勾股定理复习1
- 格式:docx
- 大小:66.80 KB
- 文档页数:2
第十八章 勾股定理 复习 定理:经过证明被确认为正确的命题叫做定理。
1、勾股定理: 直角三角形两直角边的平方和等于斜边的平方,也就是说在Rt △ABC 中,设∠C =90°,∠C 、∠A 、∠B 所对的边分别为c 、a 、b ,则c 、a 、b 满足关系a²+b²=c²。
在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦。
注意:由于直角三角形的斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边(两直角边)的平方和,避免出现这样的错误:在△ABC 中,∠B =90°,则a²+b²=c²。
2、勾股定理的证明:勾股定理的证明方法很多,可以用测量计算,可以用代数式的变形,可以用几何证明,也可以用面积(拼图)证明——对图形进行割、补、拼、接后利用图形面积不变来证明,这是最常见的一种方法。
验证如下:现有四块直角边长为a 、b ,斜边长为c 的直角三角形纸板,请从中取出若干块拼图,证明勾股定理。
证法1:∵S 大正方形=4S 三角形+S 小正方形∴c ²=4×12ab +(b −a)²∴c ²=a ²+b ²证法2:∵S 梯形=2S 小三角形+S 大三角形∴12(a +b )2=2×12ab +12c²∴a²+b²=c²证法3:∵S 大正方形=4S 三角形+S 小正方形∴(a +b )2=4×12ab +c²∴a²+b²=c²3、勾股定理的作用:勾股定理揭示了直角三角形的三边关系,其作用有:(1)已知直角三角形的任两边,求第三边问题;(2)证明三角形中的某些线段的平方关系; a a b bc c(3)作长为无理数的线段.注意:若已知直角三角形的两边求第三边时,先确定是直角边还是斜边。
八年级上册第一章《勾股定理》复习要点知识点一:勾股定理要点:⑴•勾股定理:直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边分别为a、b,斜边为c,那么,a2 +b2 =c2,(2).历史文化:勾股定理在西方文献中又称毕达哥拉斯定理。
我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边为弦。
⑶格式:a=8 b=15 解:由勾股定理得c2 =a2 +b2=82+152=64+225=289•/ C>0 ••• C=17【典例精析】1•一架2.5m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m •那么梯子的顶端距墙脚的距离是( )•(A)0.7m (B)0.9m (C)1.5m (D)2.4m2•如图,为了求出湖两岸A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160m, BC长128m ,则AB长________________ m.3•利用四个全等的直角三角形可以拼成如图所示的图形, 这个图形被称为弦图•从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c2= +•化简后即为c2= __________ •知识点二:直角三角形的判别要点;*如果三角形三边长为a、b、c, c为最长边,只要符合a2 +b2 =c2,这个三角形是直角三角形。
(勾股定理逆定理,是直角三角形的判别条件)【典例精析】1、在下列长度的各组线段中,能组成直角三角形的是( )A.5、6、7B.1 、4、9C.5 、12、13D.5、11、122、满足下列条件的厶ABC不是直角三角形的是(A.b2=c2- a2B.a : b : c=3 : 4 : 5C. / C=Z A-Z BD. / A:/ B:/C=12: 13 : 1553、三角形的三边长分别是15, 36, 39,这个三角形是______ 三角形。
4、将直角三角形的三条边同时扩大4倍后,得到的三角形为()A.直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5•有两棵树,一棵高6米,另一棵高2米, 两树相距5米•一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?知识点三:勾股定理的综合应用【典例精析】1、如图1- 1,在钝角VABC 中,CB = 9, AB = 17, AC = 10, AD BC 于D,求AD 的长。
第三章 勾股定理复习(1)班级: 姓名:一、选择题:1.a 、b 、c 是△ABC 的三边,①a=1,b=2,c=3 ②a=8,b=15,c=17 ③a ∶b ∶c=3∶4∶5④a=15,b=20,c=25上述四个三角形中直角三角形有 ( )A .1个B .2个C .3个D .4个2.一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为 ( )A .13B .5C .13或5D .无法确定3.直角三角形一条直角边与斜边分别为4和5,则斜边上的高等于 ( )A .2.4B .3C .4D .无法确定4.如图,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3. 若S 1+S 2+S 3=15,则S 2的值是 ( )A .3B .5C .6D .10二、填空题:5.在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC = .6.在△ABC 中,AB=2k ,AC=2k-1,BC=3,当k = 时,∠C=90°.7.已知直角三角形斜边长为13㎝,周长为30㎝,则此三角形的面积为 .三、解答题:8.如图所示,CE 、CF 分别是△ABC 的内角∠ACB ,外角∠ACD 的平分线,若EF=10,CE=6,求CF 的值.9. 如图,有一条小路穿过长方形的草地ABCD ,若AB=60m ,BC=84m ,AE=100m,求这条小路的面积.E B C AD F10.如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点距地面的高BD=8cm,地面上A 处一只蚂蚁到B处吃食,则需要爬行最短路径多少?11.如图,公路MN和公路PQ在点P处交会,且∠QPN=30°.点A处有一所中学,AP=160m,一辆拖拉机从P沿公路MN前行,假设拖拉机行驶时周围100m以内会受到噪声影响,那么该所中学是否会受到噪声影响,请说明理由,若受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多长?。
