空化空蚀
- 格式:pptx
- 大小:1.50 MB
- 文档页数:12
空化与空蚀的原理与应用1. 空化的定义空化是指在流体中由于局部压力降低或速度增加而导致液体或气体产生腔隙的现象。
空化也可以描述为气泡形成的过程,当流体中的压力降低到饱和蒸汽压以下时,液体将开始汽化形成气泡。
2. 空化的原理空化的原因主要可以分为两种:压力降低和速度增加。
压力降低是指液体或气体中的压力低于饱和蒸汽压,导致液体开始汽化形成气泡。
速度增加是指流体中的流速增加,导致液体或气体无法及时填充空隙,从而形成气泡。
空化的发生与压力、速度、温度和流体性质等因素密切相关。
压力降低和速度增加是最主要的触发机制,而温度和流体性质则会影响空化的严重程度和形态。
3. 空蚀的定义空蚀是指在固体表面上由于流体的冲击或剪切而造成局部的物质脱离或溶解的现象。
在流体动力学中,空蚀通常指流体在高速运动过程中由于压力降低而在固体表面形成气体或蒸汽腔隙的现象。
4. 空蚀的原理空蚀的原理依然与压力降低有关。
当流体在高速运动过程中,流体速度增加,压力随之降低,当流体速度达到临界值时,压力降低导致流体中的气体产生腔隙,形成空蚀现象。
空蚀会导致固体表面的物质脱落或溶解,从而对设备和结构造成损害。
5. 空化与空蚀的应用空化和空蚀的研究在许多领域中具有重要的应用价值。
以下是几个典型的应用案例:•航空航天工业:在航空航天领域,空化和空蚀是重要的研究方向。
由于高速飞行时流体的压力和速度变化较大,空化和空蚀可能对飞行器的气动性能和结构造成严重影响。
因此,研究空化和空蚀的机理和控制方法对于提高飞行器性能具有重要意义。
•能源领域:在能源领域,如核能和燃料电池等,空化和空蚀也扮演着重要的角色。
在核能中,空化和空蚀会影响核反应堆中的传热和冷却工作。
燃料电池中,空化和空蚀对电池材料的稳定性和寿命有着重要的影响,因此需要进行相关的研究和控制。
•液压传动:在液压传动系统中,高速流体的流动会引起空化和空蚀现象。
空化和空蚀会导致液压传动系统的效率下降和部件的损坏,因此需要研究和采取相应的控制措施,以提高传动系统的性能和可靠性。
空化和空蚀的原理及应用1. 空化的原理空化是指在流体力学中,流动速度超过临界速度时,液体或气体中的压力下降到饱和蒸汽压以下,形成气蚀现象。
空化通常在高速液体流动或液体泵中特别容易发生。
空化的原理主要是因为流动速度增加,密度降低,从而导致流体的压力下降。
当压力下降至饱和蒸汽压以下,液体中的液体蒸发成气体,形成气蚀。
空化还会导致液体流体的流速增加,从而加剧空化现象。
2. 空蚀的原理空蚀是指在机械装置中,由于液体中的气泡或气体在压力变化下沉积或爆裂,导致液体中出现空隙或气泡的现象。
空蚀通常在液压系统、液体泵或涡轮机等设备中产生。
空蚀的原理主要是液体中的气泡或气体在压力变化下,由于气泡或气体的容积变化引发的空隙或气泡。
当压力变化引起气泡或气体的容积变化时,液体中的空隙或气泡会导致流体流动的中断或减弱,从而导致空蚀现象。
3. 空化和空蚀的应用空化和空蚀现象在工程领域中有着重要的应用。
以下是一些常见的应用场景:3.1 液体泵设计和维护在液体泵的设计和维护中,空化和空蚀是需要考虑的关键因素。
液体泵在高速运行时容易发生空化现象,导致泵的效率下降甚至损坏。
因此,在液体泵的设计和维护中,需要采取措施来避免空化和空蚀的发生,如增加泵的压力容降、增加泵的进口压力或降低泵的运行速度等。
3.2 水力发电站设计和优化在水力发电站的设计和优化中,空化和空蚀的控制是非常重要的。
由于水力发电站的高速水流,空化和空蚀往往会导致设备的损坏和效率下降。
因此,在水力发电站的设计和优化过程中,需要对流体的流速和压力进行适当控制,以避免空化和空蚀的发生。
此外,还需要合理选择材料,以提高设备的抗空蚀能力。
