风力发电机组的控制系统
- 格式:ppt
- 大小:11.98 MB
- 文档页数:105
风力发电机组的控制系统设计与仿真一、引言风力发电作为可再生能源的一种重要形式,受到越来越多国家和地区的广泛关注和重视。
风力发电机组的控制系统对于提高发电效率和确保机组安全稳定运行具有至关重要的作用。
本文旨在介绍风力发电机组的控制系统设计和仿真,并探讨其在风力发电行业中的重要性和应用前景。
二、控制系统设计1. 控制系统架构风力发电机组的控制系统通常包括主控制器、传感器、执行器和通信模块等组成部分。
其中,主控制器负责整个系统的运行控制和监测;传感器用于采集风速、转矩、温度等参数;执行器控制叶片角度、转速等;通信模块用于与外部网络进行数据交互。
2. 控制策略风力发电机组的控制策略包括风轮转速控制、叶片角度控制和电网连接控制等。
其中,风轮转速控制可以通过调整叶片角度和变桨控制实现,以优化风轮在不同风速下的转速;叶片角度控制可以根据风速和转速等参数进行自适应调整,以达到最佳发电性能;电网连接控制包括对电力系统的稳定性和功率因数等进行监测和调整。
3. 仿真模型设计为了对风力发电机组的控制系统进行仿真验证,需要建立相应的仿真模型。
仿真模型应包括风速、转速、叶片角度和发电功率等参数,并结合风场条件和机组特性进行模拟。
在仿真过程中,可以通过改变参数和策略,评估不同控制系统设计对机组性能的影响,并找出最优解。
三、仿真应用与优化1. 性能评估通过仿真模型,可以对不同控制系统设计的风力发电机组进行性能评估。
包括发电效率、稳定性和可靠性等方面的指标。
根据评估结果,可以对控制系统进行优化设计,提高发电机组的整体性能。
2. 变桨控制优化变桨控制是风力发电机组中的重要环节,直接影响着叶片的角度和风轮的转速。
通过仿真模型,可以对不同变桨控制策略进行比较和优化。
例如,调整叶片角度的时机和角度范围,以提高风力发电机组的发电效率和稳定性。
3. 智能优化算法应用利用智能优化算法,可以对风力发电机组的控制系统进行优化设计。
例如,遗传算法、模糊控制和人工神经网络等算法可以结合仿真模型,寻求最佳的控制策略和参数配置,以提高机组的发电效率和适应性。
风力发电机组的控制与监测系统引言:风力发电作为一种可再生能源的重要形式,正逐渐成为全球能源结构转型的重要组成部分。
风力发电机组的控制与监测系统在保证发电机组安全运行和优化发电性能方面起着至关重要的作用。
本文将从控制系统和监测系统两个方面,探讨风力发电机组的控制与监测技术的发展和应用。
一、控制系统的发展与应用1.1 控制系统的基本原理风力发电机组的控制系统主要包括风机控制系统和发电机控制系统。
风机控制系统通过调节叶片角度和转速,使风机在不同风速下保持最佳运行状态;发电机控制系统则负责调节发电机的输出功率和频率,以适应电网的要求。
1.2 控制系统的发展趋势随着风力发电技术的不断发展,控制系统也在不断升级。
目前,自适应控制、模型预测控制和智能控制等技术被广泛应用于风力发电机组的控制系统中。
这些技术能够根据实时的风速和发电机组状态,实现自动调节和优化控制,提高发电效率和可靠性。
1.3 控制系统的应用案例以某风力发电场为例,其控制系统采用了自适应控制技术。
该系统通过实时监测风速、风向和发电机组状态等参数,自动调节叶片角度和转速,以实现最佳的风力利用和发电效率。
通过该控制系统的应用,该风力发电场的发电效率提高了10%,并且减少了停机维护次数,降低了运维成本。
二、监测系统的发展与应用2.1 监测系统的基本原理风力发电机组的监测系统主要用于实时监测发电机组的运行状态和故障诊断。
该系统通过传感器实时采集风速、叶片转速、温度、振动等参数,并通过数据分析和算法判断发电机组的运行状态和故障情况。
2.2 监测系统的发展趋势随着物联网和大数据技术的发展,风力发电机组的监测系统也在不断升级。
目前,无线传感器网络、云计算和机器学习等技术被广泛应用于监测系统中。
这些技术能够实现远程监测和数据分析,提高故障诊断的准确性和效率。
2.3 监测系统的应用案例以某风力发电场为例,其监测系统采用了无线传感器网络和云计算技术。
该系统通过无线传感器实时采集发电机组的运行数据,并将数据上传至云端进行存储和分析。
