元胞自动机总结
- 格式:doc
- 大小:196.50 KB
- 文档页数:6
元胞自动机算法元胞自动机算法,简称CA(Cellular Automaton),是一种在离散空间中由简单规则驱动的计算模型。
CA算法的核心思想是将空间划分为离散的小区域,每个小区域称为一个元胞,每个元胞根据一定的规则与相邻元胞进行交互和演化。
CA算法的应用非常广泛,涵盖了物理、生物、社会等多个领域。
让我们来看一个简单的例子,以帮助理解CA算法的基本概念。
假设我们有一个一维的元胞空间,每个元胞只能处于两种状态之一:活跃或者不活跃。
我们以时间为轴,每一个时间步骤都会根据一定的规则更新元胞的状态。
假设规则是:如果一个元胞以及它的两个相邻元胞中,有两个元胞是活跃的,那么该元胞在下一个时间步骤中将变为活跃状态;否则,该元胞将变为不活跃状态。
通过多次迭代,我们可以观察到整个元胞空间的状态发生了变化。
初始时,只有少数几个元胞是活跃的,但随着时间的推移,越来越多的元胞变为活跃状态,形成了一种规律性的分布。
这种分布不断演化,直到达到一种平衡状态,其中的活跃元胞的分布不再发生变化。
这个简单的例子展示了CA算法的基本特征,即简单的局部规则可以产生复杂的全局行为。
在CA算法中,每个元胞的状态更新是基于其周围元胞的状态而确定的,这种局部的交互最终导致了整个系统的全局行为。
除了一维元胞空间,CA算法还可以应用于二维和三维空间。
在二维元胞空间中,每个元胞有更多的邻居,例如上下左右以及斜对角线方向的邻居。
同样地,每个元胞的状态更新规则也可以根据其周围元胞的状态而确定。
CA算法在生物学中有广泛的应用,例如模拟细胞分裂、生物群落的演化等。
在社会学中,CA算法可以用于模拟人群的行为,例如交通流量的模拟、城市规划等。
此外,CA算法还可以用于物理学中的模拟,例如模拟固体的晶体结构等。
总结一下,元胞自动机算法是一种基于简单规则的计算模型,通过元胞之间的局部交互和状态更新,产生复杂的全局行为。
这种算法广泛应用于不同领域,能够模拟和研究各种现象和问题。
元胞⾃动机简介摘要:1. 阐述了元胞⾃动机的发展历程、结构、特征及基本理论与⽅珐;2. 指出元胞⾃动机理论的优势与不⾜,1引⾔复杂科学1. 20世纪80年代,以美国圣塔菲(SantaFe)学派为⾸提出了复杂科学,⼀经提出,在世界范围内引起了⼴泛的关注。
⽬前,关于复杂性和复杂系统的科学研究占据着越来越重要的位置,以⾄于被有些科学家誉为“21世纪的科学”。
2. 1985年,耗散结构理论的创始⼈,诺贝尔化学奖获得者I.Prigogine提出了社会经济复杂系统中的⾃组织问题。
1988年,诺贝尔物理学奖获得者P.Anderson和诺贝尔经济学奖获得者K.J.Arow通过组织专题讨论会,提出了经济管理可以看作是⼀个演化着的复杂系统。
此后,随着研究的不断深⼊,复杂系统中所涉及的⾮线性、⾮平衡、突变、混沌、分形、⾃组织等理论在经济管理领域有了越来越⼴泛的应⽤。
元胞⾃动机1. 在复杂性和复杂系统的研究过程中,国内外学者提出了许多探索复杂性的⽅法及⼯具,其中,元胞⾃动机(cellularautomaton,CA)以其组成单元的简单规则性,单元之间作⽤的局部性和信息处理的⾼度并⾏性,并表现出复杂的全局性等特点⽽备受关注,成为探索复杂系统的⼀种有效⼯具。
2元胞⾃动机的基本理论及⽅法2.1元胞⾃动机的发展1. 20世纪50年代初,现代计算机的创始⼈冯·诺依曼(vonNeuman)为模拟⽣物发育中细胞的⾃我复制⽽提出了元胞⾃动机的雏形。
但在当时这项⼯作并未引起⼴泛的关注与重视。
2. 1970年,剑桥⼤学的J.H.Conway设计了⼀种计算机游戏———“⽣命的游戏”。
