药物代谢结合反应
- 格式:ppt
- 大小:2.57 MB
- 文档页数:67
药代药动名词解释一、药代(药物代谢)1. 定义- 药物代谢是指药物在体内发生的化学结构改变。
这一过程主要在肝脏进行,但也可发生在胃肠道、肺、皮肤等部位。
药物经过代谢后,其药理活性可能发生改变,包括活性增强、减弱或消失等情况。
例如,有些药物本身无活性,经过肝脏代谢后转化为有活性的代谢产物才能发挥药效,像前药洛伐他汀,口服后在肝脏水解为有活性的代谢产物而发挥降血脂作用;而有些药物经过代谢后活性降低或丧失,如大多数药物经过Ⅰ相代谢(氧化、还原、水解等反应)和Ⅱ相代谢(结合反应,如葡萄糖醛酸结合、硫酸结合等)后,变为极性更大、更易排出体外的物质,从而失去原有的药理活性。
2. 代谢酶- 参与药物代谢的酶主要是细胞色素P450酶系(CYP),它是一组结构和功能相关的超家族基因编码的同工酶。
其中CYP3A4是人体肝脏和小肠中含量最丰富的CYP酶,参与约50%临床常用药物的代谢,如红霉素、酮康唑等药物可抑制CYP3A4酶的活性,从而影响其他经该酶代谢的药物(如辛伐他汀)的血药浓度,可能导致不良反应的增加;而利福平是CYP3A4的诱导剂,可加速其他经该酶代谢药物的代谢,使药物疗效降低。
除了CYP酶系外,还有一些非CYP酶参与药物代谢,如水解酶、转移酶等。
3. 影响药物代谢的因素- 生理因素:年龄、性别、种族等对药物代谢有影响。
例如,老年人肝脏代谢酶活性降低,药物代谢速度减慢,容易导致药物在体内蓄积,增加不良反应的发生风险;儿童的肝脏代谢功能尚未发育完全,对某些药物的代谢能力也较弱。
性别方面,一般来说女性体内的某些药物代谢酶活性可能与男性有所不同。
不同种族之间,由于基因多态性的存在,对药物代谢的能力也存在差异,如亚洲人群中CYP2C19酶的慢代谢型比例相对较高,在使用经该酶代谢的药物(如奥美拉唑)时,血药浓度可能会高于其他种族,疗效和不良反应的发生率也可能有所不同。
- 病理因素:肝脏疾病是影响药物代谢的重要病理因素。
药物结合反应的名词解释药物结合反应是指在体内,药物与其他物质(如蛋白质、酶、细胞膜等)发生相互作用,从而改变其药物效应和药代动力学特性的现象。
药物结合反应对于药物的药效、毒副作用和排泄代谢等方面都有重要影响。
在本文中,我们将探讨药物结合反应的相关概念和作用机制。
1. 蛋白结合反应蛋白结合反应是最常见的药物结合反应之一。
当药物在体内游离态和蛋白结合态之间发生平衡时,就会引发蛋白结合反应。
蛋白结合通常发生在血浆中的白蛋白、α-酸糖蛋白等蛋白质上。
药物与蛋白质的结合可以降低其自由浓度,从而减少药物的分布容积,延长药物的半衰期。
此外,蛋白结合还可以影响药物的转运、代谢和排泄。
2. 酶促反应酶促反应是药物与体内酶发生相互作用的一种药物结合反应。
药物可以与酶结合,从而阻断或激活酶的活性,影响体内化学反应的进程。
酶促反应常见于药物的代谢过程,特别是肝脏中的细胞色素P450系统。
药物通过与细胞色素P450同种酶结合,会促使酶催化底物的代谢,或者抑制酶的活性,从而改变药物的代谢速率和药效。
这对于血浆药物浓度和个体对药物的反应都有直接影响。
3. 细胞膜结合反应细胞膜结合反应是指药物与细胞膜上的受体或通道结合的现象。
当药物与细胞膜上的受体结合,可以影响受体的激活,从而改变细胞内的信号传递通路,进而调节相关的功能和药物效应。
例如,心脏细胞中的β受体与肾上腺素类药物结合,可以增加心肌收缩力,提高心率。
细胞膜结合反应对于药物的效应和药物选择性具有重要意义。
4. 药物之间的结合反应除了与体内物质的结合反应外,药物之间也可以发生结合反应。
这种药物之间的相互作用对药物的药效和毒副作用可能产生重要影响。
例如,药物A与药物B 结合后形成复合物,可能会减弱药物A的药效,或者增加药物A的排泄速率。
药物之间的结合反应需要充分考虑,以避免潜在的不良相互作用。
5. 药物结合反应的意义药物结合反应对于药物疗效和药物安全性具有重要意义。
了解药物结合反应的机制和影响因素,可以帮助合理用药和调整用药方案。
简述药物代谢反应的分类
药物代谢反应的分类可以根据药物代谢途径或化学反应类型进行。
一种常见的分类方法是根据药物代谢途径。
根据此方法,药物代谢反应可以分为两类:
1. 相位 I 反应:相位 I 反应通常是氧化、还原或水解等“初步”反应,它们通过引入或暴露药物中的官能团,使药物变得更易于进一步代谢。
这些反应通常是由细胞色素P450酶和其他氧化酶介导的。
相位 I 反应可以将药物转化为活性代谢物,也可以将药物转化为无活性代谢物。
2. 相位 II 反应:相位 II 反应通常是与药物代谢物结合形成水溶性化合物,例如葡萄糖、硫酸化合物或甲酸酯等。