3.3 液压系统的设计和维护在液压系统中,空化和空蚀往往会导致系统压力下降,从而降低液压设备的工作效果。
因此,在液压系统的设计和维护中,需要合理选择液压材料,并采取措施来避免空化和空蚀的发生。
常见的方法包括增加液压系统的进口压力、优化液压系统的管道设计、定期维护和检查液压设备等。
第四章叶片式流体机械的空化与空蚀§4.1 流体机械的空化与空蚀机理一、空化及空蚀的机理:空化及空蚀是以液体为介质的叶片式流体机械,即水力机械才有可能出现的一种物理现象。
空化现象:沸腾:液体在恒定压力下加热,当液体温度升高至某一温度,液体开始气化形成气泡,这叫沸腾。
当温度一定,压力降低到某一临界压力,也会气化。
当P<Pv ,开始气化,形成空穴(即气泡),当气泡到高压区则,气泡内的蒸汽重新凝结,气泡溃灭,另外还伴随着一系列物理、化学现象,这叫空化。
二、液体的性质及空化初生条件空化初生时空穴在局部压力降至临近液体蒸汽压力的瞬间形成的。
严格的讲,一般若空穴在均质液体内产生,液体必须破裂,破裂所需应力不是以蒸汽压力来衡量,而是该温度下液体的抗拉强度。
液体能不受拉,回答肯定。
很多人对纯水作了试验,证明纯水的抗拉强度为26-27MPa。
但实际上自然界的水不能承受拉应力,这是因为水的连续性破坏了。
(例水温200c ,压力2400Pa时水的连续性就破坏了,水就气化了)。
而水的连续性的破坏是由于水中有杂质,改变了水的结构,消弱了水(液体)的抗拉强度,而水中液体中的杂质是多种多样的,主要是未溶解的气体。
实际上,当局部压力降至蒸汽压力附近,未溶解气体首先从液体中析出,形成气核。
故液体压力降低是空化产生和发展的外部条件,而其内因还是液体本身的特性(含未溶解气体的量)。
三、空化的发展及溃灭及空化的类型当压力再低,气泡长大,进入高压区,气泡不断缩小,溃灭。
此过程是复杂过程,不仅和压力及含气量大小有关,还和液体的表面张力,粘性,可压缩性,惯性有关。
高速摄影拍了气泡的溃灭过程:当气泡达到最大直径时,紧接着高速溃灭至气泡尺寸为零,而后又再生一个稍小的,接着又溃灭,这种再生一般二次,尺寸一次比一次小。
类型:①游动型空化②固定型空化水力机械中出现③漩涡型空化④振动型空化:液体中的固体边界的机械振动激发相邻的液体产生压力脉动,与振幅足够大时,使液体产生空化。
空化与空蚀研究s 陈大融摩擦学国家重点实验室(清华大学),北京100084收稿日期:2010-11-1 修回日期:2010-11-27本文作者:陈大融,教授,ch endr @m ai.l ts i nghua .edu .cn 。
摘 要 空化是一种自然现象,从认识/滴水穿石0起,人们就将注意力集中在源于空化的各种损伤过程上。
由于对空泡生成、坍缩、溃灭,直至形成微激波、微射流的机理尚不清楚,历经百余年的研究,仍然没有形成有效解决空蚀损伤、空蚀噪声等问题的关键技术。
另一方面,空泡坍缩、溃灭过程所形成的极端物理、化学、力学环境、空泡内部物质的特殊物理化学状态及其转化过程,可为寻找自然界深层次规律的科学研究提供新的途径,形成的关键技术将为国民经济与国家安全的发展做出巨大贡献,并将最终造福于人类。
关键词:空化 空蚀 微激波 微射流 声化学 超声医学 中子聚变中图分类号:TP601 文献标识码:A 文章编号:1009-2412(2010)06-0003-05DO I :10.3969/.j issn .1009-2412.2010.06.001空化(cav itation)是指液体内局部压强降低到饱和蒸气压之下时,液体内部或液固交界面上出现的蒸气或气体空泡形成、发展、坍缩和溃灭的过程。
空蚀是指空泡坍缩形成微激波与微射流,攻击壁面形成损伤的过程。
空蚀过程在水轮机领域称为气蚀、在螺旋桨领域称为剥蚀、在汽轮机领域称为水蚀、在水力机械领域称为冲蚀,所描述的都是相同的物理和力学过程。
对空化现象的认识和研究可追溯到19世纪。