它是具有产⽣动态图案和动态结构能⼒的元胞⾃动机模型,吸引了众多科学家的兴趣,推动了元胞⾃动机研究的迅速发展。
3. 之后,S.Wolfram对初等元胞⾃动机的256种规则产⽣的所有模型进⾏了详细⽽深⼊的研究。
他还⽤熵来描述其演化⾏为,把元胞⾃动机分为:平稳型、周期型、混沌型、复杂型四类。
元胞自动机综述姓名:班级:控制研-14学号:元胞自动机综述摘要:随着智能交通系统的发展,出现了一种基于元胞门动机理论的交通流模型。
交通流元胞门动机模型由一系列车辆运动应遵守的运动规则和交通规则组成,并且包含驾驶行为、外界干扰等随机变化规则。
文章主要介绍了交通流元胞自动机模型的产生与发展,并总结和评述了国内外的各种元胞门动机模型。
元胞自动机(Cellular Automata,简称CA,也有人译为细胞自动机、点格白动机、分子自动机或单元口动机)。
是一时间和空间都离散的动力系统。
散布在规则格网(Lattice Grid)中的每一元胞(Cell)取有限的离散状态,遵循同样的作用规则,依据确定的周部规则作同步更新。
大量元胞通过简单的相互作用而构成动态系统的演化。
不同于一般的动力学模型,元胞自动机不是由严格定义的物理方程或函数确定,而是用一系列模型构造的规则构成。
凡是满足这些规则的模型都可以算作是元胞门动机模型。
因此,元胞门动机是一类模型的总称,或者说是一个方法框架。
其特点是时间、空间、状态都离散,每个变最只取有限多个状态,且其状态改变的规则在时间和空间上都是局部的。
元胞自动机的构建没有固定的数学公式,构成方式繁杂,变种很多,行为复杂。
故其分类难度也较大,白元胞白动机产生以来,对于元胞白动机分类的研究就是元胞口动机的一个重要的研究课题和核心理论,在基于不同的出发点,元胞门动机可有多种分类,其中,最具彫响力的当属S. Wolfram在80午代初做的基于动力学行为的元胞白动机分类,而基于维数的元胞自动机分类也是最简单和最常用的划分。
除此之外,在1990年,Howard A. Gutowitz提出了基于元胞自动机行为的马尔科夫概率量测的层次化、参最化的分类体系(Gutowitz, H.A. ,1990)o下面就上述的前两种分类作进一步的介绍。
同时就儿种特殊类型的元胞自动机进行介绍和探讨S. Wolfrarm在详细分忻研究了一维元胞自动机的演化行为,并在大量的计算机实验的基础上,将所有元胞白动机的动力学行为归纳为四大类(Wolfram. S. , 1986):(1)平稳型:自任何初始状态开始,经过一定时间运行后,元胞空间趋于一个空间平稳的构形,这里空间平稳即指每一个元胞处于固定状态。
元胞自动机元胞自动机是一种模拟和研究复杂系统的数学工具,它通过简单的局部规则来产生全局复杂的行为。
元胞自动机的概念最早由美国物理学家约翰·冯·诺依曼在20世纪40年代提出,随后被广泛应用于各个领域,如生物学、物理学、社会科学和计算机科学等。
元胞自动机的基本组成是一组个体元胞和一组规则。
每个个体元胞都有一个状态,并且根据事先设定的规则进行状态的更新。
元胞自动机的最常见形式是一维的,其中每个个体元胞只与其相邻的元胞进行交互。
但也可以拓展到二维或更高维的情况中。
元胞自动机的规则可以根据不同的应用领域和研究目的进行定制。
这些规则可以用布尔函数、数学公式或其他表达方式来表示。
无论规则的形式如何,元胞自动机的最终行为都是通过简单的局部交互生成的,这是元胞自动机的重要特点之一。
元胞自动机的行为模式具有很强的自组织性和演化性。
通过简单的局部规则,元胞自动机可以表现出出乎意料的全局行为。
这种全局行为可以是周期性的、随机的、混沌的或者有序的。
