有理数培优卷
- 格式:doc
- 大小:185.00 KB
- 文档页数:2
第2章《有理数》单元培优测试卷(含答案)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间60分钟,试题共28题,选择8道、填空10道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•盐城)2020的相反数是()A.﹣2020 B.2020 C.D.2.(2020•徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8×103B.1.18×104C.1.18×105D.0.118×106 3.(2019秋•江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个4.(2019秋•江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.45.(2019秋•江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.56.(2019秋•江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.37.(2020春•江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6 B.3 C.﹣6 D.﹣98.(2019秋•江苏省南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•江苏省太仓市期中)我国开展的月球探测工程(即“嫦娥工程“)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为.10.(2019秋•江苏省海州区校级期中)如图,小明有五张写着不同数字的卡片,请你从中抽出2张卡片,使这两张卡片上数字乘积最大,这个最大值是.11.(2019秋•江苏省宿豫区期中)若三个互不相等的有理数,既可以表示为3,a+b,b的形式,也可以表示为0,,a的形式,则4a﹣b的值.12.(2019秋•江苏省宿豫区期中)规定a⊕b=a﹣b+1,则(3⊕2)⊕5=.13.(2019秋•江苏省海陵区校级期中)|m+n|+(m+3)2=0,则m n的值是.14.(2019秋•江苏省连云港期中)有理数a,b,c在数轴上的位置如图所示,则|a﹣b|﹣|c ﹣b|+|a+c|=.15.(2019秋•江苏省武进区期中)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B 两点经以上方法折叠后重合,则A点表示的数是.16.(2019秋•江苏省海安市期中)若m、n满足|m﹣3|+(n﹣2)2=0,则(m﹣n)2019的值等于.17.(2019秋•江苏省海陵区校级期中)已知数轴上三点A,B,C所对应的数分别为m,n,2+n,当其中一点到另外两点的距离相等时,则m﹣n的值是.18.(2020春•江苏省鼓楼区期中)(1)()﹣(1)()=.三、解答题(本大题共8题,共54分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•江苏省海州区校级期中)把下列各数填入相应的集合中:10,﹣2π,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.正数集合:{…};负数集合:{…};整数集合:{…};有理数集合:{…}.20.(2019秋•江苏省连云港期中)计算(1)(﹣2)3﹣(﹣5)+(﹣3)×2 (2)()×(﹣60)(3)(﹣5)(﹣4)(4)﹣32÷[()×(﹣3)22] 21.(2019秋•江苏省建湖县期中)计算:(1)28﹣(+34)+(﹣51)﹣(﹣42);(2);(3);(4).22.(2019秋•江苏省广陵区校级期中)某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10 (1)巡逻车在巡逻过程中,第次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?23.(2020春•江苏省兴化市期中)(1)计算:0×1×2×3+1=()2;1×2×3×4+1=()2;2×3×4×5+1=()2;3×4×5×6+1=()2;……(2)根据以上规律填空:4×5×6×7+1=()2;×××+1=(55)2.(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.24.(2019秋•江苏省崇川区校级期中)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在上所应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是;(2)数轴上表示x与2的两点之间的距离可以表示为.\;(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.25.(2019秋•江苏省崇川区校级期中)已知b是最小的正整数,且a,b满足(c﹣5)2+|a+b|=0,请回答:(1)请直接写出a,b,c的值:a=,b=,c=;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.