物理化学常识在生活中的应用
- 格式:docx
- 大小:36.77 KB
- 文档页数:1
说到化学,很多人都立即想到:在中学或大学课堂里开设的化学课程或认为“化学”是那些化学家、科学家们的事,与我无关。
然而在我们的生活中,处处都有化学。
比如钢铁生锈、物体燃烧、蛋白质使人中毒、酸雨……等等都属于化学现象。
那么,什么是化学呢?通俗的说,就是一种物质与另一种物质化合成另一种具有新的特性的物质的现象。
例如钢铁生锈就是一种化学现象。
众所周知,一般的铁器,放在一个潮湿、通风处,过不了一、二个月就锈迹斑斑的。
你可以到博物馆去看,那里陈列的铁器没有一个不是铁锈斑斑的。
铁之所以会生锈,是因为它的内部含有杂质碳,而碳与空气中的氧在常温条件下会发生发应。
在水(空气中的水蒸气)的作用下,空气中的氧(符号O)便打进铁的内部,与铁(Fe)化合成另外一种物质——四氧化三铁(Fe3 O4)。
水是使铁生锈的罪魁祸首。
化学家曾经证明:铁放在绝水的空气中,几年都不会生锈。
如果把一块铁放在煮沸的、全封闭的蒸馏水瓶里(瓶里无空气),也不会生锈。
只有当氧气与水结伴同时向铁进攻时,铁才会生锈。
另外空气中的二氧化碳(CO2)遇到铁里也会使铁生锈。
铁锈又松又软,像海绵一样会不断吸收水分,使铁生锈面积不断增大。
锈蚀速度不断加快。
我做过实验,一块铁完全生锈后,体积竟比原来的几倍还大。
某些金属与也会生锈(即“氧化” )。
如铝锅,使用久的后,其表面光泽会逐渐消失,被一层“铝锈”所覆盖,这“铝锈”就是氧化铝——是铝与空气中的氧起了化学反应作用后而形成的。
为了减少铁生锈,冶炼工人就把经初步炼制的的普通铁又经过高温加氧冶炼进一步除掉生铁中所含的碳。
经过这样的冶炼的铁在性能上,在防氧化反应上比原来提高了。
这时,铁就成了“钢” 。
人们已经想出了各种各样的方法来保护钢铁。
最普通的办法,是给铁穿“衣服”——在铁的表面涂上油漆或镀上别的不容易生锈的金属。
例如小汽车上就穿着一身闪闪发亮的喷漆暖气管上涂了铝漆做罐头用的马口铁镀了一层锡白铁皮表面镀了一层锌等等。
物理化学在生产生活中的具体应用实例(1)物理化学是一门研究物质的物理和化学性质的学科,可以帮助人们生产生活中的许多方面。
下面我们来了解一些物理化学在生产生活中的具体应用实例。
1. 化学反应器化学反应器是工业化学最重要的装备之一。
它利用物理化学原理来控制反应速率、温度、压力等条件,从而达到最佳反应效果。
如在石化工业中,制造乙烯乙二醇、石油醚等反应都需要用到化学反应器。
由于反应器具有反应效率高、反应时间短、反应过程可控等优点,因此大大提高了工业生产效率和产品质量。
2. 电解铜电解铜是一种通过物理化学方法从铜离子溶液中制造高纯度铜的过程。
该过程利用电力,将铜离子还原成金属铜并沉积在电极上。
由于物理化学方法可以精确控制反应条件,因此可以制得高纯度的铜,这种铜可以用于生产电线、电缆等电气设备,提高了电气设备的安全性能。
3. 化学防腐剂化学防腐剂是一种物理化学方法的应用,可以在化学反应中改变水、空气、氧气和其他环境变量,从而防止材料的腐败。
在食品和化妆品等日用品中,加入一些特殊的防腐剂,可以延长其保存时间,避免细菌的生长繁殖。
在木材或纸张等产品的制造过程中,同样可以使用化学防腐剂,延长其使用寿命。
4. 化学分离技术化学分离技术是应用物理化学原理进行物质分离的一种方法。