元胞自动机的行为模式不仅具有学术研究的价值,还有很多实际应用。
例如,在人工生命领域,元胞自动机可以用来模拟生物体的进化和自组织能力。
在交通流动领域,元胞自动机可以用来研究交通拥堵的产生和解决方法。
在市场分析领域,元胞自动机可以用来模拟市场的波动和价格的形成。
元胞自动机的研究方法和技术也在不断发展和创新。
近年来,随着计算机硬件和软件的发展,元胞自动机在研究和应用上取得了很多突破。
例如,基于图形处理器的并行计算可以加速元胞自动机模拟的速度。
人工智能领域的深度学习技术也可以与元胞自动机结合,从而对更复杂的系统进行建模和分析。
总之,元胞自动机是一种强大的数学工具,可以用来研究和模拟复杂系统的行为。
它的简单规则和局部交互能够产生出复杂的全局模式,具有很大的应用潜力。
通过不断的研究和创新,我们相信元胞自动机将在各个领域发挥出更大的作用,为人类的科学研究和社会发展做出更多贡献。
元胞自动机应用概述元胞自动机的应用概述元胞自动机自产生以来,被广泛地应用到社会、经济、军事和科学研究的各个领域。
到目前为止,其应用领域涉及生物学、生态学、物理学、化学、交通科学、计算机科学、信息科学、地理、环境、社会学、军事学以及复杂性科学等。
下面我们将对元胞自动机在这些领域中的应用分别做简要介绍。
2.物理学领域:在元胞自动机根底上开展出来的格子自动机和格子—波尔兹曼方法在计算机流体领域获得了巨大的成功。
其不仅能够解决传统流体力学计算方法所能解决的绝大多数问题,并且在多孔介质、多相流、微小尺度方面具有其独特的优越性。
另外,元胞自动机还被用来模拟雪花等枝晶的形成。
3.生态学领域:元胞自动机被用于兔子—草、鲨鱼—小鱼等生态系统动态变化过程的模拟,展示出令人满意的动态效果,元胞自动机成功的应用于蚂蚁的行走路径,大雁、鱼类洄游等动物的群体行为的模拟,另外,基于元胞自动机模型的生物群落的扩散模拟也是当前的一个应用热点。
4.化学领域:通过模拟原子、分子等各种微观粒子在化学反响中的相互作用,进而研究化学反响的过程。
6.计算机科学和信息学领域:元胞自动机的逻辑思维方法为并行机的开展提供了另一个理论框架。
20世纪80年代,制造出第一台通用元胞自动机计算机CAM6,其性能可与当时的巨型计算机相比较,并且其图形显示功能明显优于其他类型的计算机。
元胞自动机还被用来研究信息的保存、传递、扩散的过程。
除此之外,元胞自动机在图像处理和模式识别中也表达出了其独到的优势。
图像处理中的许多任务,如图像滤波或去噪、窗口操作、平滑、边缘检测、图像细化、手写体识别和图像分类等,都可以利用元胞自动机模型来研究。
Preton提出了将元胞自动机应用于一些科学图像处理的元胞逻辑处理方法,Wongthanavau和adananda运用元胞自动机方法对二进制图像边缘进行检测,实现了图像的像素及检测,设计出了一个新的基于元胞自动机的二进制图像边缘检测模型可以提供二进制图像的最优边缘图,在一般情况下,这种模型好于针对灰度级图像的比较边缘算子。
元胞自动机模型将速度概率元胞自动机是一种描述离散动态系统的数学模型,它被广泛用于研究复杂系统的行为。
其中一个重要的应用领域是交通流动性建模,特别是对车辆速度概率的建模。
本文将探讨元胞自动机模型在描述交通流速度概率分布中的应用,并讨论其在交通规划和交通管理中的指导意义。
在交通流动性建模中,车辆的速度概率分布起着至关重要的作用。
通过研究车辆的速度概率分布,我们可以更好地理解交通流的运行规律,并提出有效的交通规划和管理策略。
元胞自动机模型通过将道路划分为离散的小单元(元胞),并模拟车辆在不同元胞之间的移动来描述交通流动性。