(2019秋•江苏省海州区校级期中)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把记作a©,读作“a的圈c次方”.(1)【初步探究】直接写出计算结果:3③=,;(2)关于除方,下列说法错误的是;A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1□=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(3)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥=;;Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于;Ⅲ.算一算:.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•盐城)2020的相反数是()A.﹣2020 B.2020 C.D.【分析】根据a的相反数是﹣a,直接得结论即可.【解析】2020的相反数是﹣2020.故选:A.2.(2020•徐州模拟)据统计,徐州市2020年参加中考人数共有11.8万人,11.8万用科学记数法表示为()A.11.8×103B.1.18×104C.1.18×105D.0.118×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解析】11.8万=118000=1.18×105故选:C.3.(2019秋•江苏省海安市校级月考)在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是()A.4个B.3个C.2个D.1个【分析】先化简原题中的各数,然后即可判断哪些数是负数,本题得以解决.【解析】∵﹣22=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴在﹣22、(﹣2)2、﹣(﹣2)、﹣|﹣2|中,负数的个数是2个,故选:C.4.(2019秋•江苏省镇江期末)在数,1.010010001,,0,﹣2π,﹣2.6266266…,3.1415中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数的三种形式求解.【解析】无理数有:﹣2π,﹣2.6266266…共2个.故选:B.5.(2019秋•江苏省泰兴市期末)数轴上标出若干个点,每相邻两点相距一个单位长度,点A、B,C,D分别表示整数a,b,c,d,且a+b+c+d=6,则点D表示的数为()A.﹣2 B.0 C.3 D.5【分析】设出其中的一个数,根据各个数在数轴的位置,表示出其它的数,列方程求解即可.【解析】设点D表示的数为x,则点C表示的数为x﹣3,点B表示的数为x﹣4,点A 表示的数为x﹣7,由题意得,x+(x﹣3)+(x﹣4)+(x﹣7)=6,解得,x=5,故选:D.6.(2019秋•江苏省镇江期末)能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.3【分析】直接利用绝对值的性质把x的值分别代入求出答案.【解析】A、当x=0时,原式=3+4=7,不合题意;B、当x=1时,原式=1+2=3,不合题意;C、当x=2时,原式=1+0=1,符合题意;D、当x=3时,原式=3+2=5,不合题意;故选:C.7.(2020春•江苏省如皋市期末)将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6 B.3 C.﹣6 D.﹣9【分析】根据定义,图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,由对角线三数的和与中间数的关系可求m的值.【解析】图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,∵﹣2﹣4=﹣6,∴中间数是﹣6÷2=﹣3,∴m=﹣6﹣3=﹣9.故选:D.8.(2019秋•江苏省南京期末)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.【解析】根据分析,可得则所有符合条件的m的值为:128、21、20、3.故选:B.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020春•江苏省太仓市期中)我国开展的月球探测工程(即“嫦娥工程“)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为 3.84×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解析】将384000用科学记数法表示为3.84×105.故答案是:3.84×105.10.(2019秋•江苏省海州区校级期中)如图,小明有五张写着不同数字的卡片,请你从中抽出2张卡片,使这两张卡片上数字乘积最大,这个最大值是15.【分析】根据有理数乘法法则,可得﹣3与﹣5的乘积最大.【解析】(﹣3)×(﹣5)=15,∴这个最大值是15.故答案为:1511.