第三讲 奥氏体晶粒长大及其控制
- 格式:ppt
- 大小:4.48 MB
- 文档页数:30
阻止奥氏体晶粒长大的元素奥氏体(austenite)晶粒长大是金属材料中一个重要的结构性能问题,对材料的性能及其使用寿命有着重要影响。
奥氏体晶粒长大应该被历史悠久的科学工程师们关注,他们认为它是一个令人困惑的现象,这种现象可能会限制材料的机械性能,并影响材料的结构稳定性。
因此,有必要一探究竟,研究出阻止奥氏体晶粒长大的元素。
奥氏体晶粒的长大主要是由材料的温度和环境中的原子组成引起的,这就形成了由温度和原子元素组成的温度-元素空间,通过这个空间,我们可以探索出通过控制材料温度和环境中的特定元素组合,可以有效阻止奥氏体晶粒的长大。
首先,可以通过控制材料的温度和气压来阻止奥氏体晶粒的长大。
温度越高,材料的晶粒就越容易放大,因此需要降低材料的温度,以防止晶粒的长大。
此外,气压的影响也不容忽视。
当材料的温度高于饱和点时,气压的降低将阻碍晶粒的生长。
其次,材料本身含有的元素成分也会影响奥氏体晶粒的生长。
含有高含量碳或其他合金元素的金属材料,其奥氏体晶粒的长大会比纯金属材料慢。
相反,有些元素,比如锰,镍,铬等,可以使金属材料的晶粒长大加快。
最后,环境中的原子组成也会影响金属材料中奥氏体晶粒长大的速度。
环境中的气体组成,比如氧气,氮气等,都可以抑制金属材料中奥氏体晶粒长大。
同时,环境中的水份也会影响金属材料中奥氏体晶粒的生长,如果水份太多,则会加速金属材料中奥氏体晶粒的生长。
总之,阻止奥氏体晶粒长大的元素有很多,这些元素可以通过控制材料的温度和气压,以及材料本身的元素组成及环境中的原子组成来实现。
对于不同的应用场景,可以采用不同的方法来控制奥氏体晶粒的生长,以达到预期效果。
进一步说,选择正确的元素组合可以抑制金属材料中奥氏体晶粒的生长,从而提高材料的性能及其使用寿命。
奥氏体品粒(austenite grain)钢在奥氐体化时所得到的品粒。
此时的晶粒尺寸称为奥氏体品粒度。
分类奥氏体品粒有起始品粒、实际晶粒和本质品粒3种不同的概念。
(1)起始晶粒。
指加热时奥氏体转变过程刚刚结束时的品粒,此时的晶粒尺寸称为奥氏体起始晶粒度。
(2)实际品粒。
指在热处理时某一具体加热条件下最终所得的奥氏体品粒,其尺寸大小即为奥氏体实际品粒度。
⑶本质品粒。
指各种钢加热时奥氏体品粒长大的倾向,晶粒容易长大的称本质粗品粒,晶粒不易长大的称本质细品粒。
通常在实际金属热处理条件下所得到的奥氏体品粒大小,即为该条件下的实际品粒度,而一系列实际品粒度的测得即表示出该钢材的本质品粒度。
据中国原冶金工业部标准YB27—77规定,测定奥氏体本质品粒度是将钢加热到930°C,保温3〜8h后进行。
因此温度略高于一般热处理加热温度,而相当于钢的渗碳温度,经此正常处理后,奥氏体品粒不过分长大者,即称此钢为本质细品粒钢。
显示方法绝大部分钢的奥氏体只是在高温下才是稳定的。
因此欲测定奥氏体品粒就得设法将高温状态奥氏体轮廓的痕迹在室温下显示出来,常用的显示奥氏体晶粒的方法可归纳为渗入外来元素法、化学试剂腐蚀法和控制冷却速度法3种。
(1)渗入外来元素法。
如渗碳法和氧化法,是利用奥氏体品界优先形成渗碳体和氧化亚铁等组成物,形成网络显示出奥氏体轮廓。