这些反应通常是由转移酶(例如葡萄糖转移酶、硫酸化酶等)介导的。
相位 II 反应通常使药物更易于排出体外,从而增加药物的溶解度和极性。
另一种分类方法是根据化学反应类型。
基于这个分类方法,药物代谢反应可以分为以下几类:
1. 氧化反应:药物中的官能团被氧化或还原。
2. 还原反应:药物中的官能团被还原。
3. 水解反应:药物中的酰基、糖基、脱氧酶等被水解。
4. 脱酰反应:药物中的酰基被去除。
5. 脱氨化反应:药物中的氨基团被去除。
6. 脱甲基化反应:药物中的甲基基团被去除。
需要注意的是,以上分类方法只是对药物代谢反应的常见分类,实际药物代谢可能会涉及多种反应类型的组合。
第一章药物的变质反响和生物转化【学习要求】一、掌握药物的水解变质反响。
二、掌握药物自动氧化变质反响。
三、熟悉药物体内氧化代谢反响。
四、熟悉药物体内水解代谢反响。
五、了解药物的其他变质反响。
六、了解药物体内代谢的结合反响。
【教学内容】一、药物的变质反响〔一〕药物的水解反响1.药物的水解过程2.药物的化学结构对水解的碍事3.碍事药物水解的外界因素〔二〕药物的氧化反响1.药物的自动氧化2.碍事药物自动氧化的外界因素二、药物的代谢反响〔一〕氧化反响〔二〕复原反响〔三〕水解反响〔四〕结合反响【学习指导】一、药物的变质反响药物的变质反响要紧有水解、氧化、异构化、脱羧及聚合反响等。
其中,水解和氧化反响是药物变质最常见的反响。
(一)药物的水解反响当药物水解产生新的物质,那么变质失效。
常见易发生水解的药物结构有酯、酰胺、酰脲、酰肼、苷、缩氨及含爽朗卤素化合物等结构类型,其中含有酰基的羧酸衍生物最常见。
1.药物的水解过程羧酸衍生物的水解多由亲核剂-Y 〔如-OH 〕进攻缺电子的酰基碳,酰基碳原子由2SP 平面型杂化变成3SP 四面体杂化的过度态,形成新的C -Y 键,原有的C -X 键断裂,-X 离往,碳原子又恢复平面2SP 杂化状。
酰基脱离X 基团,转换成与Y 基团成键,也称酰基转换反响。
酯的碱催化水解是不可逆的,酯的酸催化水解是可逆的。
2.药物的化学结构对水解的碍事①在羧酸衍生物中,离往酸的酸性越强的药物越易水解。
②羧酸衍生物的酰基邻近有亲核基团时,能引起分子内催化作用〔即邻助作用〕,使水解加速。
③在羧酸衍生物中,不同的取代基的电性效应使羧酸的酸性增强时,水解速度加快,反之,水解速度减慢。
④在羧酸衍生物中,假设在羰基的两侧具有较大空间体积的取代基时,由于空间掩蔽的作用,产生较强的空间位阻,而减缓了水解速度。
3.碍事药物水解的外界因素①水分的碍事是药物在相对湿度愈大,药物的结晶愈细时,接触湿空气愈多,愈易水解,因此易水解的药物在贮存时,应防止与潮湿空气接触。
药物代谢是指药物在体内多种药物代谢酶,尤其是肝药酶的作用下,结构发生改变,又称为生物转化或药物代谢。
药物的生物转化与排泄,称为消除。
药物在体内生物转化以后结果有两种形式:一种是失活,成为没有药理活性的药物。
另外一种是活化,由没有药理活性成为有药理活性的代谢物,或产生有毒的代谢物。
药物代谢经历了吸收和相互作用、分布及其相互影响,药物的代谢和相互的作用最后是排泄互相的影响,有两种方式,包括肝脏的代谢和肠壁的代谢。
药物代谢经过两个阶段:第一个是氧化还原和水解反应,第二个是结合反应。
有些因素会影响药物代谢,比如给药的途径和给药的剂量,对药物代谢都有影响。
使用酶的促进剂,或酶的抑制剂都可能影响药物代谢酶的功效。
如果某些生理的因素,比如性别、年龄、个体疾病,甚至饮食也可以造成药物代谢受影响。
原则是一相遵循氧化还原水解的原则,二相遵循结合的原则。
而大部分药物经一相产生的代谢产物可以直接排泄也可以在经过二相然后再排泄,而另一部分药物则直接通过二相代谢排泄掉。
多数药物在体内的代谢转化主要在肝脏进行,可分为第一相代谢反应和第二相代谢反应。
第一相代谢反应包括氧化、去甲基化和水解反应。
药物经过第一相的氧化、去甲基化等代谢作用后,非极性脂溶性化合物变为极性和水溶性较高而活性较低的代谢物。
第二相反应是结合反应,指药物或其第一相代谢物与内源性结合剂的结合反应。
结合后药物毒性或活性降低、极性增加而易于被排出。
扩展资料:
药物代谢反应类型药物代谢常分二个阶段进行。
第一阶段通常是氧化、还原和水解反应;第二阶段是结合反应。
但要结合,分子内必须具有能与结合物质起反应的阴
离子基团。
许多药物原来不具有这些基团,第一阶段的反应即在于暴露或引进这些基团如—OH,--COOH或—NH2等。
各种药物的代谢方式不同,有的只需要经受一种类型的化学变化,多数药物要经受二个阶段的反应。
总之不论是经过一个阶段或二个阶段的反应,其目的是使该化合物转变成更易溶解于水的形式更易为肾脏排泄。