是一项复杂的技术,需要对风力发电机的工作原理和控制系统有深入的了解和掌握。
风力发电机组的控制与安全系统技术要求简介风力发电机组是一种利用风能转化为电能的设备,越来越多地被应用于能源领域。
为了保证风力发电机组的安全运行,需要进行控制和监管。
本文将介绍风力发电机组控制与安全系统的技术要求。
控制系统风力发电机组的控制系统是由控制器、传感器、执行机构等组成的,用于控制风力发电机的运行和维护。
控制器风力发电机组的控制器是核心部件,功率变换器、功率调整器、变桨器等都需要通过控制器来控制。
控制器需要支持各种常见的通讯协议,如Modbus、CAN等。
控制器需要具备以下技术要求:1.快速响应:控制器需要在短时间内响应并调节系统的状态,以保证发电机的安全运行。
2.稳定性:控制器需要能够保持在复杂多变的环境中的稳定性。
3.可靠性:控制器需要遵循良好的电路设计和质量控制标准,确保可靠性。
传感器风力发电机组的传感器用于检测风速、转速、温度等参数,为控制器提供可靠的反馈信息。
传感器需要具备以下技术要求:1.高效准确:传感器需要精确地检测各种参数。
2.可靠性:传感器需要具备较高的可靠性,以确保风力发电系统的正确工作。
执行机构风力发电机组的执行机构用于控制转子和叶片的角度,控制风力发电机的转速,从而确保风电机组能够按照预定要求工作。
执行机构需要具备以下技术要求:1.响应速度:执行机构需要具有较快的响应速度,以进行精密控制。
2.稳定性:执行机构需要能够保持在复杂多变的环境中的稳定性。
3.可靠性:执行机构需要遵循良好的电路设计和质量控制标准,确保可靠性。
安全系统风力发电机组的安全系统是通过对控制系统、电气设备、机械设备等的监测,实现风力发电机组的安全运行。
控制系统风电控制系统的安全要求主要包括以下几个方面:1.控制系统故障保护:确保控制器在故障情况下能够自动断电并防止发电机的持续运行。
2.防止电网反向流:避免电网中产生反向电流,对电气设备和控制器造成损害。
3.突发状况下的控制系统安全:应对发电机的速度和输出功率的变化,确保发电机及其附件的安全。
风力发电机组控制系统摘要:主控系统是风力发电机组的核心,通过数字量和模拟量的输入来完成数据的采集,然后根据内部设定的程序,完成逻辑功能的判断,最后通过模拟量和数字量的输出达到控制机组和保障机组安全稳定运行的目的。
关键词:数据;逻辑;控制1主控系统工作内容⑴主控系统是机组可靠运行的核心,主要完成以下工作:⑵采集数据并处理输入、输出信号;判定逻辑功能;⑶对外围执行机构发出控制指令;⑷与机舱柜及变桨控制系统进行通讯,接收机舱柜及变桨控制系统的信号;⑸与中央监控系统通讯、传递信息。
2数字模拟⑴数字输入模块用于连接外部的机械触点和电子数字式传感器,例如二线式光电开关和接近开关等。
数字量输入模块将从现场传来的外部数字信号的电平转换为PLC内部的信号电平。
输入电路中一般设有RC滤波电路,以防止由于输入触点的抖动或外部干扰脉冲引起的错误输入信号,输入电流一般为数毫安。
⑵数字量输出模块用于驱动电磁阀、接触器、小功率电动机、灯和电动机启动器等负载。
数字量输出模块将CPU内部信号电平转化为控制过程所需的外部信号电平,同时有隔离和功率放大的作用。
输出模块的功率放大元件有驱动直流负载的大功率晶体管和场效应晶体管、驱动交流负载的双向晶闸管或固态继电器。
⑶模拟量输入模块用于将模拟量信号转换为CPU内部处理用的数字信号,主要由A/D转换器组成。
⑷模拟量输出模块将CPU送给它的数字信号转换成电流信号或电压信号,对执行机构进行调节或控制,主要由D/A转换器组成。
⑸CX5020:金风2.0MW主控系统选用CX5020为主控系统的核心控制器CX5020带有两个独立的以太网端口(可定义两个独立的IP地址)和四个USB2.0接口。
一块位于盖板后面并可从外部拆装的可互换的CF卡作为CX5020的引导和存储介质,CX5020还内置了一个1秒钟UPS,可确保在CF卡上安全备份持久性应用数据,目前CX5020选用的操作系统是Windows CE,可以通过CERHOST软件进行访问。