渗碳法一般适用于不高于0.3%c的渗碳钢和含不高于0.6%c而含碳化物元素较多的其他类型钢。
氧化法却适用于任何结构钢和工具钢。
(2)化学试剂腐蚀法。
钢材经不同温度的淬火一回火处理后,磨光并用饱和苦味酸水溶液和新洁尔灭几滴浸蚀能抑制马氏体组织,促使奥氏体品界的显示。
或者直接用盐酸1〜5mL、苦味酸(饱和的)和乙醇浸蚀,使马氏体直接显示出来,利用马氏体深浅不同和颜色的差异而显示出奥氏体的晶粒大小,此法适用于合金化程度高的能直接淬硬的钢。
(3)控制冷却速度法。
低碳钢、亚共析钢、共析钢、过共析钢可控制冷却速度使钢的奥氏体周围先共析析出网状铁素体、网状渗碳体,或使屈氏体沿晶界少量析出以显示出奥氏体品粒。
奥氏体晶粒大小的控制引言奥氏体晶粒大小是材料科学领域中一个重要的研究方向。
奥氏体晶粒的大小对于材料的力学性能、耐腐蚀性能和疲劳性能等具有显著影响。
本文将从热处理工艺、成分调控以及外力影响等多个方面,全面探讨奥氏体晶粒大小的控制。
热处理工艺热处理工艺是控制奥氏体晶粒大小的重要方法之一。
通过控制材料的加热和冷却过程,可以有效地调控晶粒的尺寸和分布。
加热过程控制1.初次加热温度:初次加热温度是影响晶粒生长速率和尺寸的重要参数。
通常情况下,初次加热温度越高,晶粒生长速率越快,晶粒尺寸越大。
2.加热速率:加热速率会对晶粒的生长过程产生重要影响。
较快的加热速率会使得晶粒尺寸增长更快,但同时也容易导致晶粒粗化。
因此,加热速率的选择需要综合考虑晶粒尺寸和材料性能的要求。
3.保温时间:保温时间对晶粒生长的细化过程非常关键。
较长的保温时间有利于将组织中的细小晶粒长大至目标尺寸,但过长的保温时间也可能导致晶粒粗化。
因此,需要根据具体材料和要求确定适当的保温时间。
冷却过程控制1.冷却速率:冷却速率是影响晶粒尺寸和形貌的关键参数。
较快的冷却速率通常能够得到较细小的奥氏体晶粒,而较慢的冷却速率则容易产生较大的晶粒。
2.等温退火:通过等温退火可以有效地控制奥氏体晶粒的粒度。
在合适的温度下保持一段时间,有利于组织中的晶粒再结晶和长大,从而得到较大晶粒。
然而,过长的等温退火时间可能会导致晶粒粗化。
3.淬火处理:淬火处理是在高温下迅速冷却材料,目的是抑制晶粒长大过程。
通过淬火处理可以得到较细小的奥氏体晶粒。
成分调控通过调整材料的成分,也可以有效地控制奥氏体晶粒的大小和分布。
下面是一些常用的成分调控方法:合金元素的选择添加一些合金元素,如铌、钒、钛等,可以有效地细化奥氏体晶粒。
这些合金元素在晶界上形成细小的沉淀相,限制了晶粒长大过程。
溶负责元素的控制合理控制溶负责元素的含量,可以调节奥氏体晶粒长大速率。
通常情况下,溶负责元素含量越低,晶粒长大速率越慢,晶粒尺寸越小。
奥氏体晶粒大小的控制一、引言奥氏体是一种重要的组织结构,广泛应用于钢铁、航空航天、汽车等领域。
奥氏体晶粒大小对材料的性能和应用具有至关重要的影响。
因此,控制奥氏体晶粒大小是材料学研究中的一个重要问题。
二、什么是奥氏体晶粒?奥氏体是一种由铁和碳组成的固溶体,具有面心立方结构。
在高温下,铁原子和碳原子会形成奥氏体相,晶粒大小指的是这些晶格结构中单个晶粒的尺寸。