勾股定理知识点整理1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。
其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。
2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
勾股定理复习题卷一.选择题(共10小题)1.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.162.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.253.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b24.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.485.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4B.8C.12D.326.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.808.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 510.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2二.填空题(共8小题)11.如图,在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,则AD=cm.12.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.14.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是.15.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是.16.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.17.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是.18.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米.三.解答题(共9小题)19.如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC=16.将四边形ABCD 沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.21.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.23.已知:△ABC中AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.24.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.27.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.勾股定理复习题卷参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠A=∠B=45°,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.16【解答】解:因为在△ABC中,∠A=∠B=45°,AB=4,所以AC==2,所以这个正方形的面积为=8,故选:C.2.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25【解答】解:如图所示:AB==5.故选:A.3.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.4.已知△ABC的三边分别是6,8,10,则△ABC的面积是()A.24B.30C.40D.48【解答】解:∵62+82=102,∴△ABC是直角三角形,∴△ABC的面积=×6×8=24.故选:A.5.如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=()A.4B.8C.12D.32【解答】解:∵S1=4,∴BC2=4,∵S2=12,∴AC2=8,∴在Rt△ABC中,BC2+AC2=AB2=4+8=12,∴S3=AB2=12.故选:C.6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.7.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.80【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD﹣S△ABE,=AB2﹣×AE×BE=100﹣×6×8=76.故选:C.8.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米【解答】解:Rt△ABC中,AC=1米,AB=2米;由勾股定理,得:BC==米;∴树的高度为:AC+BC=(+1)米;故选:C.9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8B.9.6C.10D.4 5【解答】解:作AD⊥BC于D,如图所示:则∠ADB=90°,∵AB=AC,∴BD=BC=6,由勾股定理得:AD==8,当BM⊥AC时,BM最小,此时,∠BMC=90°,∵△ABC的面积=AC•BM=BC•AD,即×10×BM=×12×8,解得:BM=9.6,故选:B.10.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.二.填空题(共8小题)11.如图,在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,则AD=8cm.