风电控制系统 概述一、系统概述 风力发电场具有机组布置范围广阔,设备运行的自然环境恶劣等特点,WPCS 风 电控制系统专为大型风力发电机组而设计,产品集成了当代最先进的电力电子、微电 子、网络和软件技术,系统的网络结构如下: 风电控制系统网络结构图WPCS 风电控制系统包括现场风力发电机组控制单元、高速环型冗余光纤以太 网、远程上位机操作员站等部分。
二、风力发电机组控制单元(WPCU) 风力发电机组控制单元( ) 风力发电机组控制单元(WPCU)是每台风机的控制核心,分散布置在机组的塔 筒和机舱内。
由于风电机组现场运行环境恶劣,对控制系统的可靠性要求非常高,而 WPCS 风电控制系统是专门针对大型风电场的运行需求而设计, 具有极高的环境适应 性和抗电磁干扰等特点,其系统结构如下:WPCS 风电控制系统的现场控制站包括:塔座主控制器机架、机舱控制站机架、 变桨距系统、变流器系统、现场触摸屏站、以太网交换机、现场总线通讯网络、UPS 电源、紧急停机后备系统等。
三、远程监控系统(WPCM) 远程监控系统( ) 所有风电机组通过光纤以太网连接至主控室的上位机操作员站, 实现整个风场的 远程监控,上位机监控软件具有如下功能: ① 系统具有友好的控制界面。
② 系统显示各台机组的运行数据,如每台机组的瞬时发电功率、累计发电量、 发电小时数、风轮及电机的转速和风速、风向等,将下位机的这些数据调入上位机, 在显示器上显示出来,必要时还可以用曲线或图表的形式直观地显示出来。
③ 系统显示各风电机组的运行状态,如开机、停车、调向、手/自动控制以及大 /小发电机工作等情况,通过各风电机组的状态了解整个风电场的运行情况。
④ 系统能够及时显示各机组运行过程中发生的故障。
⑤ 系统能够对风电机组实现集中控制。
值班员在集中控制室内,只需对标明某种功能的相应键进行操作,就能对下位机进行改变设置状态和对其实施控制。
⑥ 系统管理。
风力发电机组控制系统及智能化设计一、风力发电机组控制系统概述风力发电是一种清洁、可再生的能源,已经被广泛应用。
风力发电机组控制系统是核心的控制部分,负责监测和控制风力发电机组的运行状态,确保其安全、高效地发电。
智能化设计使得风力发电机组控制系统更加智能和可靠,提高了发电效率和自动化程度。
二、风力发电机组控制系统的基本组成1. 控制器:风力发电机组的大脑,负责整个系统的控制和保护。
通过监测传感器获取各类数据,实现对风电场的风能、发电机组和传动系统的控制。
2. 传感器:用于收集环境和机组运行状态的各类数据,包括风速、风向、温度、湿度、转速、振动等。
传感器的数据是风力发电机组控制系统的重要输入。
3. 执行器:通过控制风机的旋转、倾斜角度、刹车等动作,实现风电场的运行和调节。
执行器包括驱动电机、转向齿轮、刹车系统等。
4. 通信模块:将风力发电机组控制系统与监控中心、其他风力发电机组进行数据交互和通信。
实现对整个风电场的集中控制和管理。
5. 数据存储:通过数据存储设备将风电场的历史数据和实时数据进行存储,为后续数据分析和系统优化提供支持。
三、风力发电机组控制系统的主要功能1. 监测和控制环境参数:通过传感器监测风速、风向、温度等环境参数,根据环境条件调整风力发电机组的运行状态和输出功率。
2. 系统保护:风力发电机组控制系统具备故障自检能力,能够监测和检测各个部件的工作状态,实时发现故障并采取相应的保护措施,避免发生事故。
3. 提高发电效率:通过智能化算法,对风力发电机组的转速、发电功率进行优化调节,提高发电效率,降低能源消耗。
4. 远程监控和管理:借助通信模块,风力发电机组控制系统可以实现对风电场的集中监控和管理,实时获取各个机组的状态,进行远程操作和故障处理。
5. 故障诊断和维护:通过数据存储和分析,风力发电机组控制系统可以进行故障诊断,根据故障类型提出相应的维护方案,减少停机时间和维护成本。
四、风力发电机组控制系统的智能化设计1. 引入人工智能技术:通过机器学习和深度学习算法,对风力发电机组控制系统的数据进行分析和处理,自动识别和判断运行状态,提出优化建议。
风力发电机组控制系统设计与实现风力发电机组是一种常见的可再生能源装置,它是利用风能驱动转子旋转,通过机械转换和电气转换等过程,将风能转化为电能,并输送到用电设备上。
