七年级数学下册8.3实际问题与二元一次方程组教案新人教版
- 格式:doc
- 大小:56.00 KB
- 文档页数:4
教教事例设计设计教师科目数学年级七年级讲课时间40 分钟课题8.3 实质问题与二元一次方程组名称以讲堂互动培育学生学习能力的研究1、本节课的教课对象是本校七年级的学生,是乡村中学的一此中一、等层次的班级,基础中等,对学习数学有必定的兴趣。
学2、学生关于理解难度不是很大的数学识题有较强的研究意识,对生根源于身旁的数学识题表现出浓重的兴趣。
分3、在这节课从前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的有关知识,并且研究了用方程组解决拥有析现实意义的实质问题,并有运用所学知识解决实质问题的梦想。
二、教材分析三、教学目1、本节是第八章的“ 8.3 实质问题与二元一次方程组”2、本节课的主要目的,是使学生在研究怎样用方程组解决实质问题的过程中,进一步提高剖析问题中的数目关系、设未知数、列方程组并解方程组、查验结果的合理性的能力,同时这些问题要比从前的问题更靠近现实,所以剖析、解决的难度也要大一些.关于这些问题不可以像对待前方的例题同样,应充足发挥学生的自主学习的踊跃性,指引学生先独立研究,再进行合作沟通.3、教课要点:能够依据题意找出相等关系,依据相等关系列出方程或方程组解决实质问题.4、正确找到实质问题中的相等关系,解说结果的合理性.1、知识目标:使学生能够研究事物之间的数目关系,利用方程或方程组解决实质问题2、能力目标:经过问题研究,使学生进一步使用代数中的方程来反应现实世界的等量关系,领会代数方法的优胜性3、感情目标:进一步培育学生化实质问题为数学识题的能力,培育慎重慎密的科学习惯,持续浸透转变的数学思想 .4、解决问题:使学生能够依据实质问题,找寻此中的相等关系,标最后转变为数学识题求解1、这一节共安排了一个实质问题,它不单为解决实质问题供给了四、重要的策略,并且为数学沟通供给了有效的门路,为学生解决实际问题供给了理论上的科学依照,同时也提高学生解决实质问题教的能力。
教课过程中要注意调换学生的思想,踊跃进行研究、讨学论、沟通,培育学生的学习能力。
8.3 实际问题与二元一次方程组第1课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组的建模过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性.【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境知识回顾:列二元一次方程组解决实际问题的一般步骤是什么?进一步提问:如何解二元一次方程组的应用问题?解决实际问题的基本思路:二、新知探究探究点1:和差倍分问题例题讲解例1 (教材P99【探究1】)请同学们讨论以下各题:(1)你有什么办法检验李大叔估计的值是否准确?(2)问题中有几个未知数?(3)能写出题目中的等量关系吗?(4)能用等式表示出来吗?引导学生独立思考,培养学生自主学习的能力.让学生自己动手解答问题,检验知识的掌握情况.【方法指导】解答“和、差、倍、分”问题要善于抓关键词,如“谁比谁大、小、多、少,谁是谁的几倍或几分之几.在谁的基础上增加或减少”等,分析题意,准确找出等量关系.探究点2:行程问题例2 1.(教材P101习题8.3 T2变形)一艘轮船顺流航行时,每小时行32 km;逆流航行时,每小时行28 km,则轮船在静水中的速度是每小时行_______km.(轮船在静水中的速度大于水流速度)2.甲乙两人在400 m的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.则甲、乙两人的平均速度分别是每秒_______m.要点归纳:环形问题的等量关系1.同时同地反向跑:(v甲+v乙)×t相遇=环长.2.同时同地同向跑:(v甲-v乙)×t追上=环长.解决顺逆流(风)行程问题常用的两个等量关系1.往返路程相等,即顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间.2.轮船(飞机)本身速度不变,即顺流(风)速度-水(风)速度=逆流(风)速度+水(风)速度.【方法技巧】行程问题中的两个重要相等关系(1)相遇问题:两人各自走的路程之和等于两地间的距离.(2)追及问题:两人同地不同时,同向而行,直至后者追上前者,两人所走路程相等;两人同时不同地,同向而行,直至后者追上前者,两人所走路程差等于两地的距离.例3 (教材P99探究2)问题1:本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解吗?问题2:长度涉及的数量关系?问题3:产量比与种植面积的比有什么关系?问题4:你能根据数量关系列出方程组,并解决这个问题吗?问题5:你还能设计其他种植方案吗?三、检测反馈1.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A. B.C. D.2.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是 ( )A. B.C. D.3.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为( )A. B.C. D.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是( )A.175 cm2B.300 cm2C.375 cm2D.336 cm25.某校去年有学生1000名,今年比去年增加5.