【解答】解:∵在△ABC中,AB=AC=10cm,BC=12cm,AD⊥BC于点D,∴BD=BC=6cm.在Rt△ABD中,∵AB=10cm,BD=6cm,∴AD===8cm.故答案为:8.12.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=17.【解答】解:∵S1=5,∴BC2=5,∵S2=12,∴AC2=12,∴在Rt△ABC中,BC2+AC2=AB2=5+12=17,∴S3=AB2=17.故答案为:17.13.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于13.【解答】解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得AB=5.在直角三角形ABD中,BD=12,根据勾股定理,得AD=13.14.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是(a+b)2﹣(a﹣b)2=4ab.【解答】解:观察图形得:大正方形边长为:a+b,小正方形边长为:a﹣b,根据大正方形面积﹣小正方形面积=阴影面积得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.15.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是47.【解答】解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,则由勾股定理得:x2=32+52=34;y2=22+32=13;z2=x2+y2=47;即最大正方形E的边长为:,所以面积为:z2=47.故答案为:47.16.如图,△ABC中,AC=3,BC=4,AB=5,AB上的高CD=.【解答】解:∵△ABC中,AC=3,BC=4,AB=5,∴AB2=AC2+BC2,即52=32+42,∴△ABC是直角三角形,∵CD⊥AB,∴AC•BC=AB•CD,即3×4=5×CD,解得CD=.故答案为:.17.如图,在Rt△ABC中,∠C=90°,点D是线段AB的中点,点E是线段BC上的一个动点,若AC=6,BC=8,则DE长度的取值范围是3≤DE≤5.【解答】解:当E与C重合时,DE最长,在Rt△ABC中,AB=,∵点D是线段AB的中点,∴CD=5,当DE⊥BC时,DE最短,DE=,所以DE长度的取值范围是3≤DE≤5,故答案为:3≤DE≤518.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需7米.【解答】解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知AB=5米,AC=3米,且在直角△ABC中,AB为斜边,则BC==4米,则AC+BC=3米+4米=7米.故答案为:7.三.解答题(共9小题)19.如图,在四边形ABCD中,∠BAD=∠B=∠C=90°,AD=BC=20,AB=DC=16.将四边形ABCD 沿直线AE折叠,使点D落在BC边上的点F处.(1)求BF的长.(2)求EC的长.【解答】解:(1)∵△AFE是△ADE折叠得到的,∴AF=AD=20,∴在Rt△ABE中,BF===12.(2)∵△AFE是△ADE折叠得到的,∴EF=ED.设EC=x,则EF=ED=16﹣x,在Rt△EFC中,FC=BC﹣BF=8,∠C=90°,∴EF2=FC2+EC2,即(16﹣x)2=82+x2,解得:x=6,∴EC的长度为6.20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米(即AC=5)处,已知木杆原长为25米.(1)求木杆断裂处离地面(即AB的长)多少米?(2)求△ABC的面积.【解答】解:(1)设木杆断裂处离地面x米,由题意得x2+52=(25﹣x)2,解得x=12.答:木杆断裂处离地面12米;(2)△ABC的面积=AC•AB=30平方米.21.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米.22.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.23.已知:△ABC中AB=AC=20,BC=32,D是BC上一点,且AD⊥AC,求BD的长.【解答】解:作AE⊥BC于点E,∵△ABC中AB=AC=20,BC=32,∴CE=16,∴cos∠C=,∵AD⊥AC,∴∠CAD=90°,∴cos∠C=,∴,解得,CD=25,∵BC=32,∴BD=7.24.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,B C′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2,求△CDE的周长.【解答】(1)证明:∵∠ACB=90°,CD是AB边上的中线,∴CD=AD=DB.∵∠B=30°,∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高,∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED,又AC=2,∴CD=2,ED=1.∴.∴△CDE的周长=.26.如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.(1)求AB的长;(2)求△ABC的面积;(3)求CD的长.【解答】解:(1)∵在△ABC中,∠ACB=90°,BC=15,AC=20,∴AB2=AC2+BC2,解得AB=25.答:AB的长是25;(2)AC•BC=×20×15=150.答:△ABC的面积是150;(3)∵CD是边AB上的高,∴AC•BC=AB•CD,解得:CD=12.答:CD的长是12.27.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.【解答】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB==10,=AB•CD=AC•BC,∵S△ABC∴CD===4.8.。
