第一章能带理论
- 格式:ppt
- 大小:1.31 MB
- 文档页数:138
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
能带理论能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子能量会落在某些限定范围或“带"中,因此,这方面的理论称为能带理论。
对于晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而其能量与波失间的关系E (k )较为复杂,而这个关系的描述这是能带理论的主要内容.本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些基本结论和概念。
一、三个近似绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的影响,取系统中的离子实部分的哈密顿量为零。
平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均场。
周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受到的势场具有平移对称性。
原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的中心任务就是求解晶体周期势场中单电子的薛定谔方程,即其中二、两个模型(1)近自由电子模型1、模型概述 在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的.因此,我们可以把自由电子看成是它的零级近似,(222U m ∇+)()(r U R r U n=+而将周期场的影响看成小的微扰来求解。
(也称为弱周期场近似)2、怎样得到近自由电子模型近自由电子近似是晶体电子仅受晶体势场很弱的作用,E (K )是连续的能级。
由于周期性势场的微扰 E (K )在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。
3、近自由电子近似的主要结果1) 存在能带和禁带:在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式.由于周期势场的微扰,E (k )函数将在 处断开,本征能量发生突变,出现能量间隔2︱V n ︱,间隔内不存在允许的电子能级,称禁带;其余区域仍基本保持自由电子时的数值。
§ 导体、半导体和绝缘体尽管所有的固体都包含大量有电子,但有些固体具有很好的电子导电性能,而另一些固体则观察不到任何电子的导电性。
对于固体为什么分为导体、绝缘体和半导体呢这一基础事实曾长期得不到解释,能带论对这一问题给出了一个理论说明,并由此逐步发展成为有关导体、绝缘体和半导体的现代理论。
晶体中电子有能量本征值分裂成一系列能带,每个能带均由N 个准连续能级组成(N 为晶体原胞数),所以,每个能带可容纳2N 个电子。
晶体电子从最低能级开始填充,被电子填满的能带称作满带,被电子部分填充的能带称为不满带,没有电子填充的能带称为空带。
能带论解释固体导电的基本观点是:满带电子不导电,而不满带中的电子对导电有贡献。
5. 11. 1 满带电子不导电从前面的知识中,已经知道,晶体中电子能量本征值E (k )是k 的偶函数,可以证明v (-k )=-v (k ),即v (k )是k 的奇函数。
一个完全填满的电子能带,电子在能带上的分布,在k 空间具有中心对称性,即一个电子处于k 态,其能量为E(k ),则必有另一个与其能量相同的E (-k )=E (k )电子处于-k 态。
当不存在外电场时,尽管对于每一个电子来证,都带有一定的电流-e v ,但是k 态和-k 态的电子电流-e v (k )和-e v (-k )正好一对对相互抵消,所以说没有宏观电流。
当存在外电场或外磁场时,电子在能带中分布具有k 空间中心对称性的情况仍不会改变。
以一维能带为例,图1中k 轴上的点子表示简约布里渊区内均匀分布的各量子态的电子。
如上所述,在外电场E 的作用下,所有电子所处的状态都以速度 d e dt=-k E …………………………………………………………………………………………(1) 沿k 轴移动。
由于布里渊区边界A 和A '两点实际上代表同一状态,在电子填满布里渊区所有状态即满带情况下,从A 点称动出去的电子同时就从A '点流进来,因而整个能带仍处于均匀分布填满状态,并不产生电流。