(2019秋•江苏省宿豫区期中)若三个互不相等的有理数,既可以表示为3,a+b,b的形式,也可以表示为0,,a的形式,则4a﹣b的值15.【分析】根据分母不等于0判断出b≠0,从而得到a+b=0,再求出3,从而得到b=﹣3,a=3,然后代入代数式进行计算即可得解.【解析】∵三个互不相等的有理数,既可以表示为1、a+b、b的形式,也可以表示为0、、a的形式,∴b≠0,∴a+b=0,∴3,∴b=﹣3,a=3,∴4a﹣b=12+3=15,故答案为15.12.(2019秋•江苏省宿豫区期中)规定a⊕b=a﹣b+1,则(3⊕2)⊕5=﹣2.【分析】根据a⊕b=a﹣b+1,可以求得所求式子的值.【解析】∵a⊕b=a﹣b+1,∴(3⊕2)⊕5=(3﹣2+1)⊕5=2⊕5=2﹣5+1=﹣2,故答案为:﹣2.13.(2019秋•江苏省海陵区校级期中)|m+n|+(m+3)2=0,则m n的值是﹣27.【分析】根据非负数的性质,可以求得m、n的值,从而可以求得m n的值,本题得以解决.【解析】∵|m+n|+(m+3)2=0,∴m+n=0,m+3=0,解得,m=﹣3,n=3,∴m n=(﹣3)3=﹣27,故答案为:﹣27.14.(2019秋•江苏省连云港期中)有理数a,b,c在数轴上的位置如图所示,则|a﹣b|﹣|c ﹣b|+|a+c|=﹣2a.【分析】先根据各点在数轴上的位置判断出其符号,再根据绝对值的性质去绝对值符号,合并同类项即可.【解析】∵由图可知,c<﹣1<0<a<1<b,∴a﹣b<0,c﹣b<0,a+c<0,∴原式=﹣a+b+(c﹣b)﹣(a+c)=﹣a+b+c﹣b﹣a﹣c=0.故答案为:0.15.(2019秋•江苏省武进区期中)已知在纸面上有一数轴,折叠纸面,数轴上﹣2表示的点与8表示的点重合.若数轴上A、B两点之间的距离为2014(A在B的左侧),且A、B 两点经以上方法折叠后重合,则A点表示的数是﹣1004.【分析】根据数轴上两点间的距离为这两个数差的绝对值,若﹣2表示的点与8表示的点重合,则折痕经过3;若数轴上A、B两点之间的距离为2014(A在B的左侧),则两个点分别距离中点是3,进一步得到A点表示的数.【解析】依题意得:两数是关于﹣2和8的中点对称,即关于(﹣2+8)÷2=3对称,∵A、B两点之间的距离为2014(A在B的左侧),且A、B两点经以上方法折叠后重合,则A、B关于3对称,∴A:3﹣2014÷2=3﹣1007=﹣1004.故答案为:﹣1004.16.(2019秋•江苏省海安市期中)若m、n满足|m﹣3|+(n﹣2)2=0,则(m﹣n)2019的值等于1.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可;【解析】∵|m﹣3|+(n﹣2)2=0,∴m﹣3=0,n﹣2=0,∴m=3,n=2,∴(m﹣n)2019=(3﹣2)2019=1.故答案为:1.17.(2019秋•江苏省海陵区校级期中)已知数轴上三点A,B,C所对应的数分别为m,n,2+n,当其中一点到另外两点的距离相等时,则m﹣n的值是﹣2或1或4.【分析】用m、n的代数式表示线段AB、BC、AC的长,再分三种情况分别进行解答即可.【解析】数轴上三点A,B,C所对应的数分别为m,n,2+n,则点C一定在点B的右边两个单位,①如图1,当点B是AC的中点时,,有AB=BC,即m﹣n=n﹣(2+n),∴m﹣n=﹣2;②如图2,当点A是BC的中点时,,有AB=AC,即m﹣n=2+n﹣m,∴m﹣n=1;③如图3,当点C是AB的中点时,,有BC=AC,即(2+n)﹣n=m﹣(2+n),∴m﹣n=4,故答案为:﹣2或1或4.18.(2020春•江苏省鼓楼区期中)(1)()﹣(1)()=.【分析】根据乘法分配律变形,再抵消后进行计算即可求解.【解析】(1)()﹣(1)()()()﹣()+()().故答案为:.三、解答题(本大题共8题,共64分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•江苏省海州区校级期中)把下列各数填入相应的集合中:10,﹣2π,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.正数集合:{10,3.14,,﹣(﹣5),0.…};负数集合:{﹣2π,﹣0.6,﹣75%…};整数集合:{10,0,﹣(﹣5)…};有理数集合:{10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.…}.【分析】根据实数的分类即可求出答案.【解析】正数集合:{ 10,3.14,,﹣(﹣5),0.};负数集合:{﹣2π,﹣0.6,﹣75% …};整数集合:{10,0,﹣(﹣5)…};有理数集合:{10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0.}.故答案为:10,3.14,,﹣(﹣5),0.;﹣2π,﹣0.6,﹣75%;10,0,﹣(﹣5);10,3.14,,﹣0.6,0,﹣75%,﹣(﹣5),0..20.(2019秋•江苏省连云港期中)计算(1)(﹣2)3﹣(﹣5)+(﹣3)×2(2)()×(﹣60)(3)(﹣5)(﹣4)(4)﹣32÷[()×(﹣3)22]【分析】(1)根据有理数的乘方、有理数的乘法和加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)(﹣2)3﹣(﹣5)+(﹣3)×2=(﹣8)+5+(﹣6)=﹣9;(2)()×(﹣60)=(﹣36)+(﹣30)+5=﹣61;(3)(﹣5)(﹣4)=5;(4)﹣32÷[()×(﹣3)22]=﹣9÷(1)=﹣9÷(1)=﹣9÷(1)=﹣9=﹣9=﹣15.21.