物理化学第三章习题答案.
- 格式:ppt
- 大小:1.09 MB
- 文档页数:31
程兰征版物理化学习题解答3第三章 化学平衡1、气相反应:2SO 3(g)=2SO 2(g)+O 2(g)在1000K 时的平衡常数θc K =3.54×103,求该反应的θK (1000K)和θx K (1000K)。
解:第一问能做,第二问不能做(不知道系统总压)。
解答略。
2、氧化钴(CoO)能被氢或CO 还原为Co ,在721℃、101325Pa 时,以H 2还原,测得平衡气相中H 2的体积分数2H φ=0.025;以CO 还原,测得平衡气相中CO 的体积分数2H φ=0.0192。
求此温度下反应CO(g)+H 2O(g)=CO 2(g)+H 2(g) 的平衡常数θK 。
解:CoO(s) + H 2(g) = Co(s) + H 2O (1)0.025θp (1-0.025) θp390.025025.0-11==θK CoO(s) + CO(g) = Co(s) + CO 2 (2)0.0192θp (1-0.0192) θp510.01920192.0-12==θK (2)-(1)= CO(g)+H 2O(g)=CO 2(g)+H 2(g) ,所以θθθ123/K K K ==51/39=1.313、计算加热纯Ag 2O 开始分解的温度和分解温度。
(1)在101325Pa 的纯氧中;(2)在101325Pa 且2O φ=0.21的空气中。
已知反应2Ag 2O(s)=4Ag(s)+O 2(g)的)(T G m r θ∆=(58576-122T/K)J ·mol -1。
解:分解温度即标态下分解的温度。
令)(T G m r θ∆=(58576-122T/K)<0,得T >480K 开始分解温度即非标态下分解的温度。
令)(T G m r ∆=(58576-122T/K)+8.314×Tln0.21<0,得T >434K4、已知Ag 2O 及ZnO 在温度1000K 时的分解压分别为240及15.7kPa 。
第五版物理化学第三章习题答案-图文以下是为大家整理的第五版物理化学第三章习题答案-图文的相关范文,本文关键词为第五,物理化学,第三章,习题,答案,图文,第三章,热力学,第,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
第三章热力学第二定律3.1卡诺热机在(1)热机效率;(2)当向环境作功。
解:卡诺热机的效率为时,系统从高温热源吸收的热及向低温热源放出的热的高温热源和的低温热源间工作。
求根据定义3.2卡诺热机在(1)热机效率;(2)当从高温热源吸热解:(1)由卡诺循环的热机效率得出时,系统对环境作的功的高温热源和的低温热源间工作,求:及向低温热源放出的热(2)3.3卡诺热机在(1)热机效率;(2)当向低温热源放热解:(1)时,系统从高温热源吸热及对环境所作的功。
的高温热源和的低温热源间工作,求1(2)3.4试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功wr等于不可逆热机作出的功-w。
假设不可逆热机的热机效率大于卡诺热机效率证:(反证法)设ηir>ηr不可逆热机从高温热源吸热则,向低温热源放热,对环境作功,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
逆向卡诺热机从环境得功则从低温热源吸热向高温热源放热若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
23.5高温热源温度低温热源,求此过程。
,低温热源温度,今有120KJ的热直接从高温热源传给解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6不同的热机中作于情况下,当热机从高温热源吸热(1)可逆热机效率(2)不可逆热机效率(3)不可逆热机效率解:设热机向低温热源放热。
物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
复旦物理化学第三章习题答案第三章习题解答1. 先求H 2O(g)→H 2O(l )J 8592p 3166ln RT G 1-==∆∆G 2=0∆G 3=V l(p ︒-3166)1)3166p (99710183=-⨯=∆G=∆G 1+∆G 2+∆G 3=–8590.9 J)l (O H G)g (O H )g (G )g (O 21)g (H 22mr22−−→−∆−−−−→−∆+∆r G ︒m (l )= ∆r G ︒m (g)+∆G=–228.57–8.59 =–237.16 kJ 2. 反应 C (s)+2H 2(g)=CH 4(g) ∆r G ︒m =–19397 J ⋅mol –1摩尔分数 0.8 0.1(1) T=1000K 时,097.0R 100019397exp RTGexp K mrp=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∆-=156.08.01.0Q 2p ==Q ︒p >K ︒p 反应不会正向进行。
(2) 设压力为p ,当097.0p p 8.01.0Q 2p <⎪⎪⎭⎫ ⎝⎛= 时,即p>1.61p ︒时,反应才能进行。