在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定是以及它的应用.其知识结构如下:在学习勾股定理时应注重知识的形成过程,即勾股定理的探索过程,有意识地培养自己探索新知识的能力.在运用勾股定理时一定要有直角三角形这个前提条件,因此,通过有关具体问题时,有时需添加适当的辅助线以构造直角三角形来帮助解题.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的,但在判定一个三角形是否是直角三角形时应首先确定该三角形的最大边,当其余两边的平方和等于最大边的平方时,该三角形才是直角三角形.勾股定理的逆定理也可用来证明两直线是否垂直,这一点同学们也应牢牢掌握.典例精讲例1 如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 长.方法指导:可设CD 长为xcm ,再寻找等量关系利用方程思想来解,而在直角三角形中,等量关系往往是勾股定理表达式222c b a =+.解:设CD=xcm ,则BD=BC —CD=(8—x )cm . 由题知△ACD 与△AED 关于AD 对称,∴AE=AC=6cm ,DE=CD=xcm ,∠AED=∠C=90°.在Rr △ACB 中,由勾股定理得:cm BC AC AB 10862222=+=+=,∴BE=AB —AE=10—6=4cm .在Rt △BED 中,由勾股定理得:222BE DE BD +=.∴2224)8(+=-x x ,解得x=3cm .方法总结:折叠问题应把握折叠前后两部分图形关于折痕对称,从而可以利用对称的有关性质来帮助解题目.例2 已知:如图△ABC 中,AB=AC=10,BC=16,点D 在BC 上,DA ⊥CA 于A . 求:BD 的长.方法指导:可设BD 长为xcm ,然后寻找含x 的等式即可,由AB=AC=10知△ABC 为等腰三角形,可作高利用其“三线合一”的性质来帮助建立方程.解:设BD 长为xcm .过点A 作AE ⊥BC 于E , ∵AB=AC=10,∴△ABC 为等腰三角形, ∴cm x BD BC DC cm x BD BE DE cm BC CE BE )16(,)8(,821-=-=-=-====,在△AEC 中,由勾股定理得:cm CE AC AE 68102222=-=-=.在Rt △AED 中,22222)8(6x DE AE AD -+=+=, 在Rt △DAC 中,2222210)16(--=-=x AC DC AD ,∴222210)16()8(6--=-+x x .解得cm x 27=.方法总结:勾股定理通常与等腰三角形的性质结合起来使用.举一反三 如图:A 、B 两点与建筑物底部D 在一直线上,从建筑物顶部C 点测得A 、B 两点的俯角分别是30°、60°,且AB=20cm ,求建筑物CD 的高.解:m CD 310=例3 甲、乙两船同时从港口A 出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行.2小时后,甲船到达C 岛,乙船到达B 岛,若C 、B 两船相距40海里,问乙船的速度是每小进多少海里?方法指导:可根据题意画出图形,易知△ABC 是直角三角形,利用勾股定理求出AB 距离,从而求出乙船速度.解:由题知△ABC 是直角三角形且∠BAC 为直角.∴24212=⨯=AC ,BC=40. 由勾股定理得3224402222=-=-=AC BC AB (海里).∴乙船速度为:16232=(海里/时).方法总结:凡是实际问题,应根据题意构造直角三角形来求解.举一反三 “中华人民共和国道路交通管理条例”规定,小汽车在城街路上行驶速度不得超过70km/h ,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30m 处,过了2s 后,测得小汽车与速速检测仪间距离为50m ,这辆小汽车超速了吗?解:因为小汽车的速度为:h km h km s m /70/72/20240>==,因此小汽车超速了.例4 如图,海中有一小岛A ,在该岛周围10海里内有暗礁,今有货船由西向东航行,开始在A 岛南偏西45°的B 处往东航行20海里后达到该岛南偏西30°的C 处,之后继续向东航行,你认为货船继续向东航行会有触礁的危险吗?计算后说明理由.方法指导:要想知道有无触礁危险只需算出点A 到BC 的距离,再比较即知.解:过点A 作AD ⊥BC ,垂足为D . 由题知:∠BAD=45°,∠CAD=30°. 设AD=x (海里),则BD=x (海里),CD=(x —20)(海里), 我们知道有一内角为30°的直角三角形三边比值为2:3:1.∴13=CDAD ,即1320=-x x . 解得1032.4713320>≈-=x .故无触礁危险.方法总结:此题若直接用勾股定理也可得关于x 的方程,但是是一元二次的,目前无法解出来,故应熟记特殊直角三角形的三边比值,如等腰直角三角形三边比值为2:1:1.举一反三 如图,点A 是一个半径为300m 的圆形森林公园的中心,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修一条长为1000m 的笔直公路将两村连通.经测得∠ABC=45°,∠ACB=30°,问此公路是否会穿过该森林公园?请通过计算进行说明.解:不会穿过公园.例5 一架方梯长25m ,如图,斜靠在一面墙上,梯子底端离墙7m ,求:(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m ,那么梯子的底端在水平方向滑动了几米?方法指导:梯子靠在墙上即构成直角三角形,可利用勾股定理来求解.解:(1)如图,在Rt △POQ 中,由勾股定理得:247252222=-=-=OQ PQ PO .即梯子的顶端距离地面24m ;(2)由题知梯子底端移动的距离为OB , 设QB=x ,则OA=OP —AP=24—4=20m , 梯子下滑过程中长度不变即AB=QP=25m , 在Rr △AOB 中,由勾股定理得:m OA AB OB 1520252222=-=-=.∴QB=OB —OQ=15—7=8m . 即梯子底端移动了8m .方法总结:这是一类“梯子下滑问题”,解此类题应把握两点:梯子靠在墙上即构成直角三角形;梯子滑动过程中长度不变.举一反三 如图,一个梯子AB 长2.5m ,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,求梯子顶端A 下落了多少m ?解:梯子顶端A 下落了0.5m . 例6 若△ABC 的三边分别为a 、b 、c ,且满足c b a c b a 108650222++=+++,那么△ABC 是何种形状?