在元胞自动机模型中,每个车辆被赋予一个速度值,该值取决于车辆自身的特性以及与周围车辆的相互作用。
通过对车辆速度概率进行建模,我们可以了解车辆在不同速度下的分布情况,从而更好地理解交通流的运行状态。
元胞自动机模型中的速度概率分布可以通过统计分析实际观测数据得到,也可以通过调整模型参数进行模拟研究。
通过比较模拟结果与实际观测数据的吻合程度,我们可以验证元胞自动机模型的准确性,并对其进行进一步优化。
通过对速度概率分布的研究,我们可以了解到一些重要的现象,例如:道路拥堵时速度概率分布的变化,不同类型车辆速度概率分布的差异等。
这些发现对于交通规划和交通管理具有重要的指导意义。
在交通规划中,通过对交通流速度概率进行建模,我们可以预测不同规模的交通流量下道路的运行状态。
根据模拟结果,我们可以确定是否需要进行道路扩建或改进交通信号系统,以提高道路的通行能力。
此外,通过分析不同时间段的速度概率分布,我们可以为特定时间段的交通拥堵状况提供合理的解释,并提出有效的交通调控措施,例如高峰时段的交通限行措施。
这些交通规划策略的制定对于提高城市道路交通流动性具有重要作用。
在交通管理中,通过对速度概率分布的研究,我们可以发现车辆速度异常的情况,例如超速或低速行驶。
利用这些信息,交通管理部门可以及时采取相应的措施,例如设置超速抓拍摄像头或增加交通警力巡逻,以确保道路的安全和畅通。
元胞自动机元胞自动机的概念元胞自动机是定义在一个由具有离散、有限状态的元胞组成的元胞空间上,并按照一定局部规则,在离散的时间维上演化的动力学系统。
具体讲,构成元胞自动机的部件被称为"元胞",每个元胞具有一个状态。
这个状态只琵取某个有限状态集中的一个,例如或"生"或"死",或者是256中颜色中的一种,等等;这些元胞规则地排列在被你为"元胞空间"的空间格网上;它们各自的状态随着时间变化。
而根据一个局部规则来进行更新,也就是说,一个元胞在某时刻的状态取决于、而且仅仅家决于上一时刻该元胞的状态以及该元胞的所有邻居元胞的状态;元胞空间内的元胞依照这样的局部规则进行同步的状态更新,整个元胞空间则表现为在离散的时间维上的变化。
元胞自动机的构成元胞自动机最基本的组成元胞、元胞空间、邻居及规则四部分。
简单讲,元胞自动机可以视为由一个元胞空间和定义于该空间的变换函数所组成。
1.元胞元胞又可称为单元。
或基元,是元胞自动机的最基本的组成部分。
元胞分布在离散的一维、二维或多维欧几里德空间的晶格点上。
2.状态状态可以是{0,1}的二进制形式。
或是{s0,s2,……s i……s k}整数形式的离散集,严格意义上。
元胞自动机的元胞只能有一个犬态变量。
但在实际应用中,往往将其进行了扩展。
例如每个元胞可以拥有多个状态变量。
李才伟(1997)在其博士论文工作中,就设计实现了这样一种称之为"多元随机元胞自动机"模型。
并且定义了元胞空间的邻居(Neighbor)关系。
由于邻居关系,每个元胞有有限个元胞作为它的邻居;3.元胞空间(Lattice)元胞所分布在的空间网点集合就是这里的元胞空间。
(l)元胞空间的几何划分:理论上,它可以是任意维数的欧几里德空间规则划分。
目前研究多集中在一维和二维元胞自动机上。
对于一维元抱自动机。
元胞空间的划分只有一种。
元胞自动机数学建模
元胞自动机是一种复杂系统模型,通常用于模拟和分析自然现象、社会影响等情势。
该模型围绕着一个由许多小单位(称为元胞)组成的方格,每个元胞都可以有多种状态,如黑或白、有或无、存活或死亡等。
元胞自动机的演化过程由以下两个机制驱动:
1.局部规则:每个元胞的未来状态取决于其当前状态以及周围元胞的状态,这些状态
受到一个预先定义的局部规则的约束。