在医药、化工等科学领域,化学分离技术被广泛应用。
化学分离技术可以将不同化合物从混合物中分离出来,从而得到单纯的化合物。
例如,可用分离纯化方法制备高纯度无水乙醇,用于制药和各种化学工业产品。
综上所述,物理化学在生产生活中的应用极为广泛,从化学反应器到电解铜、化学防腐剂、化学分离技术等方方面面,都为现代工业和生产提供了科学技术支持。
这些应用都是物理化学的重要应用,为实际事物提供了实用性和创新性的解决方案。
物理化学在生活中的应用
物理化学在现代生活中发挥着至关重要的作用。
首先,物理化学是食物加工及制造的
重要组成部分,现代厨房中有大量的物理化学变化日常发生。
比如,将糖和酸混合在一起
根据化学反应形成醋,或者加热牛奶使之发酵以生成酸奶,使用物理化学变化来获得新的
食物,这些都是现代厨房中日常发生的事情,而在烹饪食物时,物理化学变化也是一个重
要的决定因素,以冷藏烹饪鸡蛋为例,根据物理化学变化原理,冷藏鸡蛋可以把蛋温度调低,当烹饪时,只需施加较小的能量,即可使蛋白质聚集,从而使食物更美味、更有营养。
此外,物理化学在农业中也有着重要的应用,目前,农民们使用化学品来防止病虫害
的传播,有助于改善作物的产量;此外,现代农药中大部分成分都具有物理化学性质,它
们可以刺激作物种植区的肥力,改变土壤的性质,增强作物对水分和营养的吸收,有效防
止病虫害的传播。
此外,得益于物理化学,现代工业生产及生活活动也受到了很大影响,比如采用化学
植入来仿制宝石,亦即以化学反应形成硬质金属,克服某些材料的弱点,改善材料的性质;此外,得益于物理化学的改进,现代地质勘探和开采技术也取得了很大的进步,工业技术
中也有许多以物理化学为基础的化工生产工艺等等。
总之,物理化学是现代生活进步的根本保证,在现代生活中发挥着重要作用。
物理化
学是一门集物理和化学性质为一体的科学,其原理、方法和技术能够指导我们做出正确的
选择,在今后的发展中,物理化学肯定会发挥更重要的作用,以期能够为人类社会的进步
提供更好的服务。
物理化学在生产生活中的具体应用实例-V1物理化学在生产生活中的具体应用实例
物理化学是化学的一个重要分支,它涉及到物质的物理和化学性质以及它们之间的相互作用。
在生产生活中,物理化学有着广泛的应用。
以下是一些具体的应用实例:
1. 催化剂的应用
催化剂是一种物质,它可以通过降低反应物相互作用的能量,加速化学反应的速率。
在工业生产中,催化剂经常被用来生产化学品,如二氧化硫、氨、甲醇、苯等。
此外,催化剂还被用于汽车尾气处理系统中,将有害物质转化为无害物质。
2. 燃烧的应用
燃烧是一种物理化学变化,它涉及到氧气和燃料的反应,并释放出能量。
燃烧广泛应用于生产生活中,如燃气灶、汽车发动机、航空发动机和火箭发动机等。
3. 硅胶的应用
硅胶是由二氧化硅和水制成的一种无机高分子材料,它具有吸湿、防潮、抗震、耐高温等特性。
硅胶在生产生活中有着重要的应用,如用作缓冲材料、保鲜剂、吸湿剂、粘合剂、隔热材料等。
4. 电化学的应用
电化学涉及到电和化学的相互作用,可以产生电能或进行化学反应。
电化学在生产生活中有着广泛的应用,如锂离子电池、太阳能电池、
电镀、脱盐、电解铝等。
5. 溶剂的应用
溶剂是一种可以溶解其他物质的物质。
溶剂在生产生活中有着广泛的
应用,如用作溶解剂、去污剂、印刷油墨、涂料、香料等。