解:由c b a c b a 108650222++=+++得0)2510()168()96(222=+-++-++-c c b b a a ,即0)5()4()3(222=-+-+-c b a , ∴a=3,b=4,c=5.∵22225c b a ==+,由勾股定理逆定理知△ABC 是直角三角形.方法总结:要判断三角形形状,应寻找三边关系或三角之间的关系再作出判断. 举一反三 若a 、b 、c 为△ABC 的三边,且满足0222=---++ca bc ab c b a .探索△ABC 的形状,并说明理由.解:等边三角形. 例7 如图,CD 是△ABC 的AB 边上的高,且有DB AD CD ⋅=2.求证:△ABC 是直角三角形.方法指导:先依题意画图,再利用勾股定理的逆定理来证. 解:在Rt △ACD 中,由勾股定理得:DB AD AD AC CD ⋅=-=222.∴AB AD AC ⋅=2,同理,AB BD BC ⋅=2,222)(AB AB BD AD AB BD AB AD BC AC =⋅+=⋅+⋅=+.由勾股定理逆定理知:△ABC 是直角三角形.方法总结:证明直角三角形或两直线的垂直关系通常用勾股定理逆定理来解决.举一反三 如图,已知在△ABC 中,∠C=90°,D 为AC 上一点,22BD AB -与22DC AC -有怎样的关系?试证明你的结论.解:相等(提示:可证明22222BC CD BD AC AB =-=-,再作移项变形.)综合练习(时间90分钟,满分120分) 一、填空题(3分×10=30分)1.在△ABC 中,∠C=90°,a ,b ,c 为∠A ,∠B ,∠C 的对边. (1)c=25,b=24,那么a=_________. (2)a=30,b=16,那么c=_________.2.在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边.(1)3,222==b a ,那么当c=___________时,∠B=90°. (2)15,622==c a ,那么当b=____________时,∠C=90°.3.在△ABC 中,∠C=90°,AB=40,AC=24.则斜边AB 上的高是__________.4.在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边,如果a ,b ,c 满足2))((b c a c a =-+,那么△ABC 是以____________为斜边的直角三角形.5.如图,每个小正方形的边长是1,在图中画出: (1)一个面积为2的直角三角形. (2)一个面积为2的正方形.6.如图,△ABC 中,BC=12,AB=10,△ABC 的面积是48.那么BD=__________.7.一个三角形的一个外角等于和它相邻的内角,如果此三角形的两条边长分别是5,2,那么以第三条边为半径的圆的面积是___________(保留π).8.边长为2的正三角形的面积为__________,边长为a 的正三角形面积为___________. 9.如果梯子的底端离建筑物9m ,那么15m 长的梯子可以到达建筑物的高度是_________. 10.为得到湖两岸A 点和B 点间的距离,一个观测者在C 点设桩,使∠ABC 为直角(如图),并测得AC 长20m 、BC 长16m ,A ,B 两点间的距离是_________.二、选择题(7分×3=21分) 11.有下列命题:(1)如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数; (2)如果直角三角形的两边长是3,4,那么斜边必是5;(3)如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形; (4)一个等腰直角三角形的三边长为a ,b ,c (a>b>c ),那么1:1:2::222=c b a .其中正确的是( )A .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)12.如图,△ABC 中,AB=AC ,AD ⊥BC ,垂足是D ,AB=13,BD=5,则△ABC 的面积是( ) A .65 B .120 C .60 D .3613.如图,△ABC 中,∠ACB=90°,AC=BC ,如果△ABC 的面积是8,那么腰长是( ) A .4 B .2 C .8 D .1614.如图,B 在A 的北偏西α方向的6m 处,C 在A 的北偏东β方向的8m 处,并且︒=β+α90,那么B 、C 两点相距( )A .6mB .8mC .10mD .12m15.如图,在Rt △ABC 中,∠C=90°,D 为AC 上的一点,且有DA=DB=5,又△DAB 的面积是10,那么DC 的长是( )A .4B .3C .5D .4.516.在△ABC 中,AB=AC ,如果AB=17,BC=16,则BC 边上的中线长是( ) A .8 B .15 C .10 D .617.如图,在Rt △ABC 中,∠B=90°.以AC 为直径的圆恰好过点B .AB=8,BC=6,则阴影部分的面积是( )A .24100-πB .48100-πC .2425-πD .4825-π三、阅读理解题(5分)18.阅读下列解题过程,并回答问题.已知a ,b ,c 为△ABC 的三边,且满足442222b a c b c a -=-,试判定△ABC 的形状.解:∵442222b a c b c a -=-, ①∴))(()(2222222b a b a b a c -+=-. ② ∴222b a c +=, ③ ∴△ABC 是直角三角形.(1)上述解题过程,从哪一步开始出现错误?请写出代号___________. (2)错误的原因为__________. (3)本题正确结论为____________.四、解答题(64分) 19.(8分)下面同学对各题的解答是否正确?为什么? (1)在Rt △ABC 中,∠B=90°,a=3,b=4,求c ;(2)已知直角三角形两条直角边为40和9,求第三边的长;(3)已知△ABC 中,AB=10,AC=17,BC 边上的高AD=8,求BC 的长. 解:(1)由勾股定理得:222c b a =+,∴5,2543222==+=c c . (2)由勾股定理得:222c b a =+,∴1681940222=+=c , ∴c=41,答:第三边的长为41. (3)根据勾股定理:6481022222=-=-=AD AB DB ,∴DB=8;22581722222=-=-=AD AC DC ,∴DC=15.