昝润鹏双馈机运行原理图•控制系统利用DSP或单片机,在正常运行状态下,主要通过对运行过程中对输入信号的采集、传输、分析,来控制风电机组的转速和功率;如发生故障或其它异常情况能自动地检测并分析确定原因,自动调整排除故障或进入保护状态•DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号。
再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。
它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。
它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
•控制系统主要任务就是能自动控制风电机组依照其特性运行、故障的自动检测并根据情况采取相应的措施。
•控制系统包括控制和检测两部分,控制部分又分为手动和自动。
运行维护人员可在现场根据需要进行手动控制,自动控制应该在无人值守的条件下实施运行人员设置的控制策略,保证机组正常安全运行。
•检测部分将各种传感器采集到的数据送到控制器,经过处理作为控制参数或作为原始记录储存起来,在机组控制器的显示屏上可以查询,也要送到风电场中央控制室的电脑系统,通过网络或电信系统现场数据还能传输到业主所在城市的办公室。
•第一:低于切入风速区域。
一旦满足切入条件,控制启动风机。
•第二:切入风速到额定风速区域。
控制目标是最大风能捕获,通常将桨距角保持在某个优化值不变,通过发电机转矩控制叶轮转速,实现最佳叶尖速比。
•第三:超过额定风速区域。
通过变桨控制保持输出功率和叶轮转速恒定。
叶尖速比:叶轮的叶尖线速度与风速之比。
叶尖速比在5-15时,具有较高的风能利用系数Cp(最大值是0.593)。
通常可取6-8。
•风传感器:风速、风向;•温度传感器:空气、润滑油、发电机线圈等;•位置传感器:润滑油、刹车片厚度、偏航等;•转速传感器:叶轮、发电机等;•压力传感器:液压油压力,润滑油压力等;•特殊传感器:叶片角度、电量变送器等;•⑴控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。
风力发电机控制系统介绍控制系统概述第一部分•风力发电机组的控制系统由各种传感器、控制器以及各种执行机构等组成。
各种传感器包括:风速传感器、风向传感器、转速传感器、位置传感器、各种电量变送器、温度传感器、振动传感器、限位开关、压力传感器以及各种操作开关和按钮等。
这些传感器信号将传送至控制器进行运算处理。
第一部分控制系统基础主控制器一般以PLC为核心,包括其硬件系统和软件系统。
上述传感器信号表征了风力发电机组目前的运行状态。
当机组的运行状态与设定状态不相一致时,经过PLC的适当运算和处理后,由控制器发出控制指令,将系统调整到设定运行状态,从而完成各种控制功能。
这些控制功能主要有:机组的启动和停机、变速恒频控制、变桨距控制、偏航控制等。
控制的执行机构可以采用电动执行机构,也可采用液压执行机构等。
•目前,风力发电机组主要有两种系统控制方式,即恒速恒频控制方式和变速恒频控制方式。
前者采用“恒速风力机+感应发电机”,常采用定桨距失速调节或主动失速调节来实现功率控制。
后者采用“变速风力机+变速发电机”,在额定风速以下时,控制发电机的转矩,使系统转速跟踪风速变化,以保持最佳叶尖速比,最大限度地捕获风能;在额定风速以上时,采用变速与变桨距双重控制,以便限制风力机所获取的风能,保证风电机组恒功率(一般为额定功率)输出。
PLC的控制顺序主控制系统(PLC)•WP4051 WPL110 WP4000 WPL150 WPL351 WPL351•触摸屏电源(通信)模块CPU模块电量测量模块I/O模块I/O模块可给8个存储、处理数据实时DSP 2个RS-485接口模块供电2个串口、电量测量16个DO、26个DI、4个AO光纤通信1个以太网接口可测量三相:4个计数器输入、以太网接口编程环境C、电压电流8个PT100、IEC61131-3 有功无功4个AI(±10V)功率因数4个AI(0~20mA)2个热敏电阻输入•目前,风力发电机组主要有两种系统控制方式,即恒速恒频控制方式和变速恒频控制方式。