3. SO 2Cl 2(g) + SO 2(g) → Cl 2(g) 反应前压力(kPa) 44.786 47.836 平衡时压力(kPa) x 44.786-x 47.836-x p 总=x+(44.786-x)+( 47.836-x)=86.096 kPa x=6.526 kPa39.2)325.101(526.6)526.6836.47)(526.6786.44()p (K K 1p p =--==-ν∆-4. H 2(g) + I 2(g) → 2HI(g) 开始(mol) 7.945.3平衡(mol) 2x 94.7- 2x 3.5- x ∆ν=01.502x 3.52x 94.7x K K 2x p=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-== x=9.478 mol (另一根x=19.30舍去)5. A(g) + B(g) → AB(g) 开始(mol) 1 1平衡(mol) 1-0.4 1-0.4 0.4 n 总=1.6 mol⎪⎪⎭⎫⎝⎛∆-=⎪⎪⎭⎫ ⎝⎛=ν∆RT G exp ppK K mr x p()⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-R 3008368exp p p 6.1/6.06.1/4.012p=0.06206p ︒=6288 Pa 6. A(g) → B(g) 平衡压力 10p ︒ p ︒ 1.0101Kp==∆r G ︒m =–RTlnK ︒p =5708 J∆r G m (1)= ∆r G ︒m –RTlnQ ︒p(1)0J 398921lm 2985708>=+= 反应不会自发进行。
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
第三章热力学第二定律三.思考题参考答案1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗? 答:前半句是对的,但后半句是错的。
因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。
2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢?答:不矛盾。
Claususe 说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。
而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。
而热变为功是个不可逆过程,所以环境发生了变化。
3.能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。
等温、等压、不做非膨胀功,系统达平衡时,Gibbs 自由能最小。
也就是说,使用判据时一定要符合判据所要求的适用条件。
4.某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。
若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。
反之,若有相同的终态,两个过程绝不会有相同的始态。
所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。
5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗?答:对。
因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。
处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。
6.相变过程的熵变,可以用公式H S T∆∆=来计算,这说法对吗? 答:不对,至少不完整。
一定要强调是等温、等压可逆相变,H ∆是可逆相变时焓的变化值(,R p H Q ∆=),T 是可逆相变的温度。
7.是否,m p C 恒大于,m V C ?答:对气体和绝大部分物质是如此。
但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。
1、1mol 理想气体从300K ,100kPa 下等压加热到600K ,求此过程的Q 、W 、ΔU 、ΔH 、ΔS 、ΔA 、ΔG 。
已知此理想气体300K 时的S m =150.0J·K -1·mol -1,C p ,m =30.0J·K -1·mol -1。
解:等压,W =-p (V 2-V 1) = nR (T 1-T 2) =1×8.314×(300-600) = -2494.2J△U = nC V ,m (T 2-T 1) =1×(30.00-8.314)×(600-300) = 6506J△H = nC p ,m (T 2-T 1) =1×30.00×(600-300)= 9000JQ p = △H = 9000J△S = nC p ,m ln(T 2/T 1) =1×30.00×ln(600/300) = 20.79J·K -1·mol -1由 S m (600K)=S m (300K)+ △S =(150.0+20.79) =170.79J·K -1·mol -1△(TS) =n (T 2S m.2-T 1S m.1) =1×(600×170.79-300×150.0)=57474J △G =△H -△(TS) =9000-57474=-48474J2、1mol 理想气体始态为27℃、1MPa ,令其反抗恒定的外压0.2MPa 膨胀到体积为原来的5倍,压力与外压相同。