(2019秋•江苏省建湖县期中)计算:(1)28﹣(+34)+(﹣51)﹣(﹣42);(2);(3);(4).【分析】各式根据有理数的运算法则依次计算即可.【解析】(1)原式=28﹣34﹣51+42=28+42﹣34﹣51=70﹣85=﹣15;(2)原式=4.8 1.8+4﹣1=4.8﹣1.8+41=3+4﹣1=6;(3)原式0.250.25=0.25;(4)原式=﹣9﹣(12+8)=﹣9﹣20=﹣9﹣8=﹣17.22.(2019秋•江苏省广陵区校级期中)某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下.(单位:km)第一次第二次第三次第四次第五次第六次第七次+15 ﹣8 +6 +12 ﹣4 +5 ﹣10 (1)巡逻车在巡逻过程中,第6次离A地最远.(2)B地在A地哪个方向,与A地相距多少千米?(3)若每千米耗油0.2升,每升汽油需7元,问这一天交通巡逻车所需汽油费多少元?【分析】(1)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;(2)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;(3)根据行车就耗油,可得耗油量,再根据总价=单价×数量即可求解.【解析】(1)第一次距A地:15千米,第二次距A地:15﹣8=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:25﹣4=21千米,第六次距A地:21+5=26千米,第七次距A地:26﹣10=16千米,26>25>21>16>15>13>7,答:巡逻车在巡逻过程中,第6次离A地最远;(2)15﹣8+6+12﹣4+5﹣10=16(千米),答:B地在A地东方,与A地相距16千米;(3)|+15|+|﹣8|+|+6|+|+12|+|﹣4|+|+5|+|﹣10|=60(千米),60×0.2=12(升),12×7=84(元).答:这一天交通巡逻车所需汽油费84元.故答案为:6.23.(2020春•江苏省兴化市期中)(1)计算:0×1×2×3+1=(1)2;1×2×3×4+1=(5)2;2×3×4×5+1=(11)2;3×4×5×6+1=(19)2;……(2)根据以上规律填空:4×5×6×7+1=(29)2;6×7×8×9+1=(55)2.(3)小明说:“任意四个连续自然数的积与1的和都是某个奇数的平方”.你认为他的说法正确吗?请说明理由.【分析】(1)通过有理数的运算便可得结果;(2)由已知等式得到规律:任意四个连续自然数的积与1的和等于较小数与比它大3的数的积与1的和的平方.按此规律解答便可;(3)根据题意可得第n个等式应是n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2=(n2+3n+1)2,再证明n2+3n+1是否为奇数便可.【解析】(1)0×1×2×3+1=0+1=1=12;1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192,故答案为:1;5;11;19;(2)由已知等式知,任意四个连续自然数的积与1的和等于较小数与比它大3的数的积与1的和的平方.∴4×5×6×7+1=(4×7+1 )2=292;∵55=6×9+1,∴6×7×8×9+1=552;故答案为:29;6;7;8;9;(3)正确.证明:设四个自然数分别为n,n+1,n+2,n+3,则有n(n+1)(n+2)(n+3)+1=[n(n+3)][(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2=[n(n+1)+2n+1]2,∵n为自然数,∴n(n+1)为偶数,2n+1为奇数,∴n(n+1)+2n+1必为奇数,故(n2+3n+1)2是一个奇数的平方,即任意四个连续自然数的积与1的和都是某个奇数的平方.24.(2019秋•江苏省崇川区校级期中)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在上所应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.\;(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.【分析】(1)根据距离公式即可解答;(2)根据距离公式即可解答;(3)利用绝对值和数轴求解即可.【解析】(1)数轴上表示5与﹣2两点之间的距离是:5﹣(﹣2)=7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,(3)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1.故答案为:7;|x﹣2|;﹣2、﹣1、0、1.25.(2019秋•江苏省崇川区校级期中)已知b是最小的正整数,且a,b满足(c﹣5)2+|a+b|=0,请回答:(1)请直接写出a,b,c的值:a=﹣1,b=1,c=5;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x﹣3,5﹣x的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC﹣AB=2.