为了确保风力发电机组能够正常、高效的工作,需要一个控制系统来监测和控制其运行状态。
因此本文将详细探讨风力发电机组的控制系统设计与实现。
一、风力发电机组的工作原理风力发电机组主要由塔架、轮毂、叶轮、机舱、发电机和电器设备等组成。
其工作原理是通过叶轮转动带动轮毂带动发电机旋转,利用发电机机械能转化为电能,并将电能输送到电网上。
二、风力发电机组控制系统的组成风力发电机组的控制系统主要由控制器、传感器、执行器等组成。
控制器负责采集各种传感器检测到的参数,如风速、转速、温度等,根据这些参数计算出当前的运行状态,并控制执行器调整叶片角度、转速等。
传感器是控制系统的重要组成部分。
它能够实时采集风速、转速、温度等各种参数,并且通过信号传输将这些参数传递给控制器,控制器依据这些参数做出相应的调节,以达到最优化的发电效果。
执行器是控制系统的另外一个重要组成部分,它通常包括电机、阀门、开关等等。
执行器与控制器通过控制信号进行通讯,以实现对发电机组的控制,例如调整叶片角度、控制发电机的电压、转速等等,以保持风力发电机组的稳定性和高效性。
三、风力发电机组控制系统的设计过程在风力发电机组控制系统的设计过程中,需要考虑几个关键因素:1、控制策略的制定控制策略是控制系统设计中最重要的因素之一。
控制策略的核心是确定发电机组的运行状态,并自动调整叶片角度、转速等参数,以实现最佳发电效果。
在制定控制策略时,需要考虑多种参数,如风速、载荷、温度等,以保证发电量和稳定性。
2、选择合适的传感器和执行器传感器和执行器是控制系统中必不可少的组成部分。
要选择合适的传感器和执行器,以保证控制系统的准确性和可靠性。
3、结构设计在结构设计中,需要考虑特定的环境条件,如温度、湿度、风速等,以保证控制器和电器设备的稳定性和可靠性。
风力发电机组的系统控制随着环境保护意识的不断提高和能源危机的加剧,风力发电作为一种清洁、可再生的能源利用方式,逐渐受到人们的关注和推广。
而风力发电机组的系统控制是实现稳定、高效发电的重要保障。
一、风力发电机组的系统组成和工作原理风力发电机组由风轮、转速控制系统、发电机和电力转换器等组成。
当风轮受风的作用旋转时,转动产生动能被传给发电机,经过电力转换器转化成交流电并输出。
其中,转速控制系统对风轮的转动进行调节,保证发电机在最大效率下运转。
二、风力发电机组的系统控制策略1.转速调节:转速调节是风力发电机组的基本控制策略。
其目的是保证风轮叶片旋转的速度达到最优区间,从而提高发电机的输出功率。
转速调节主要分为机械、电子和混合控制等方式。
机械控制:传统的机械控制方式采用转向浆的机械设计,通过改变羽片的角度来控制风轮转速。
该方式简单、成本低但稳定性不够。
电子控制:通过控制发电机转子上的磁场来改变发电机的输出功率,进而实现转速控制。
该方式精度高、稳定性好但成本较高。
混合控制:将机械和电子控制方式的优点结合起来,增强控制系统的稳定性和可靠性。
混合控制方式是当前主流的转速调节方式。
2.偏航控制:偏航控制是风力发电机组的必要控制策略,用来控制风轮的方向。
在复杂的气象条件下,通过偏航控制将风轮转向风向,并在突发的气象变化中及时调整风轮方向,减小因系统失控导致的风力发电机组运行出现事故。
3.电网支撑和功率平衡控制:电网支撑和功率平衡控制是指将风力发电机组的输出能量与电网负荷之间建立反馈控制,保证电能质量和电力系统的稳定性。
在市场化环境,对接电网的风力发电机组还需要实现功率平衡控制,控制机组的风电功率与基础负荷之和保持稳定。
三、风力发电机组的系统控制优化随着风力发电行业的快速发展,风力发电机组的系统控制的优化已成为实现高效、稳定发电的重要途径。
通过优化转速调节、偏航控制、电网支撑和功率平衡控制等关键系统控制策略,可以实现以下目标:1.提高机组发电效率,降低运行成本;2.提高机组的响应速度,保证风场运行的稳定性;3.实现对风力资源与市场需求的动态调整,提高风力发电系统的灵活性;4.通过风力发电机组的智能化控制系统,实现设备状态监测、故障诊断等高端需求。