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为_______.6.一个两位数,个位上的数字比十位上的数字大4,交换位置后,所得的新两位数比原两位数的4倍少9,则原两位数是_______.7.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);某农户承包了一片山坡地种树种草,所得到国家的补偿如表(二),问:该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单8.甲、乙两人从相距36 km的两地相向而行,如果甲比乙先动身2 h,那么他们在乙动身2.5 h后相遇;如果乙比甲先动身2 h,那么他们在甲动身3 h后相遇,问甲、乙两人每小时各走多少km?四、本课小结这节课学了什么知识?列二元一次方程组解决实际问题的一般步骤(1)审题.(2)设两个未知数,找两个等量关系.(3)根据等量关系列方程,联立方程组.(4)解方程组.(5)检验并作答.五、布置作业课本第101页第1,2,3题六、板书设计七、教学反思在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题.(比如92页例2、95页例4).这一节安排了两个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些.这节课更为关注建立二元一次方程组数学模型的“探索”过程.它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据.所以设计本节课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
8.3 实际问题与二元一次方程组第1课时 利用二元一次方程组解决实际问题能根据具体问题的数量关系,会列二元一次方程组解决和差倍分、几何图形、增长率、盈亏、行程等实际问题.(重点、难点)一、情境导入古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问有几客几房中?”题目大意:一些客人到李三公的店中住宿,若每间房住7人,就会有7人没地方住;若每间房住9人,就会空一间房.问有多少间房?多少客人?你能解答这个问题吗?二、合作探究探究点一:利用二元一次方程组解决实际问题【类型一】 和差倍分问题某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两种货物应各装多少吨?解析:已知量:(1)甲种货物每吨体积为6立方米;(2)乙种货物每吨体积为2立方米;(3)船的载重量为300吨;(4)船的容积为1200立方米.未知量:甲、乙两种货物应装的质量各为多少吨.若以x 、y 表示它们的吨数,则甲种货物的体积为6x 立方米,乙种货物的体积为2y 立方米.相等关系:“充分利用这艘船的载重量和容积”的意思是“货物的总质量等于船的载重量”且“货物的体积等于船的容积”.即甲种货物质量,↓,x ))+,)乙种货物质量,↓,y ))=,)船的总载重量,↓,300)) 甲种货物体积,↓,6x ))+,)乙种货物体积,↓,2y ))=,)船的总容积,↓,1200))解:设甲种货物装x 吨,乙种货物装y 吨.由题意,得⎩⎪⎨⎪⎧x +y =300,6x +2y =1200,解得⎩⎪⎨⎪⎧x =150,y =150.答:甲、乙两种货物各装150吨.方法总结:列方程组解应用题一般都要经历“审、设、找、列、解、答”这六个步骤,其关键在于审清题意,找相等关系.设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.【类型二】 变化率问题为了解决民工子女入学难的问题,我市建立了一套进城民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,去年秋季有5000名民工子女进入主城区中小学学习,预测今年秋季进入主城区中小学学习的民工子女将比去年有所增加,其中小学增加20%,中学增加30%,这样今年秋季将新增1160名民工子女在主城区中小学学习.(1)如果按小学每年收“借读费”500元、中学每年收“借读费”1000元计算,求今年秋季新增的1160名中小学生共免收多少“借读费”;(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,按今年秋季入学后,民工子女在主城区中小学就读的学生人数计算,一共需配备多少名中小学教师?解析:解决此题的关键是求出今年秋季入学的学生中,小学和初中各有民工子女多少人.欲求解这个问题,先要求出去年秋季入学的学生中,小学和初中各有民工子女多少人.解:(1)设去年秋季在主城区小学学习的民工子女有x 人,在主城区中学学习的民工子女有y 人.则⎩⎪⎨⎪⎧x +y =5000,20%x +30%y =1160,解得⎩⎪⎨⎪⎧x =3400,y =1600.20%x =680,30%y =480,500×680+1000×480=820000(元)=82(万元).答:今年秋季新增的1160名中小学生共免收82万元“借读费”;(2)今年秋季入学后,在小学就读的民工子女有3400×(1+20%)=4080(人),在中学就读的民工子女有1600×(1+30%)=2080(人),需要配备的中小学教师(4080÷40)×2+(2080÷40)×3=360(名).答:一共需配备360名中小学教师.方法总结:在解决增长相关的问题中,应注意原来的量与增加后的量之间的换算关系:增长率=(增长后的量-原量)÷原量.