【解析】(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.故答案是:﹣1;1;5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x﹣2<0,则:|x+1|﹣|x﹣1|+3|x﹣2|=x+1﹣(1﹣x)+2(2﹣x)=x+1﹣1+x+4﹣2x=4;当1<x≤2时,x+1>0,x﹣1>0,x﹣2≤0.|x+1|﹣|x﹣1|+3|x﹣2|=x+1﹣(x﹣1)+2(2﹣x)=x+1﹣x+1+4﹣2x=﹣2x+6;(3)不变.理由如下:t秒时,点A对应的数为﹣1﹣t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)﹣(2t+1)=3t+4,AB=(2t+1)﹣(﹣1﹣t)=3t+2,∴BC﹣AB=(3t+4)﹣(3t+2)=2,即BC﹣AB值的不随着时间t的变化而改变.(另解)∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A、B之间的距离每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B、C之间的距离每秒钟增加3个单位长度.又∵BC﹣AB=2,∴BC﹣AB的值不随着时间t的变化而改变解.26.(2019秋•江苏省海州区校级期中)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把记作a©,读作“a的圈c次方”.(1)【初步探究】直接写出计算结果:3③=,﹣27;(2)关于除方,下列说法错误的是C;A.任何非零数的圈2次方都等于1;B.对于任何正整数n,1□=1;C.3④=4③;D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(3)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=()2;5⑥=()4;(﹣2)8;Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于aⓝ=()n﹣2;Ⅲ.算一算:﹣131.【分析】【概念学习】(1)分别按公式进行计算即可;(2)根据定义依次判定即可;【深入思考】(3)Ⅰ.把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;Ⅱ.结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n﹣1;Ⅲ.将第二问的规律代入计算,注意运算顺序.【解析】【概念学习】(1)3③=3÷3÷3,()⑤=()÷()÷()÷()÷()=﹣27.故答案为:,﹣27;(2)A、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A正确;B、因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1;所以选项B正确;C、3④=3÷3÷3÷3,4③=4÷4÷4,则3④≠4③;所以选项C错误;D、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D正确;本题选择说法错误的,故选C;【深入思考】(3)Ⅰ.(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=()2;5⑥=5÷5÷5÷5÷5÷5=()4;同理得:()⑩=(﹣2)8;故答案为:()2;()4;(﹣2)8;(2)aⓝ=()n﹣2;(3)=144÷(﹣3)2×(﹣2)3﹣(﹣3)4÷33=144(﹣8)﹣81÷27=16×(﹣8)﹣3=﹣128﹣3=﹣131.故答案为:,﹣27;C;,,(﹣2)8 ;aⓝ;﹣131.。
一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
第一章 有理数 培优测试卷一.选择题1. 一个数和它的倒数相等,则这个数是( )A .1B .C .±1D .±1和02. 有理数a ,b 在数轴上的位置如图,下列选项正确的是( )A .a +b >a -bB .ab >0C .|b -1|<1D .|a -b|>13. 若y x =,则y x 、的关系是( )A 、相等B 、互为相反数C 、都为0D 、相等或互为相反数4. 明明家为起点,向东走记为正,向西走记为负.明明从家出发,先走了+20米,又走了-30米,这时明明离家的距离是( )米.A .20B .10C .-10D .-205. 在有理数中﹣(﹣4),﹣42,﹣,0,(﹣5)3,﹣中,负数有( )A .1个B .2个C .3个D .4个6. 某商品的原价为a 元,提价10%后发现销售量锐减,欲恢复原价出售,则应约降价( )A 、10%B 、9%C 、9.1%D 、11.3%7.的值是( ) A . B . C . D .8. 将数1.4960用四舍五入法取近似数,若精确到百分位,则得到的近似数是( )A .1.49B .1.50C .1.496D .1.4 9. 