结论
以上是物理化学在生产生活中的一些具体应用实例。
这些实例表明了
物理化学在现代社会中的重要性,让我们的生产生活更加便利和高效。
因此,我们应该加强对物理化学的学习和研究,推进物理化学的发展
和应用。
物理化学在生产生活中的具体应用实例物理化学在生产生活中的具体应用实例物理化学是化学、化工、材料、能源、生物、环境、医药等专业的一门专业基础主干课程,下面是小编搜集整理的一篇探究物理化学具体应用的论文范文,供大家阅读参考。
物理化学虽说理论性、系统性、逻辑性很强,但其在生产生活各方面的具体应用也是非常丰富且鲜活生动的。
物理化学也是普遍反映难学难教的一门课程。
为此,笔者特别收集整理了物理化学在生产生活中的众多具体应用实例,以期在物理化学教学中增强学习兴趣、提高教学成效等方面起到一定程度的促进作用。
现分述如下。
1热力学(1)高压钢筒,打开活塞后气体喷出筒外,当筒内压力与筒外压力相等时关闭活塞,此时筒内温度下降。
(绝热膨胀,内能降低,温度下降)(2)融雪天比下雪天感觉更冷。
(融雪过程需要从环境吸热。
另融雪天空气湿度大,人体向外散热速度快)(3)炎炎盛夏,在河边走为什么感到凉爽?(因水的热容比空气的热容大,接受同样热能(光照),水的温度较低,且水蒸发吸热,也使水温降低。
由于河水温度较低,河边空气会有部分热量传递给河水,这样河边空气温度稍低,感觉自然凉爽些)(4)黄河之水天上来,奔流到海不复回。
子在川上曰:逝者如斯夫。
岁月留痕。
(不可逆过程)(5)殊途同归。
(状态函数法、盖斯定律)(6)一份耕耘,一份收获。
"不劳而获";和"天上掉馅饼";是不可能的。
有得必有失。
(热力学第一定律)(7)覆水难收。
破镜不能重圆。
(热力学第二定律、熵增加原理)(8)点石成金。
(高压下石墨可自发转变为金刚石)(9)海水总是表面先结冰。
(克拉佩龙方程。
水的冰点随压力增大而降低)(10)高山上的冰川会滑动。
(克拉佩龙方程。
冰的熔点随压力增大而降低,冰川下面就有部分冰变为水,就如同涂了一层润滑油)(11)高山上很难将东西煮熟。
(克劳修斯-克拉佩龙方程。
外压越小沸点越低)(12)夏天易中暑。
(非平衡态热力学。
物化原理在生活中的应用1. 原子分子运动理论的应用•原子分子运动理论是物理学的重要理论之一,它解释了物质在微观层面上的行为。
•应用:温度计的原理是基于原子分子的热运动。
当物体的温度升高时,原子分子运动加剧,导致温度计中的液体上升。
这可以用来测量物体的温度。
•应用:气体扩散原理是基于原子分子的运动,根据分子之间的碰撞和扩散来解释气体的运动和扩散现象。
•应用:原子分子运动理论在化学反应中也起到重要作用。
它解释了反应速率和反应平衡等现象,为化学工业的发展和实验的设计提供了理论依据。
2. 热物质传导的应用•热物质传导是物质内部热量传递的过程,通过传导可以实现热量的传递和控制。
•应用:热敏电阻是基于热物质传导原理的电子元件,其电阻随温度的变化而变化。
它在温度测量和控制中广泛应用,如恒温水壶、智能温控系统等。
•应用:热传导还广泛应用于热隔离和导热材料的设计和制造。
例如,保温杯利用热物质传导的原理,通过真空层隔离内外温度,减少热量的传递,从而实现保温效果。
•应用:热传导的原理也用于导热管和散热器的设计。
导热管通过热物质传导的方式将热量从一个地方传递到另一个地方,用于散热或传热。