局部规则是该模型的核心部分,它确定了整个系统
的行为。
2.全局同步性:该模型是同步更新的,即所有元胞同时被更新。
每个元胞的状态变化
取决于其周围其他元胞的状态变化,这种相互作用使得元胞自动机可以展现出许多复杂的
演化形式。
元胞自动机可以用于建模自然界中的生态系统、物理系统中的相变现象、社会系统中
的群体行为等。
例如,元胞自动机可以模拟迁移的鸟群,其中局部规则可以指定鸟群的移
动方向,全局同步机制使得整个鸟群在空间中移动。
总之,元胞自动机是一种强大和灵活的数学工具,可以用于解决许多自然科学和社会
科学中的问题。
元胞自动机特点
元胞自动机是一种模拟复杂系统行为的方法,它具有以下特点:
1. 简单性:元胞自动机是一种简单的模型,它由一系列离散的元胞组成,每个元胞具有有限的状态。
这种简单性使得元胞自动机能够模拟复杂的系统,同时也使得模型的理解和分析变得更加容易。
2. 空间局部性:元胞自动机在空间上具有局部性,即每个元胞只与它周围的元胞相互作用。
这种局部性使得元胞自动机能够模拟空间上的自组织行为,如晶格生长和城市发展等。
3. 时间局部性:元胞自动机在时间上具有局部性,即每个元胞的状态只取决于它当前的状态和周围元胞的状态,而与过去的状态无关。
这种局部性使得元胞自动机能够模拟时间上的动态行为,如交通流和生态系统演化等。
4. 并行性:元胞自动机是一种并行计算模型,它可以在多个计算节点上同时进行计算。
这种并行性使得元胞自动机能够模拟大规模的系统,同时也提高了计算效率。
5. 随机性:元胞自动机中的元胞状态和相互作用可以是随机的,这使得模型能够模拟随机行为,如粒子扩散和股票市场波动等。
6. 可扩展性:元胞自动机可以通过增加元胞数量和状态数量来模拟更复杂的系统。
这种可扩展性使得元胞自动机能够模拟不同尺度和复杂度的系统。
总之,元胞自动机是一种简单、高效、并行的计算模型,它具有空间局部性、时间局部性、随机性和可扩展性等特点,能够模拟复杂系统的行为。
元胞自动机元胞自动机的概念元胞自动机是定义在一个由具有离散、有限状态的元胞组成的元胞空间上,并按照一定局部规则,在离散的时间维上演化的动力学系统。
具体讲,构成元胞自动机的部件被称为"元胞",每个元胞具有一个状态。
这个状态只琵取某个有限状态集中的一个,例如或"生"或"死",或者是256中颜色中的一种,等等;这些元胞规则地排列在被你为"元胞空间"的空间格网上;它们各自的状态随着时间变化。
而根据一个局部规则来进行更新,也就是说,一个元胞在某时刻的状态取决于、而且仅仅家决于上一时刻该元胞的状态以及该元胞的所有邻居元胞的状态;元胞空间内的元胞依照这样的局部规则进行同步的状态更新,整个元胞空间则表现为在离散的时间维上的变化。
元胞自动机的构成元胞自动机最基本的组成元胞、元胞空间、邻居及规则四部分。
简单讲,元胞自动机可以视为由一个元胞空间和定义于该空间的变换函数所组成。
1.元胞元胞又可称为单元。
或基元,是元胞自动机的最基本的组成部分。
元胞分布在离散的一维、二维或多维欧几里德空间的晶格点上。
2.状态状态可以是{0,1}的二进制形式。
或是{s0,s2,……s i……s k}整数形式的离散集,严格意义上。
元胞自动机的元胞只能有一个犬态变量。
但在实际应用中,往往将其进行了扩展。
例如每个元胞可以拥有多个状态变量。
李才伟(1997)在其博士论文工作中,就设计实现了这样一种称之为"多元随机元胞自动机"模型。
并且定义了元胞空间的邻居(Neighbor)关系。
由于邻居关系,每个元胞有有限个元胞作为它的邻居;3.元胞空间(Lattice)元胞所分布在的空间网点集合就是这里的元胞空间。