故BC=15+8=24. 20.(8分)有一个三角形两边长分别为4和5,要使三角形为直角三角形,则第三边为多少?21.(8分)给出一组式子:222222222222261024,17815,1068,543=+=+=+=+.(1)你能发现关于上式中的一些规律吗?(2)请你运用所发现的规律,给出第5个式子. (3)请你证明你所发现的规律. 22.(8分)在△ABC 中,已知a=15,b=17,c=8,求△ABC 的面积. 23.(8分)如图,在△ABC 中,∠ACB=90°,CD ⊥AB ,D 为垂足,DE ⊥BC ,E 为垂足,已知AC=6,AB=10.求(1)CD 的长;(2)DE 的长.24.(8分)如图,△ABC 中,AD ⊥BC ,D 为垂足,AE 为BC 边上的中线,已知AB=5,BC=12,△ABC 的面积是24.求(1)AD 的长;(2)判断△ABE 的形状,并说明理由.25.(8分)如图,在△ABC 中,∠ACB=90°,CD 为AB 边上的高.试说明22222AB CD BD AD =++.26.(8分)如图,在△ABC 中,AM 是BC 边的中线,AE 为BC 边上的高.试判断22ACAB +与22BM AM +的关系,并说明理由.参考答案1.(1)7 (2)34 2.(1)1 (2)3 3.19.2 4.a 5.略 6.6 先由面积公式4821=⋅=∆AD BC S ABC ,求出AD=8. 7.π21或π29 先说明此三角形为直角三角形,但因为谁是斜边没有确定,故有两种情况.8.243;3a 9.12cm 10.12cm 11.C 12.C 13.A 821=⨯⨯=∆BC AC S ABC ,则4,1622====BC AC BC AC . 14.C ︒=β+α90,得∠BAC=90°,由勾股定理可求得BC=10. 15.B ∵△ADB 的AD 边上的高为BC ,∴BCAD S ADB ⋅=∆21.即BC ⨯⨯=52110,∴BC=4.在Rt △BCD 中求得CD=3. 16.B 17.C 18.(1)③ (2)22ba -可能为0. (3)△ABC 为直角三角形或等腰三角形 19.几个题的解法均有问题.(1)错误的原因是没有弄清哪个角是直角,盲目地运用勾股定理,当∠B=90°,应该有222b c a =+. (2)没有确定所求得的边是直角边,还是斜边.(3)考虑不完整,忽视了高AD在△ABC外部的情况. 20.3或41 21.(1)22222]1)1[()]1(2[]1)1[(++=++-+n n n (2)222371235=+ (3)按完全平方公式展形,进行证明即可. 22.∵22217815=+,∴222c a b +=,∴△ABC 为直角三角形,∴608121=⨯⨯=∆ABC S . 23.(1)4.8.先求出BC=8.则由面积公式可求出CD . (2)3.84 在△ACD 中求得AD=3.6,所以BD=6.4,在△BCD 中运用面积公式求DE ,即DB CD BC DE ⨯⨯=⨯⨯2121.则484.68.4=⨯=DE . 24.(1)4 由面积公式2421=⨯⨯AD BC ,得4122124=⨯=AD . (2)等腰三角形.在Rt △ABD 中,AB=5,AD=4,则BD=3,因为E 为BC 的中点,∴BE=6,DE=3,AE=5=AB .△ABE 为等腰三角形.25.左边2222222222)()(BC AC CD BD CD AD CD CD BD AD +=+++=+++===2AB 右边26.)(22222BM AM AC AB +=+.222222222)()(2MC EM EM BM AE EC AE BE AE AC AB ++-+=+++=+22222222MC MC EM EM EM EM BM BM AE +⋅+++⋅-+=. ∵MC BM =, ∴2222222222222)(2222BM AM BM EM AE BM EM AE AC AB +=++=++=+)(222BM AM +=.期中测试题(时间90分钟,满分120分)一、选择题(3分×10=30分)1.已知xy=1,则)1)(1(y y x x +-的值为( ) A .22x B .22y C .22x y - D .22y x -2.有理数a ,b 在数轴上的对应点如图所示,则代数式b a ba +-的值为( )A .正数B .负数C .零D .不能确定3.若分式34922+--x x x 的值为零,则x 的值为( )A .3B .3或—3C .—3D .04.化简ab a b a +-222的结果是( )A .a b a 2-B .a b a -C .a b a +D .b a ba +-5.若x<2,则|2|2--x x 的值为( )A .—1B .0C .1D .26.xy y x 1022+中,x ,y 都扩大10倍,则分式的值( )A .扩大10倍B .缩小10倍C .保持不变D .缩小5倍7.如果反比例函数的的图象经过点(3,2),那么下列各点中在此函数图象上的点是( )A .)23,2(-B .)32,9( C .)32,3(- D .)23,6( 8.一个矩形的面积是6,则这个矩形的一组邻边长x 与y 的函数关系图象大致是( )9.若直角三角形的三边长分别为2,4,x ,则x 可能的值有( )A .1个B .2个C .3个D .4个10.一等腰直角三角形的周长为2P ,其面积为( ) A .P )222(+ B .P )22(-C .2)223(P -D .2)221(P -二、填空题(3分×10=30分)11.在分式11||+-x x 中,x=______________时,分式无意义,当x=____________时,分式的值为零.12.当4,21-==y x 时,________)(2=-÷-xy y x x xy .13.若去分母解方程x x x --=-3323,出现增根,则增根为_____________. 14.在分式123-x 中,当x=_____________时,分式的值为1;当x 的值____________时,分式值为正数.15.已知32572=+-y x x y ,且0≠y ,则________=y x .16.反比例函数)0(≠=k x k y 的图象经过点P ,如图所示.根据图象可知,反比例函数的解析式为____________.17.某蓄电池的电压为定值,如图所示的是该蓄电池电流I (A )与电阻R (Ω)之间的函数关系图象,则其函数解析式是______________.18.