3. 溶解度和浓度的应用•溶解度是指溶质在溶剂中溶解的最大量,它受溶质和溶剂之间相互作用力的大小和溶液的温度等因素影响。
•应用:溶解度的变化可用于分离和提纯物质。
例如,冷却结晶法是利用溶解度的变化来分离溶液中的物质。
当溶液中溶质的溶解度随温度的降低而减小时,可以通过冷却溶液使溶质结晶出来,分离出纯净的溶质。
•应用:浓度是指单位体积或单位质量中溶质的含量,它与溶解度有一定的关系。
•应用:浓度的变化可以用于调整溶液的性质。
例如,在药物制剂中,药物的浓度会影响其药效。
通过调节药物的浓度,可以控制药物的吸收和释放速度。
4. 化学反应速率的应用•化学反应速率是指单位时间内反应物消耗或产物生成的量,它受多种因素影响,如温度、浓度、催化剂等。
•应用:化学反应速率的控制是许多工业过程的关键。
物理知识在日常生活中的应用物理学是一门研究自然界各种现象和规律的学科,而这些物理学知识在我们的日常生活中扮演着重要的角色。
从简单的日常活动到复杂的科技应用,物理学无处不在。
本文将探讨物理知识在日常生活中的应用,并分析其对我们的生活带来的影响。
1. 电力与电器电力是物理学的一个重要分支,它在现代社会中扮演着关键的角色。
我们日常生活中离不开电力,无论是家庭用电还是工业用电,电力都在背后默默地运行。
而电器则是电力的一种应用,如灯泡、电视、冰箱等家用电器。
这些电器的运行原理都基于电力和电路的物理知识。
2. 光学与视觉光学是研究光以及与光有关现象的科学学科。
我们日常使用的光学仪器,如镜子、放大镜、望远镜等,都是基于光学原理设计而成。
我们也可以通过光学现象来解释我们的视觉感知。
例如,当光线经过凸透镜时,会发生折射,产生一个放大的影像。
这就是我们使用放大镜看清细小物体的原理。
3. 热学与温度控制热学是研究热和与热有关现象的科学学科。
我们在日常生活中使用的暖气、冷气、热水器等设备都是基于热学原理工作的。
热学知识也可以帮助我们了解温度的变化和传导方式。
例如,当我们触摸到一个温热的物体时,这是因为该物体向我们放射热量,传导到我们的手上。
4. 力学与运动力学是研究物体运动和受力的学科。
在日常生活中,我们可以应用力学知识来解释很多事物。
例如,当我们踢足球时,使用的力和角度决定了足球的运动轨迹;当我们骑自行车时,平衡和重心的力平衡是我们能够保持稳定的关键因素。
5. 声学与声音传播声学是研究声音和与声音有关现象的学科。
我们的日常生活中充斥着各种声音,了解声学知识可以帮助我们更好地理解声音是如何传播的。
例如,当我们说话时,声音通过空气中的振动传播,然后被人耳接收和理解。
声学技术也被广泛应用于音响设备、无线通信等领域。
6. 核物理与能源核物理是研究原子核和粒子物理的学科。
核能是一种重要的能源来源,了解核物理知识可以帮助我们更好地理解核能如何产生,并应用于发电、医学和科学研究等领域。
物理化学小常识在我们的日常生活中,物理化学的知识无处不在。
从做饭时的火候控制,到汽车的燃油燃烧,从冬天呼出的白气,到夏天冰棍的融化,物理化学的原理默默地发挥着作用。
接下来,让我们一起探索一些有趣又实用的物理化学小常识。
先来说说物质的状态变化。
大家都知道,水在常温下是液态,但当温度降低到 0 摄氏度以下,它就会变成固态的冰;而当温度升高到 100 摄氏度以上,水又会变成气态的水蒸气。