(l)元胞空间的几何划分:理论上,它可以是任意维数的欧几里德空间规则划分。
目前研究多集中在一维和二维元胞自动机上。
对于一维元抱自动机。
元胞空间的划分只有一种。
而高维的元胞自动机。
元胞空间的划分则可能有多种形式。
对于最为常见的二维元胞自动机。
二维元胞空间通常可按三角、四万或六边形三种网格排列(图2-5)。
这三种规则的元胞空间划分在构模时各有优缺点:三角网格的优点是拥有相对较少的邻居数目,这在某些时候很有用;其缺点是在计算机的表达与显示不方便,需要转换为四方网格。
四方网格的优点是直观而简单,而且特别适合于在现有计算机环境下进行表达显示;其缺点是不能较好地模拟各向同性的现象,例如后面提到的格子气模型中的HPP模型。
六边形网格的优点是能较好地模拟各向同性的现象,因此,模型能更加自然而真实,如格气模型中的FHP模型;其缺点同三角网格一样,在表达显示上较为困难、复杂。
(2)边界条件:在理论上,元胞空间通常是在各维向上是无限延展的,这有利于在理论上的推理和研究。
但是在实际应用过程中,我们无法在计算机上实现这一理想条件,因此,我们需要定义不同的边界条件。
归纳起来,边界条件主要有三种类型:周期型、反射型和定值型。
有时,在应用中,为更加客观、自然地模拟实际现象,还有可能采用随机型,即在边界实时产生随机值。
周期型(Pehodic Boundary)是指相对边界连接起来的元胞空间。
对于一维空间,元胞空间表现为一个首尾相接的"圈"。
对于二维空间,上下相接,左右相接。
而形成一个拓扑圆环面(Torus),形似车胎或甜点圈。
周期型空间与无限空间最为接近,因而在理论探讨时,常以此类空间型作为试验。
反射型(Reflective Boundary)指在边界外邻居的元胞状态是以边界为轴的镜面反射。
例如在一维空间中,当r=1时的边界情形:定值型(Constant Boundary)指所有边界外元胞均取某一固定常量,如0,1等。
需要指出的是,这三种边界类型在实际应用中,尤其是二维或更高维数的构模时,可以相互结合。
如在二维空间中,上下边界采用反射型,左右边界可采用周期型(相对边界中。
不能一方单方面采用周期型)。
(3)构形:在这个元胞、状态、元胞空间的概念基础上,我们引入另外一个非常重要的概念,构形(Configuration)。
构形是在某个时刻,在元胞空间上所有元胞状态的空间分布组合。
通常。
在数学上,它可以表示为一个多维的整数矩阵。
4.邻居 (Neighbor)以上的元胞及元胞空间只表示了系统的静态成分,为将"动态"引入系统,必须加入演化规则。
在元胞自动机中,这些规则是定义在空间局部范围内的,即一个元胞下一时刻的状态决定于本身状态和它的邻居元胞的状态。
因而,在指定规则之前,必须定义一定的邻居规则,明确哪些元胞属于该元胞的邻居。
在一维元胞自动机中,通常以半径,来确定邻居,距离一个元胞,内的所有元胞均被认为是该元胞的邻居。
二维元胞自动机的邻居定义较为复杂,但通常有以下几种形式(我们以最常用的规则四方网格划分为例)。
见图2-6,黑色元胞为中心元胞,灰色元胞为其邻居,它们的状态一起来计算中心元胞在下一时刻的状态。
森林火灾模拟:元胞有3个不同的状态。
状态为 0是空位,状态= 1是燃烧着的树木,状态等于2是树木。
如果4个邻居中有一个或一个以上的是燃烧着的并且自身是树木(状态为2 )那么该元胞下一时刻的状态是燃烧(状态为 1 )。
森林元胞(状态为 2 )以一个低概率(例如0.000005 )开始烧(因为闪电)。
一个燃烧着的元胞(状态为 1 )在下一时时刻变成空位的(状态为0 )。
空元胞以一个低概率(例如0.01 )变为森林以模拟生长。