下列说法正确的是( )A 、负数的绝对值比正数的绝对值小 ()()111022-+-2-()212-0102-B 、一个数的绝对值越大,表示它的点在数轴上就越靠右C 、一个数的绝对值越大,表示它的点在数轴上离原点越远D 、任意一个数的绝对值一定大于零10. 去年 11 月份我市某一天的最高气温是 10∘C ,最低气温是 −1∘C ,那么这一天的最高气温比最低气温高 ( )A. −9 ∘CB. −11 ∘CC. 9 ∘CD. 11∘C11. 若数轴上点 A ,B 表示的数分别为 8 和 −15,则点 A ,B 之间的距离可以表示为 ( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−15 12. 已知n 为正整数,从1开始,连续n 个正整数的平方和有如下的公式:12+22+32+…+n 2=1 6n (n +1)(2n +1).请根据这个公式计算:从2开始,连续10个偶数的平方和22+42+62+82+…+202的值等于( )A .2870B .1540C .770D .385二.填空题13. 在数轴上与-3距离四个单位的点表示的数是__________. 14. a =3,则a = 若x =-2,则x = 若,02=-m 则m 的值为15. 已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 .16. 近似数69.65010⨯精确到___________位.17. 计算:−2×3= ,(−2)÷(−4)= ,(−4)2= .18. 如果, 那么 (填“>”、“<”或“=”).三.解答题19. 计算: (1)212525-⨯+-(2)()2127322⎛⎫---+-⨯- ⎪⎝⎭20. 已知|a ﹣3|+|b +5|=0,求:(1)a +b 的值;(2)|a |+|b |的值.21.有理数y x ,在数轴上的对应点如下图所示,图中0为原点,且A 到原点的距离比B 到原点的距离大.(1)在数轴上表示出x -和y -;(2)试把y x y x --,,0,,这五个数从大到小用“>”连接起来.22. 某粮油公司3天内进出库的粮食吨数如下(“+“表示进库,“”表示出库):+26,﹣32,﹣20,+34,﹣28,﹣30.(1)经过这3天,如果粮库里还有粮食450吨,那么3天前粮库里存粮多少吨?(2)如果进出库粮食的装卸费都是15元/吨,那么这3天公司支付的装卸费共多少元?23. 对于有理数a ,b ,n ,d ,若|-||-|a n b n d +=,则称a 和b 关于n 的“相对关系值”为d ,例如:21313-+-=,则2和3关于1的“相对关系值”为3.(1)3-和5关于1的“相对关系值”为__________.(2)若a 和2关于3的“相对关系值”为10,求a 的值.24. a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a|=5,|b|=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)A ,B 两点相距多少个单位长度?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数;(4)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2 019次后,求P点表示的数.。
2023年7月2日初中数学作业学校:___________姓名:___________班级:___________考号:___________A .B .. . ..,,,则下列不等关系式中正确的是( )342018a =2019b =2020c =则翻转2022次后,点C 所对应的数是( )A .2020B .2021C .2022D .202310.一只小球落在数轴上的某点处,第一次从处向右跳1个单位到处,第二次从向左跳2个单位到处,第三次从向右跳3个单位到处,第四次从向左跳4个单位到处…,若小球按以上规律跳了次时,它落在数轴上的点处所表示的数恰好是,则这只小球的初始位置点所表示的数是( )A .B .C .D .二、填空题15.已知、均为数轴上的点,到原点的距离为长度,且在的左边,则点表示的数为18.如果物体从A 点出发,按照A→B (第1步)→C (第二步)0P 0P 1P 1P 2P 2P 3P 3P 4P ()23n +23n P +3n -0P 4-5-6n +3n +A B A B A B三、解答题21.有20筐红萝卜,以每筐25千克为标准,超过记正不足记负来表示,记录如下:(1)求m、n的值;(2)①情境:有一个玩具火车如图1所示,放置在数轴上,将火车沿数轴左右水平移AB参考答案:故选:D .【点睛】本题主要考查了绝对值的应用,数轴上两点之间的距离,理解绝对值的意义,掌握距离的求法是解题的关键.4.B【分析】由图可知,和实数之间的距离是6,因此要知道的值,只需要加6即可.【详解】解:将刻度尺放在数轴上(数轴的单位长度是),刻度尺上的和分别对应数轴上表示和实数的两点,∵0到6之间是6个单位,∴,∴,故答案为:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.5.C【分析】分别根据有理数的分类以及正数和负数的定义逐一判断即可.【详解】解:A .整数分为正整数、零和负整数,原说法错误,故本选项不合题意;B .