有记载的是B esant 在1839年、Reyno l ds 在1873年就已经开始在实验室对空化现象进行研究。
1902年在英国Cobra 号驱逐舰螺旋桨上首次发现空蚀损伤,接着在水工建筑物和水力机械上也发现了同样的现象。
英国皇家海军委任Lord Rayle i gh 着手进行研究,1917年Rayle i gh 提出了较为系统的空化理论,建立了描述自由空泡运动的方程。
空化和空蚀的原理及应用空化(Cavitation)是指在流体中由于压力降低而引起的气化现象。
而空蚀(Erosion)则是指由于流体中存在的空化诱发流体的快速扩散和冲击而导致的固体材料表面的破坏。
空化的原理如下:当流体在高压区域流动到低压区域时,压力降低会导致液体分子之间的吸引力减小,分子的动能趋于增加,当达到一定程度时,液体中部分分子就开始从液相过渡到气相,形成气泡。
这种气泡在低压区域形成,但随着流体的流动而向高压区域移动,气泡被高压区域的压力挤压,气泡内的压力迅速升高,气泡会快速崩碎,形成冲击波,产生高压和高温,从而对固体材料表面造成破坏。
空蚀的原理如下:当液体中存在着气泡时,流体在气泡周围的流动速度会增大,压强也会下降,这会导致流体中的空泡加速膨胀和坍缩,形成水锤效应。
这种水锤效应会导致流体中的冲击力增大,加速流动,产生高速流体颗粒对固体表面的撞击和破坏,导致固体表面的空蚀。
1.水泵和液态喷嘴:在水泵和液态喷嘴中,由于高压区域到低压区域的压力降低,会发生空化现象。
通过控制压力和流速,可以调节空化现象的强度,以实现所需的液体流量和压力。
2.超声波清洗:超声波清洗是利用空化和空蚀的原理进行清洗的方法。
超声波产生的高频率声波在液体中形成气泡,并通过空化破坏污垢表面的结构,以加快清洗效果。
3.船舶和飞机螺旋桨的设计:在船舶和飞机螺旋桨的设计中,需要考虑流体流动的效率和稳定性。
通过了解空化和空蚀的原理,设计出能够减少空化和空蚀的螺旋桨结构,提高流体的工作效率和螺旋桨的使用寿命。
4.水力发电站和水轮机:在水力发电站和水轮机中,由于水流的高速冲击和涡流形成的压力下降,会引发空化和空蚀的现象。
通过对水轮机和水流的研究,可以减少空化和空蚀的风险,提高发电效率和设备的使用寿命。
5.燃油喷射系统:在汽车和航空发动机中的燃油喷射系统中,通过控制喷油峰值压力和喷油峰值流量,可以改善空化和空蚀的问题,提高燃油的喷射效果和燃烧效率。
空化与空蚀的原理及应用
空化和空蚀是形态学中的基本运算,它们可以帮助我们轻松地实现图像处理中的一些功能。
空化(Erosion)操作是通过在图像上进行适当的结构元素的局部滑动,以收缩某一特定的对象,使其像素值统一,达到把一些小的像素区域填充以便于除去的目的。
而空蚀(Dilation)操作则是将整个图像上的像素扩大,使得白色区域变大,添加像素,有助于增强图像的细节。
空化和空蚀在图像处理中有着广泛的应用。
它们可以帮助我们消除噪声,消除孤立像素,保持燥细节,消除小斑点,消除图像中的小物体,改变图像的尺寸等。
空化和空蚀的结合也能够帮助我们提取图像中的某一特定的物体。
空化和空蚀也可以用于多媒体信息检索中。
例如,在图像检索中,空化和空蚀可以用于提取图像中的特定物体,从而获得更准确的搜索结果。
同时,空化和空蚀也可用于视频检索,可以更快地提取视频中的特定物体。
总之,空化和空蚀是形态学中最基本的运算,它们在图像处理、多媒体信息检索等方面都有着广泛的应用。
它们的运用能够大大提高图像处理的效率,为图像处理领域的发展做出了重要的贡献。
空化与空蚀的原理及应用1. 空化的概念•空化是指在液体或气体流动中,由于速度或压力的变化引起流体中的部分区域压力低于饱和蒸汽压时,液体中的蒸汽泡的生成和崩溃现象。
•空化是一种相变现象,主要发生在流体中。
2. 空化的原理•当流体速度或压力较高时,流体中的静压力会增加,达到蒸汽的饱和压力,使得蒸汽形成微小气泡。