【类型三】 行程问题A 、B 两码头相距140km ,一艘轮船在其间航行,顺水航行用了7h ,逆水航行用了10h ,求这艘轮船在静水中的速度和水流速度.解析:解:设这艘轮船在静水中的速度为x km/h ,水流速度为y km/h.由题意,得⎩⎪⎨⎪⎧7(x +y )=140,10(x -y )=140.解得⎩⎪⎨⎪⎧x =17,y =3. 答:这艘轮船在静水中的速度为17km/h ,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.探究点二:利用二元一次方程组解决几何问题小敏做拼图游戏时发现:8个一样大小的小长方形恰好可以拼成一个大的长方形,如图①所示.小颖看见了,也来试一试,结果拼成了如图②所示的正方形,不过中间留下一个边长恰好为2cm 的小正方形空白,你能算出每个小长方形的长和宽各是多少吗?解析:在图①中大长方形的长有两种表现形式,一种是5个小长方形的宽的和,另一种是3个小长方形的长的和;在图②中,大正方形的边长也有两种表现形式,一种是1个小长方形的长和2个小长方形的宽的和,另一种从中间看为2个小长方形的长与小正方形的边长的和,由此可设未知数列出方程组求解.解:设小长方形的长为x cm ,宽为y cm.由题意,得⎩⎪⎨⎪⎧3x =5y ,2x +2=x +2y .解得⎩⎪⎨⎪⎧x =10,y =6. 答:每个小长方形的长为10cm ,宽为6cm.方法总结:本题考查了同学们的观察能力,通过观察图形找等量关系,建立方程组求解,渗透了数形结合的思想.三、板书设计列方程组,解决问题)⎩⎪⎨⎪⎧一般步骤:审、设、列、解、验、答关键:找等量关系通过“古算题”,把同学们带入实际生活中的数学问题情景,学生体会到数学中的“趣”.进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神,使学生形成积极参与数学活动、主动与他人合作交流的意识。
第八章 二元一次方程组8.3.1实际问题与二元一次方程组(邓遥佳)一、教学目标1.核心素养通过学习二元一次方程组,培养学生的模型思想,运算能力、推理能力和应用意识.2.学习目标(1)能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组.(2)会列方程组解决同种条件并列类型的实际问题.3.学习重点用列方程组的方法解决实际问题.4.学习难点会找出简单的实际问题中的数量关系.二、教学设计(一)课前设计1.预习任务阅读教材P99,思考:用二元一次方程组解决实际问题的步骤是什么?如何找等量关系?如何理解同种条件并列类型?2.预习自测1.一条船从重庆到涪陵顺流航行,每小时行20km ;逆流航行,每小时行16km.求轮船在静水中的速度与水的流速.设轮船在静水中的速度与水流速度分别为x 、y ,则可列二元一次方程组( B )A.⎩⎨⎧=+=-2016y x y xB.⎩⎨⎧=-=+1620y x y xC.⎩⎨⎧=-=+y x y x 2016D.⎩⎨⎧=-=+yx y x 16202.2台大收割机和5台小收割机,两小时收割3.6公顷,3台大收割机和2台小收割机,5小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?设1台大收割机和1台小收割机1小时收割小麦分别为x 、y ,则可列二元一次方程组( A )A.()()⎩⎨⎧=+=+82356.3522yxyxB.()()⎩⎨⎧=+=+82356.3252yxyxC.()()⎩⎨⎧=+=+83256.3522yxyxD.()()⎩⎨⎧=+=+82326.3525yxyx(二)课堂设计1.知识回顾(1)运用方程解决实际问题的关键:找等量关系;(2)用一元一次方程解决实际问题的步骤:1.设:设未知数2.列:列方程3.解:解方程4.验:双重方式检验解5.答:作答2.问题探究1.运输360t化肥,装载了6节火车车厢和15辆汽车;运输440t化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识点:二元一次方程组的应用】分析题目中都是以运输化肥这种方式并列呈现的问题.6节火车车厢和15辆汽车运输化肥360t作为一个等量关系;8节火车车厢和10辆汽车运输化肥440t作为一个等量关系.这样有两个等量关系即可列出二元一次方程组.设每节火车车厢与每辆汽车平均各装x吨和y吨化肥.小结:分析题干及条件的呈现方式,所求问题的条件以同一种方式并列呈现归之为同种条件并列.2.养牛场原有30头大牛和15头小牛,1天约用饲料675kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg.饲养员李大叔估计每头牛1天约需饲料18~20kg,每头小牛1天约需饲料7~8kg.你能通过计算检验他的估计吗?【知识点:二元一次方程组的应用】分析题目中都是以牛消耗饲料的量这种方式并列呈现的问题.30头大牛和15头小牛1天约用饲料675kg作为一个等量关系;购进12头大牛和5头小牛后牛的数量变为大牛42头、小牛20头1天约用饲料940kg作为第二个等量关系.这样有两个等量关系即可列出二元一次方程组.设每头大牛和每头小牛1天约需饲料分别为xkg、ykg.。
实际问题与二元一次方程组
教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用
2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。
重点:能根据题意列二元一次方程组;根据题意找出等量关系;
难点:正确发找出问题中的两个等量关系
教学过程:
一、复习
列方程解应用题的步骤是什么?