试计算此过程的Q 、W 、ΔU 、ΔH 、ΔS 、ΔA 、ΔG 。
已知理想气体的恒容摩尔热容为12.471 J·mol -1·K -1解:根据理想气体状态方程 112212p V p V T T = 得 12300.15T T K ==此过程为等温过程 0U H ∆=∆=21()e W p V V =-- 111111()(5)0.80.85p V V pV nRT =--=-=-()0.818.314300.15=-⨯⨯⨯ 1996J =-由热力学第一定律1996Q U W J =∆-= 21ln()S nR V V ∆= 18.314ln(51)=⨯⨯ 113.38J K -=⋅G H T S ∆=∆-∆ 0300.1513.38=-⨯4016J =-3、在298.15K 时,将1mol O 2从101.325kPa 等温可逆压缩到6.0×101.325kPa ,求Q , W , ∆U ,∆H ,∆A ,∆S 体系,∆S 隔离。
第三章化学平衡1、气相反应:2SO3(g)=2SO2(g)+O2(g)在1000K 时的平衡常数K F=3.54 X 103,求该反应的K’(IOOOK) 和K/(1000K)。
解:第一问能做,第二问不能做(不知道系统总压) 。
解答略。
2、氧化钴(CoO)能被氢或CO还原为Co,在721 C、101325Pa时,以H2还原,测得平衡气相中出的体积分数H2=0.025 ;以CO还原,测得平衡气相中CO的体积分数H2 =0.0192。
求此温度下反应CO(g)+H 2O(g)=CO2(g)+H2(g)的平衡常数K 匕解:CoO(s) + H2(g) = Co(s) + H2O (1)0.025 ph (1-0.025) p71a1-0.025Q 390.025CoO(s) + CO(g) = Co(s) + CO2 (2)0.0192 (1-0.0192) p711 -0.0192510.0192(2)-(1)= CO(g)+H 2O(g)=CO2(g)+H2(g),所以K/ - K// K/=51/39=1.313、计算加热纯Ag2O开始分解的温度和分解温度。
(1)在101325Pa的纯氧中;(2)在101325Pa且的空气中。
已知反应2Ag2O(s)=4Ag(s)+O 2(g)的.:r G m(T ) =(58576-122T/K)J • mol-1。
解:分解温度O2=0.21即标态下分解的温度。
令.l r G:(T ) =(58576-122T/K)<0,得T>480K开始分解温度即非标态下分解的温度。
令.「G m(T) =(58576-122T/K)+8.314 X Tin0.21<0,得T>434K4、已知Ag2O及ZnO在温度1000K时的分解压分别为240及15.7kPa。
问在此温度下(1)哪一种氧化物容易分解? (2)若把纯Zn及纯Ag置于大气中是否都易被氧化?( 3)若把纯Zn、Ag、ZnO、Ag2O 放在一起,反应如何进行?(4)反应ZnO(s)+2Ag(s)=Zn(s)+Ag 2O(s)的• : r H m=242.09kJ - mol -,问增加温度时,有利于那种氧化物的分解?解:(1)氧化银易分解;(2)银不易被氧化;(3) Zn + Ag2O = Ag + ZnO ; (4) ZnO5、已知下列反应的冷G;-T关系为:A 5 1Si(s)+O2(g)=SiO2(s); :r G m(T) =(-8.715 X 10 +181.09T/K)J • mol-A 5 12C(s)+O2(g)=2CO(g); :r G m(T) =(-2.234 X 10 -175.41T/K)J • mol-试通过计算判断在1300K时,100kPa下,硅能否使CO还原为C?硅使CO还原的反应为:Si(s)+2CO(g)=SiO 2(s)+2C(s)解:(1) - (2) = (3),贝Ua 5 1:Qm(T) =(-6.481 X 10 +356.5T/K)J • mol-1300K 时,r G m(T) =(-6.481 X 105+356.5 X 1300)=-1.847 X 105J - mol-1<0,可以6、将含水蒸气和氢气的体积分数分别为0.97和0.03的气体混合物加热到1000K,这个平衡气体混合物能否与镍反应生成氧化物?已知Ni(s)+0.5O2=NiO(s); • :^1(1000 K ) =-146.11 kJ • mol-1解:查表得CO(g) +H2O(g) =CO 2(g) + H 2(g):f H F(298K )-110.54 -241.84 -393.5 0 S m (298K )197.9188.74213.64130.58-1K -1 • molH 2(g)+0.5O 2(g)=H 2O(g); .-:r G ^(1000 K) =-191.08 kJ • mol -1解: (1) - (2) 得 Ni(s)+ H 2O(g)= NiO(s)+ H 2(g).■■■:r Gm(1000 K ) =-146.11 + 191.08 =44.97kJ • mol -1 .■■■:rGm (1000 K ) = . :rGm (1000 K ) +RTInQ-1=44970+8.314 X 1000 X ln (0.03/0.97) =16.07 kJ • mol 反应不能正向进行。