这是因为温度的变化会影响物质分子的运动速度和间距。
当温度降低,分子运动变慢,间距缩小,物质就从液态变成了固态;当温度升高,分子运动加快,间距增大,物质就从液态变成了气态。
再讲讲燃烧的奥秘。
燃烧是一种常见的化学反应,比如我们用的煤气灶做饭,就是利用了煤气的燃烧。
燃烧需要三个条件:可燃物、氧气和达到着火点的温度。
只有这三个条件同时满足,燃烧才能发生。
比如,纸是可燃物,当我们把它放在火上,达到它的着火点并且有充足的氧气,纸就会燃烧起来。
然后是溶解度的问题。
有些物质容易溶解在水里,比如盐和糖;而有些物质则很难溶解,比如油。
溶解度受温度、压力等因素的影响。
一般来说,大多数固体物质的溶解度随着温度的升高而增加。
就像我们冲糖水,用热水能更快地溶解更多的糖。
接着说说化学反应的速率。
有时候我们希望某些反应快点发生,比如发酵做面包;有时候又希望某些反应慢点发生,比如金属的生锈。
反应速率受到多种因素的影响,包括反应物的浓度、温度、催化剂等。
增加反应物的浓度或者升高温度,通常能加快反应的速率。
而催化剂则能够改变反应的路径,降低反应的活化能,从而加快反应的进行。
还有电池的工作原理。
电池是我们日常生活中常用的电源,无论是手机电池还是干电池,它们的工作都基于电化学的原理。
电池内部通过化学反应产生电子的流动,从而形成电流。
另外,压力对物理化学过程也有很大的影响。
比如在高压锅里面做饭,因为锅内的压力增大,水的沸点会升高,这样就能更快地把食物煮熟。
物理化学知识在生活中的应用数不胜数。
物理化学在日常生活中的应用物理化学是物理和化学的结合,在日常生活中有着巨大的应用。
比如:(一)制作冰箱。
冰箱是利用物理化学原理制作的,只要当冷凝剂温度降到一定程度,它便把热转化成冷,并将其转移到外部去。
冰箱还具有阻碍乳酸菌、细菌等侵入食品中,延缓食物腐烂的作用,使食品不易腐烂。
(二)空调。
空调是利用物理化学原理而发明的,它有利于人们改善环境温度,它能够外部转移热量,同时冷凝剂在应力作用下,使内部的温度不会升高,当温度升高时,冷凝剂会在物理与化学的作用下瞬间蒸发成蒸汽,当蒸汽在低压中转化成液态时,便可以发出热量,从而使室内的温度凉爽。
(三)使用燃料:使用燃料也离不开物理化学,它具有将热量、动力和能量一起转化为动力的作用。
例如,发电机中燃料灵敏发明,它由燃烧柴油、汽油、煤气、天然气等能源,燃烧排出热量,当发电机工作时,气缸内的气体会扩散,这将会压缩内部的气体,当压力发生增大时,火焰就会生成,随着燃烧,气体瞬间放热,并使内部气体受热膨胀,进而导致活塞运动,从而发挥动力,从而发出机械能。
同样,发动机把燃料转换成机械能,也是利用物理化学发生变化产生。
(四)食品和饮料中的添加剂:食品和饮料中添加剂也是物理化学的应用,它不仅可以增加食物的口感及可口程度,还可以延长食品的保质期。
比如添加碳酸钙可以抑制乳酸发酵的作用从而阻碍乳酸菌的滋生,同时碳酸钙又能促进蛋白质的凝固,从而延缓食品加工过程中的变质;添加维生素,可以补充营养成份,有利于身体健康;添加防氧化剂,可以延缓食品腐败,保持食物的新鲜口感;添加色素和香料,可以增加食品的可口程度,从而改善食物的口味。
由此可见,物理化学在我们的日常生活中有着重要的应用。
物理化学使用简单,而效果却不容小觑,是一门无形但起到重大作用的学科。