近视眼镜的度数y (度)与镜片焦距x (m )成反比例关系,已知400度近视眼镜片的焦距为0.25m ,则眼镜度数y 与镜片焦距x 之间的函数关系式为___________.19.如图,已知△ABC 中,∠ACB=90°,以△ABC 的各边为边在△ABC 外作三个正方形,321,,S S S 分别表示这三个正方形的面积,225,8131==S S ,则___________2=S .20.如图,为了求出湖两岸A ,B 两点之间的距离,观测者从观测点A ,B 分别测得∠BAC=90°,∠ABC=30°,又测得BC=160m ,则A ,B 两点之间的距离为__________m (结果保留根号).三、解答题(60分)21.先化简,再求值.(5分×2=10分)(1))2122(24--+÷--x x x x ,其中43-=x .(2)11123213222+++--+÷-+x x x x x x x ,其中132-=x .22.解分式方程.(5分×2=10分)(1)1613122-=-++x x x (2)416312546---=-x x x .23.(8分)在Rt △ABC 中,∠C=90°,6=+BC AC ,AB=2,求这个三角形的面积.24.(8分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 站多少千米处?25.(8分)如图,已知Rt △ABC 的顶点A 是一次函数y=x+m 与反比例函数x m y =的图象在第一象限内的交点,且3=∆AOB S .该一次函数与反比例函数的解析式是否能完全确定?如能确定,请写出它们的解析式;如不能确定,请说明理由.26.列方程解应用题.(8分×2=16分)(1)某厂原计划在规定期限内生产通信设备60台支援抗洪,由于改进了操作技术,每天生产的台数比原计划多50%,结果提前两天完成任务,求改进操作技术后每天生产通信设备多少台.(2)为了方便广大游客到昆明参加“世博会”,铁道部门临时增开了一列南宁—昆明的直达快车,已知南宁—昆明两地相距828km ,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通列车平均速度的1.5倍.直达快车比普通列车晚出发2h ,比普通列车是4h 到达昆明.求两车的平均速度.参考答案1.D 2.A 3.C 4.B 5.A 6.C 7.B 8.D 9.B 10.C 11.—1;1 12.1 13.x=3 14.2;大于21 15.174- 16.x y 2= 17.R I 36= 18.x y 100= 19.144 20.380 21.(1)原式3341-=+-=x (2)原式2312=+=x 22.(1)x=1为增根,原方程无解 (2)x=2. 23.将6=+BC AC 两边平方,得22)6()(=+BC AC ,即6222=⋅++BC AC BC AC .∴4222==+AB BC AC .∴4+2AC ·BC=6.∴AC ·BC=1.∴2121=⨯⨯=∆BC AC S ABC . 24.设AE=x km ,由勾股定理,得2222)25(1015x x -+=+,解得x=10. 25.设B (a ,0),则),(a m a A ,其中a>0,m>0.在Rt △ABO 中,a OB a m AB ==,.则321=⨯⨯=∆a m a S ABO .∴m=6.所以一次函数的解析式为y=x+6.反比例函数的解析式为x y 6=.26.(1)设原计划每天生产通信设备x 台,那么改进操作技术后每天生产1.5x 台,依题意,得25.16060=-x x ,解得x=10.经检验,x=10是原方程的解.当x=10时,1.5x=15. (2)设普通列车的平均速度为x km/h ,则直达快车的平均速度为1.5x km/h ,依题意,得x x x 5.18286828-,解得x=46.经检验,x=46是原方程的解.∴x=46,1.5x=69.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:m m ),计算两圆 孔中心A 和B 的距离为______m m .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A3A4A 5A 5E2E 1E1D 1C 1B 4C3C2C 图344332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠ 122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C )222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x ,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7.5米; (C )12米; (D )8米 4、下列说法中正确的有( )(1)如果∠A+∠B+∠C=3:4:5,则△ABC 是直角三角形;(2)如果∠A+∠B=∠C ,那么△ABC 是直角三角形;(3)如果三角形三边之比为6:8:10,则ABC 是直角三角形;(4)如果三边长分别是221,2,1(1)n n n n -+>,则ABC 是直角三角形。
勾股定理是解决直角三角形相关问题的方法之一,初中数学是以方程为核心的,很多问题都可以通过列方程、解方程的方法得到解决。
因此把两者结合起来是解决直角三角形相关问题的重要途径。
下面我们总结一下和直角三角形有直接关系的相关性质、定理、解题技巧等。
定理一:直角三角形中,300的锐角所
对的直角边等于斜边一半。
定理二:直角三角形中,斜边上的中线 等于斜边一半 定理三:勾股定理
定理四:勾股定理的逆定理
解题技巧:注意互余关系、有公共边的两个直角三角形、面积法等。
一、整体思想:考查勾股定理的意义
例
1、如图中字母A 所代表的正方形的面积为(
) A. 4
B. 8
C. 16
D. 64
例2、如图1,在直线l 上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____. 二、分类讨论思想(多数情况下不会给出图形,所以要小心没配图形的题目) 例1、在△ABC 中,AB=15,AC=20,AD 是BC 边上的高,AD=12,求BC 的长
三、数形结合思想
例1、如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角 边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?