•这些气泡在流体中会不断增大,直到达到稳定状态。
若流体中的压力减小,则会造成气泡的崩溃。
•空化现象的发生,会引起流体的不稳定性,对设备和管道的影响较大。
3. 空蚀的概念•空蚀是指由于流体中的空化现象,在设备或管道中形成空蚀流动的现象。
•空蚀一般带来很多负面影响,如噪音、震动、磨损等。
•空蚀会对设备的正常运行造成影响,并可能导致设备失效。
4. 空蚀的原理•当流体中存在空化现象时,会引起流体的震荡和振动。
•这种震荡和振动会导致流体中气泡的崩溃和聚集,进一步加剧空化现象。
•空蚀的产生和发展过程较为复杂,涉及流体动力学、热力学和力学等多个学科。
5. 空化与空蚀的应用•了解空化与空蚀的原理,有助于我们更好地设计和改进流体传动设备和管道。
•在航空航天、能源、化工、海洋工程等领域,空化与空蚀的研究具有重要意义。
•在设备运行过程中,我们可以通过优化设计,改善流体的流动状态,来减小空化和空蚀的产生。
6. 空化与空蚀的防止措施•选用合适的材料,可以提高设备和管道的抗空化和抗空蚀能力。
•设计合理的减压装置,可以降低系统内部的压力变化。
•增强设备的保护措施,如加装过滤器、安装降压阀等。
•定期检查设备和管道,及时发现和处理可能导致空蚀的问题。
7. 小结•空化与空蚀是液体或气体流动中常见的相变现象。
•空化与空蚀的发生会对设备和管道的正常运行造成负面影响。
•了解空化与空蚀的原理,有助于我们采取相应的措施来减小空蚀的发生。
•在应用中,我们需要合理设计和选择材料,来提高设备和管道的抗空蚀能力。
以上是关于空化与空蚀的原理及应用的简要介绍,希望对您有所帮助。
水轮机的空化与空蚀空化与空蚀现象在水轮机中非常常见,会造成水轮机的叶片磨蚀损坏,导致水轮机的性能与经济效益下降,改善空化与空蚀现象需要制造工艺水平的提升与设计的改善,超空化水轮机的空化、空蚀大大降低,但是它的实用化仍旧有很长的路要走。
标签:空化;空蚀;原理;种类;危害;降低空蚀的措施;超空化水轮机中存在的空化、空蚀现象会对水轮机的性能产生不利的影响,因此在设计运行时要尽可能地避免,并将空化、空蚀对水轮机的性能的不利影响降到最低。
空化现象指的是水轮机流道中局部压力降至临界压力时,水中气核慢慢成长为气泡,气泡将液体中的蒸气和溶液中析出的气体包裹起来。
当进入压力较低的区域时,气泡则会逐渐长大,当气泡随水流运动到压力较高的区域时,在高压的作用下会迅速凝缩溃灭。
因此,空化是指气泡从集聚、流动、分裂到溃灭的这一过程。
空化现象不仅发生在液体内部,也会出现在固体边界上。
空蚀指的是由于空泡的溃灭所引发的过流表面金属材料的损坏。
空泡在溃灭的过程中伴随着机械、电化、热力、化学等过程的作用。
空化、空蚀会导致水轮机的性能下降,水轮机的过流部件表面会遭到损坏,甚至会使金属材料的局部发生脱落。
发生空蚀的主要原因是空泡溃灭所产生的机械作用,包括冲击波模式和射流模式两种。
通过对空蚀现象的观察,我们会发现空蚀在边界上分布并不均匀,而是集中在某些位置。
当第一个蚀坑形成后,在一定的条件下,它的发展速度要比其它的地方快,蚀坑越来越大、越来越深,最后将导致材料破碎而被水冲走。
除此之外,也可以用热力学和电化作用来解释空蚀现象。
空蚀产生的原因十分复杂,它在多重作用下发生,并且与化学腐蚀、泥沙磨损等相互促进,使得材料被进一步破坏。
水轮机按空化与空蚀发生的部位不同可以分为翼型空蚀、间隙空蚀、局部空蚀和空腔空蚀。
翼型空蚀是反击式水轮机的主要空蚀类型,在叶片的不同部位都有可能会出现空蚀区,转轮型号及运行工况都会影响到空蚀区的发展。
间隙空蚀指的是当水流通过狭小通道或间隙时局部流速会升高,导致压力下降而产生空蚀,间隙空蚀在转浆式水轮机中最为突出,发生区域多在转轮叶片外缘与转轮室之间以及叶片根部与转轮体之间的间隙附近。