三、为什么需要控制奥氏体晶粒大小?1. 影响力学性能:小尺寸的奥氏体晶粒可以提高钢材的强度和韧性,因为小尺寸意味着更多的界面和位错可以抵抗外部应力。
2. 影响耐蚀性:小尺寸的奥氏体晶粒可以提高钢材的耐蚀性能。
因为小尺寸意味着更少的缺陷和更多的界面可以减少腐蚀的发生。
3. 影响加工性能:小尺寸的奥氏体晶粒可以提高钢材的加工性能,因为小尺寸意味着更少的位错和更多的界面可以减少塑性变形时的阻力。
四、如何控制奥氏体晶粒大小?1. 控制热处理参数:热处理是控制奥氏体晶粒大小最常用的方法。
通过改变热处理温度、时间和冷却速率等参数,可以影响奥氏体晶粒大小。
一般来说,高温下长时间保持会导致晶粒长大,而快速冷却则会导致晶粒变小。
2. 添加合适元素:添加微量元素(如铌、钛等)可以有效地控制奥氏体晶粒大小。
这些元素可以在形成奥氏体相时参与反应,限制其生长速度,从而控制晶粒大小。
3. 压力调控:通过施加压力来改变材料结构和形态,也可以达到控制奥氏体晶粒大小的目的。
例如,在加工过程中施加高压会导致材料发生相变,从而影响奥氏体相的形成和晶粒大小。
4. 超声波处理:超声波处理可以在材料中产生高强度的机械振动,从而改变材料的结构和形态。
通过超声波处理,可以有效地控制奥氏体晶粒大小。
五、总结通过控制热处理参数、添加合适元素、压力调控和超声波处理等方法,可以有效地控制奥氏体晶粒大小。
这些方法在钢铁、航空航天、汽车等领域具有广泛的应用前景。
奥氏体不锈钢晶粒度【原创实用版】目录一、奥氏体不锈钢的晶粒度概述二、奥氏体不锈钢晶粒度的控制方法三、奥氏体不锈钢通过热处理细化晶粒的实例正文一、奥氏体不锈钢的晶粒度概述奥氏体不锈钢是一种广泛应用的钢材,具有良好的耐腐蚀性、韧性和强度。
晶粒度是描述钢材显微组织的重要参数,对于奥氏体不锈钢的性能和质量具有重要影响。
晶粒度越小,钢的强度、韧性和耐腐蚀性越好。
因此,在生产过程中,需要对奥氏体不锈钢的晶粒度进行严格的控制。
二、奥氏体不锈钢晶粒度的控制方法1.控制加热温度和保温时间:加热温度和保温时间是影响奥氏体晶粒度的重要因素。
加热温度越高,晶粒长大速度越快;保温时间越长,晶粒也容易长大。
因此,在生产过程中,需要根据不同钢材的特性,选择合适的加热温度和保温时间,以保证奥氏体晶粒度适中。
2.控制加热速度:加热速度对奥氏体晶粒度也有影响。
加热速度越快,过热度越大,奥氏体形核率大于长大速度,有利于获得细小的起始晶粒。
但加热速度过快,保温时间过长,晶粒反而更粗大。
因此,生产上采用快速加热和短时间保温的方法来细化晶粒。
3.控制钢的原始组织及成分:钢的原始组织和成分对奥氏体晶粒度也有影响。
原始组织越细,相晶界越多,有利于获得细晶粒组织。
此外,奥氏体中碳的质量分数也会影响晶粒度。
当奥氏体晶界上存在未溶化的残余渗碳体时,未溶的渗碳体有阻碍奥氏体晶粒长大的作用。
三、奥氏体不锈钢通过热处理细化晶粒的实例奥氏体不锈钢通过热处理可以实现晶粒的细化。
例如,固溶处理是一种常用的热处理方法,可以提高钢的韧性和强度。
固溶处理的原理是将合金加热到高温单相区,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体。