例2、在一颗树的10m 高处有两只猴子,其中一只爬下树走到离树20cm 处的
塘A 处,另一只爬到树顶后直接跃向池塘的A 处,如果两只猴子所经过的距离相等,试问这颗树有多高?
例3、如图1,某海滨浴场岸边A 处救生员发现海中的B 处有人求救,救生员没有直接从A 处游向B ,而是沿岸边自A 处跑到离B 最近的C 处,然后从C 处游向B 处,若救生员在岸边行进的速度是5m/s ,在海中行进的速度是2m/s ,请分析求生员的选择合理吗?
例4 如图5,高速公路的同侧有A 、B 两个村庄,它们到高速公路所在直线MN 的距离分别为AA 1=2km ,BB 1=4km ,A 1B 1=8km .现要在高速公路上A 1B 1之间设一个出口P ,使A 、B 两个村庄到P 的距离之和最短,则这个最短距离是多少千米?
勾股定理复习(一)
225 289
A
图1 图2
一﹑填空题 (每小题2分, 共20分) 1. 如图,∠OAB =∠OBC =∠OCD =90°, AB =BC =CD =1,OA =2,则OD 2=____________. 2. 如图, 等腰△ABC 的底边BC 为16, 底边上的高AD 为6,则腰AB 的长为____________.
3. 如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________________m.
4. 正方形的面积为18cm 2, 则正方形对角线长为__________ cm.
5.在△ABC 中,∠C =90°,若AB =5,则2AB +2AC +2BC =__________.
6. 小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米.
7. 一个三角形三边满足(a+b)2-c 2=2ab, 则这个三角形是 三角形. 8. 木工做一个长方形桌面, 量得桌面的长为60cm , 宽为32cm , 对角线为68cm , 这个桌面__________ (填“合格”或“不合格”).
9. 直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为 . 10. 有六根细木棒,它们的长分别是2,4,6,8,10,12(单位:cm ),首尾连结
能搭成直角三角形的三根细木棒分别是 . 二﹑选择题(每小题3分, 共30分)
11. 一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为 ( )
A. 4
B. 8
C. 10
D. 12 12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的
是( )
A. 小丰认为指的是屏幕的长度
B. 小丰的妈妈认为指的是屏幕的宽度
C. 小丰的爸爸认为指的是屏幕的周长
D. 售货员认为指的是屏幕对角线的长度
13. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形
14. 一直角三角形的一条直角边长是7cm , 另一条直角边与斜边长的和是49cm , 则斜边的长( )
A. 18cm
B. 20 cm
C. 24 cm
D. 25cm 15. 适合下列条件的△ABC 中, 直角三角形的个数为( )
①;,,514131===c b a ②6=a ,∠A =45°;③∠A =320, ∠B =58°;
④;,,25247===c b a ⑤.422===c b a ,, A. 2个 B. 3个 C. 4个 D. 5个 16. 在△ABC 中,若12122+==-=n c n b n a ,,,则△ABC 是( )
A. 锐角三角形
B. 钝角三角形
C. 等腰三角形
D. 直角三角形 17. 直角三角形斜边的平方等于两条直角边乘积的2倍, 这个三角形有一个锐角是( )
A. 15°
B. 30°
C. 45°
D. 60° 18. 在△ABC 中,AB =12cm ,BC =16cm,,AC =20cm,,则△ABC 的面积是( )
A. 96cm 2
B. 120cm 2
C. 160cm 2
D. 200cm 2 三、 解答题 (每小题10分, 共50分)
19. 如图, 在△ABC 中, AD ⊥BC 于D ,AB =3,BD =2,DC =1, 求AC 2的值.
C
20. 如图所示的一块地,∠ADC =90°,AD =12m ,CD =9m ,AB =39m ,BC =36m ,
求这块地的面积.
D C
B
A O (题1图) A
B。