而在科学技术发展的今天,物理化学都在发挥着重要的作用,起到了极大的促进作用。
生活小常识关于物理化学的知识在我们的日常生活中,物理和化学知识无处不在。
从早晨的阳光照亮房间,到晚上热水瓶里的热水保温,这些日常现象都离不开物理和化学原理。
让我们一起探索一些生活中的物理化学小常识,看看这些科学原理如何影响我们的日常生活。
1. 热传导:为什么热水瓶里的水能保温?热水瓶之所以能保温,是因为其双层玻璃结构。
夹层中的真空状态阻止了热传导,而热水瓶的厚实瓶壁也减缓了热辐射和热对流。
这样,热水瓶内的热水就能保持一定的温度,达到保温的效果。
2. 光的折射:为什么筷子放在水里会看起来弯曲?当光线从空气进入水中时,由于光的折射原理,光线的路径会发生改变,使得筷子看起来像是在水中弯曲。
同样,我们在游泳时看到的水下世界也会因为折射而产生形变。
3. 水的汽化:为什么晾衣服会干?当衣服晾晒在阳光下时,水分会逐渐蒸发。
这是因为太阳的热量使水分子从液态变为气态。
这是一个典型的汽化过程,它使得衣物最终变干。
4. 电的传导:为什么电器设备要用三孔插头?电器的金属外壳可能带电,这是因为电器内部的电线与外壳发生接触或者电器漏电。
为了安全,人们通常使用三孔插头和插座来确保电器外壳接地。
这样,如果电器发生漏电,电流会被引导到大地,而不是流过可能触碰到的人体。
5. 化学反应:为什么铁会生锈?铁生锈是一个氧化还原反应。
当铁与水和氧气接触时,铁会逐渐被氧化,形成铁的氧化物(即铁锈)。
为了防止铁生锈,人们通常在其表面涂上一层防锈漆。
6. 酸碱反应:为什么胃酸过多的人不宜食用小苏打?小苏打是碱性物质,能够与胃酸(主要成分是盐酸)发生中和反应,减少胃酸。
然而,如果胃酸过多的人食用大量的小苏打,可能会使胃部环境过于碱性,反而加重胃部不适。
因此,对于胃酸过多的人,不宜食用小苏打来缓解症状。
7. 酶的作用:为什么淀粉酶能使淀粉分解?酶是一种生物催化剂,能够加速化学反应的速率而不改变反应的总能量变化。
淀粉酶能够水解淀粉分子,将其分解成小分子的糖类。
物理化学常识在生活中的应用
物理化学是一门涉及物理学和化学,有时还涉及许多相关学科,它致力于研究物质性质和物质性质之间的相互作用和物质状态之间的相互转换。
物理化学在多方面使我们的生活受益。
第一,物理化学在能源方面的应用。
利用反应的物理化学性质,人们可以安全地有效地开发出一系列燃料,如甲烷、煤和石油,以满足我们的各类生活需求,增强了我们的社会可持续发展的动力。
第二,物理化学在农业方面的应用。
用植物生长促进剂来提高农作物的产量,经过物理化学处理可以实现植物根系,茎和叶子的发育以及植物对寄主有害生物的抗性,促进各种农业作物的成长,以满足人口的需求。
第三,物理化学在医疗方面的应用。
物理化学在全身性疾病的研究和检测中起着重要作用,通过进行血液检查,许多疾病可以检测出来,疾病被及时有效地被治愈。
第四,物理化学在环境保护方面的应用。
环境污染物的结构研究机理及其原因探讨,可以基于几种不同的物理或化学处理方法从环境中去除污染物,减少污染物扩散,净化环境,有益于社会绿色发展。
综上,物理化学在各个领域的应用十分广泛,我们的生活离不开物理化学的支持。
物理化学不仅源于现代工业社会的发展,也为当今社会发展提供了强大的支撑作用。
因此,加强对物理化学的研究与应用,有助于提高我们的科学素养,让我们的生活更加舒适和安全。