出于矩阵边界连接的考虑,如果左边界开始着火,火势将向右蔓延,右边界同理。
同样适用于顶部和底部。
其中黑色表述没有任何东西,绿色表示树木,红色表示火。
动态过程显示,火将树木烧掉,然后树木又重生,周而复始。
clfclear all%===========================%GUI界面,控制迭代,三个按钮和一个现实迭代次数的文本% Run按钮,开始执行,回调函数让 run=1,开始迭代plotbutton=uicontrol('style','pushbutton',...'string','Run', ...'fontsize',12, ...'position',[100,400,50,20], ...'callback', 'run=1;');% stop按钮,回调函数让freeze=1,停止迭代erasebutton=uicontrol('style','pushbutton',...'string','Stop', ...'fontsize',12, ...'position',[200,400,50,20], ...'callback','freeze=1;');% Quit按钮,推出quitbutton=uicontrol('style','pushbutton',...'string','Quit', ...'fontsize',12, ...'position',[300,400,50,20], ...'callback','stop=1;close;');%显示迭代次数文本number = uicontrol('style','text', ...'string','1', ...'fontsize',12, ...'position',[20,400,50,20]);%==============================n=100;Plightning = .000005; %树木自燃的概率Pgrowth = .01; %树木自己重生的概率z=zeros(n,n);o=ones(n,n);veg=z;sum=z;imh = image(cat(3,z,veg*.02,z));set(imh, 'erasemode', 'none')axis equalaxis tight% 没有物体用 0表示,燃烧用1表示,树木用2表示stop= 0; % 默认开始没有,暂停run = 0; % 默认开始直接不进行迭代,用户按下 Run按钮,在回调函数中设置 Run=1,开始迭代freeze = 0; %wait for a freezewhile (stop==0)if (run==1)sum = (veg(1:n,[n 1:n-1])==1) + (veg(1:n,[2:n 1])==1) + ... %计算方便四个位置燃烧树木个数(veg([n 1:n-1], 1:n)==1) + (veg([2:n 1],1:n)==1) ;veg= ... %计算下一个状态2*(veg==2) - ((veg==2) & (sum>0 | (rand(n,n)<Plightning))) + ...2*((veg==0) & rand(n,n)<Pgrowth) ;set(imh, 'cdata', cat(3,(veg==1),(veg==2),z) )stepnumber = 1 + str2num(get(number,'string')); %设置迭代次数set(number,'string',num2str(stepnumber))endif (freeze==1) %用户暂停了run = 0;freeze = 0; enddrawnowend。