风力发电机组控制系统设计与性能优化一、引言风力发电作为一种可再生能源,正逐渐成为全球能源结构调整中的重要组成部分。
风力发电机组控制系统作为风力发电系统中的核心部分,起到了控制和优化发电机组运行的重要作用。
本文将从风力发电机组控制系统的设计和性能优化两个方面进行探讨。
二、风力发电机组控制系统设计1. 系统结构设计在风力发电机组控制系统的设计中,需要首先确定系统的结构。
一般来说,风力发电机组控制系统由传感器、执行器、控制器和监控系统等多个组成部分构成。
在确定系统结构时需要考虑系统的稳定性、可靠性以及适应性。
2. 传感器选择与配置风力发电机组控制系统中的传感器起到了采集各种运行参数的作用,对系统的控制和优化至关重要。
传感器的选择和配置需要根据风力发电机组的实际情况进行考虑,包括风速传感器、转速传感器、温度传感器等。
在传感器的选择与配置中,需要考虑到其稳定性、精度以及可靠性等因素。
3. 控制算法设计风力发电机组控制系统的核心是控制算法的设计。
控制算法的设计需要考虑到风力发电机组的输出功率以及转速等关键参数。
常用的控制算法包括PID控制算法、模糊控制算法和遗传算法等。
在控制算法设计中,需要考虑到系统的稳定性和响应速度等因素。
三、风力发电机组控制系统性能优化1. 功率曲线优化风力发电机组的输出功率与风速之间存在着复杂的非线性关系。
通过对风力发电机组的功率曲线进行优化,可以获得更高的发电效率。
在功率曲线优化中,可以通过调整控制算法参数、叶片角度以及系统的响应速度等因素来实现。
2. 风速跟踪与预测风速的变化对风力发电机组的发电效率有着重要影响。
通过对风速的跟踪与预测,可以实现对风力发电机组的控制和优化。
在风速跟踪与预测中,可以使用神经网络、模糊控制等方法进行建模和预测。
3. 故障诊断与容错控制风力发电机组在运行过程中可能会出现各种故障,如变桨系统故障、传感器故障等。
通过故障诊断与容错控制,可以有效提高系统的可靠性和稳定性。
风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
风力发电机组的控制与安全系统技术要求简介风力发电机组是一种利用风能转化为电能的设备,越来越多地被应用于能源领域。
为了保证风力发电机组的安全运行,需要进行控制和监管。
本文将介绍风力发电机组控制与安全系统的技术要求。
控制系统风力发电机组的控制系统是由控制器、传感器、执行机构等组成的,用于控制风力发电机的运行和维护。
控制器风力发电机组的控制器是核心部件,功率变换器、功率调整器、变桨器等都需要通过控制器来控制。
控制器需要支持各种常见的通讯协议,如Modbus、CAN等。
控制器需要具备以下技术要求:1.快速响应:控制器需要在短时间内响应并调节系统的状态,以保证发电机的安全运行。
2.稳定性:控制器需要能够保持在复杂多变的环境中的稳定性。
3.可靠性:控制器需要遵循良好的电路设计和质量控制标准,确保可靠性。
传感器风力发电机组的传感器用于检测风速、转速、温度等参数,为控制器提供可靠的反馈信息。
传感器需要具备以下技术要求:1.高效准确:传感器需要精确地检测各种参数。
2.可靠性:传感器需要具备较高的可靠性,以确保风力发电系统的正确工作。
执行机构风力发电机组的执行机构用于控制转子和叶片的角度,控制风力发电机的转速,从而确保风电机组能够按照预定要求工作。
执行机构需要具备以下技术要求:1.响应速度:执行机构需要具有较快的响应速度,以进行精密控制。
2.稳定性:执行机构需要能够保持在复杂多变的环境中的稳定性。
3.可靠性:执行机构需要遵循良好的电路设计和质量控制标准,确保可靠性。
安全系统风力发电机组的安全系统是通过对控制系统、电气设备、机械设备等的监测,实现风力发电机组的安全运行。
控制系统风电控制系统的安全要求主要包括以下几个方面:1.控制系统故障保护:确保控制器在故障情况下能够自动断电并防止发电机的持续运行。
2.防止电网反向流:避免电网中产生反向电流,对电气设备和控制器造成损害。
3.突发状况下的控制系统安全:应对发电机的速度和输出功率的变化,确保发电机及其附件的安全。