审题、设未知数、列方程、解方程、检验并答
新课:
(创设情境,提出问题
前面我们结合实际问题,讨论了方程组的解法以及列方程组简单的应用题,现在我们来做一个题目,检验一下大家的学习效果。
悟空顺风探妖踪,千里只行四分钟.
归时四分行六百,风速多少才称雄.
分析:对列出的不同形式的方程组及其解法作简要的比较说明,有意识的引导学生体会解决问题的多样性及方法选择的重要性.)
看一看课本105页探究1
问题:
1题中有哪些已知量?哪些未知量?
2题中等量关系有哪些?
3如何解这个应用题?
本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg
(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940
练一练:
1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。
50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?
3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?
4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?
(课堂小结
本节主要学习利用列二元一次方程组解应用题进行推理判断.
用到的主要思想是方程思想:将实际问题转化成二元一次方程组解决.
注意问题:
认真审题,用语言或式子表示题目中的数量关系.
解方程组是要选择适当的方法,运算速度要快,准确度要高.
要按要求写答案.
作业布置
习题8.3 第5、9题)
8.3 实际问题与二元一次方程组(二)
教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型
重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
难点:寻找等量关系
教学过程:
看一看:课本106页探究2
问题一:1“甲、乙两种作物的单位面积产量比是1:1.5”是什么意思?
2、“甲、乙两种作物的总产量比为3:4”是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
第一种方法
思考:这块地还可以怎样分?
(第二种方法
D C
E F
A B
问题二:利用第一种分割方法,如何解这个应用题?
x+y=200
100ax:(100y×1.5a)=3:4
整理的 x+y=200
8x=9y
解这个方程组,得 x≈106
y≈94
问题三:
利用第二种分割方法,如何解这个应用题?
解:如图,甲、乙两种作物的种植区域分别为长方形EFCD和ABFE
设DE=x m,AE=y m,根据题意,得
x+y=100
200ax:(200y×1.5a)=3:4
解得 x≈53
y≈47 )
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每
已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?
课堂小结:
作业布置
课本习题8.3 第1、4题
8.3实际问题与二元一次方程组(三)
(教学目标:1.会用列表法分析应用题中的数量关系,列出相应的二元一次方程组解决实际问题.
2.学会从图表获取信息的方法,进一步感受设间接未知数来解决问题的解题策略.
重点:用列表的方式分析题目中的各个量的关系,列出二元一次方程组.
难点:从图表中获取有用信息,借助列表分析问题中所蕴含的数量关系.
教学过程:)
教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元。
这批产品的销售款比原料费与运输费的和多多少元?
(1.审读题意,分析数量关系
问题1:要解决的问题是什么?
问题2:产品的销售款、原料款、运费与哪些量有关?是什么关系?
2.思考内化,解决问题
解:设这批产品重x吨,原料重y吨,根据题意,得
1. 5×(20x+10y)=15000
1.2×(110x+120y)=97200
解这个方程,得
x=300
y=400
即产品重300吨,原料重400吨.
例:甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?
练习:
某山区有23名中、小学生因贫困失学要捐助。
资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元。
某校学生积极捐款,初中各年级学生捐款数额与用其捐助贫困中学生和小学生的部分情况如下表:
求a、b的值。
初三学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中(不必写出计算过程)。
某公园的门票价格如下表所示:
某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。
如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。
问:甲、乙两个班分别有多少人?
作业:教材108页5、7。