有理数包括分数,原说法错误,故本选项不合题意;C .正分数和负分数统称为分数,说法正确,故本选项符合题意;D .不带“-”号的数就是正数,说法错误,如0既不是正数,也不是负数,故本选项不合题意.故选:C .【点睛】本题考查了正数和负数以及有理数,掌握相关定义是解答本题的关键.6.C【分析】用加上时差,再根据有理数的加法运算求解,然后解答即可.【详解】解:∵,∴如果北京时间是月日,那么巴黎时间是月日故选:C .【点睛】本题考查了有理数的加法,理解时差的正、负的意义是解题的关键.2-x x 2-1cm 0cm 6cm 2-x (2)6x --=4x =5()572+-=-1026500:102522:00【点睛】本题主要考查了数轴的知识、绝对值的知识,难度不大,分情况讨论是解答的关键.13.【分析】根据正负数的实际意义,利用有理数加法运算法则求解即可得到答案.【详解】解:根据题意得:,冰箱冷冻室的温度为℃,调高了℃后的温度是℃,故答案为:.【点睛】本题考查正负数的实际意义解决实际问题,掌握有理数加法运算法则是解决问题的关键.14./【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【详解】解:由题意,该圆沿数轴向左滚动1周的距离为个单位长度,则该圆沿数轴向左滚动1周时,点A 的对应点表示的数是,故答案为:.【点睛】本题考查实数与数轴、圆的周长公式,理解数与数轴上的点的对应关系是解答的关键.15.或【分析】根据题意得到点所表示的数是,根据两点间的距离,求得点所表示的数.【详解】∵点到原点的距离等于,∴点所表示的数是,∵点到点的距离是,且在的左边,∴点表示的数是:或,综上所述,点表示的数是或,故答案为:或.【点睛】此题考查数轴,解题的关键是数形结合思想,进行分类讨论.16.6【分析】在数轴上找出点和,找出两点之间的整数即可得出结论.【详解】解:依照题意,画出图形,如图所示.1-321-+=-3-21-1-1π-1π-+πA '1π-1π-15-A 3±B A 3A 3±B A 2B A B 321-=325--=-B 15-15- 2.1- 3.3在和两点之间的整数有:,,0,1,2,3,共6个,故答案为:6.【点睛】本题考查了数轴,解题的关键是画出数轴,利用数形结合的方法解答.17.4或5或6【分析】由线段总长度及三条线段的长度之比,可得三条线段的长度,再分情况讨论即可.【详解】解:∵线段长为8,这三条线段的长度之比为,,∴这三条线段的长度分别为2,2,4,若剪下的第一条线段长为2,第2条线段长度也为2,则折痕表示的数为:;若剪下的第一条线段长为2,第2条线段长度为4,则折痕表示的数为:;若剪下的第一条线段长为4,第2条线段长度为2,则折痕表示的数为:;∴折痕表示的数为4或5或6,故答案为:4或5或6.【点睛】本题考查数轴与线段综合,列出三条线段所有可能的顺序是解题的关键.18.252【分析】先求出由A 点开始按照A→B (第1步)→C (第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,再用2013除以此步数即可.【详解】解:∵如图物体从点A 出发,按照A→B (第1步)→C (第2步)→D→A→E→F→G→A→B→…的顺序循环运动,此时一个循环为8步,即一个循环经过B 一次,∴2013÷8=251…5.即2013=251×8+5∴经过第2013步后物体共经过B 处252次.故答案为:252.【点睛】本题考查的是根据运动顺序找规律的题目,理解题意是解题的关键,找到规律是本题的重点.2.1-3.32-1-1:1:2()81122∴÷++=1214++=1225++=1416++=,。
人教版数学七年级上册第一章《有理数》培优测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.据相关报道,开展精准扶贫户工作五年来,我国约有5500万人摆脱贫困,国家发放扶贫资金共375亿元.将375亿用科学记数法表示为()A.375×107B.3.75×1010C.3.75×109D.37.5×1082.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.b>a B.ab>0 C.b—a>0 D.a+b>03.下列计算正确的是()A.(﹣16)÷(﹣4)=﹣4 B.﹣|2﹣5|=3C.(﹣3)2=9 D.(﹣2)3=﹣64.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是()A.27.1元B.24.5元C.29.5元D.25.8元5.如果|a|=7,|b|=5,试求a-b的值为()(A)2(B)12(C)2和12(D)2;12;-12;-26.一根1米长的小木棒,第一次截去它的13,第二次截去剩余部分的13,第三次再截剩余部分的13,如此截下去,第五次后剩余的小木棒的长度是()A.(23)5B.1﹣(23)5C.(13)5D.1﹣(13)57.下列表述中,正确的是()A.有理数有最大的数,也有最小的数B.有理数有最大的数,但没有最小的数C.有理数有最小的数,但没有最大的数D.有理数既没有最大的数,也没有最小的数8.下列说法正确的是( ) A .绝对值等于3的数是﹣3B .绝对值不大于2的数有±2,±1,0C .若|a|=﹣a ,则a≤0D .一个数的绝对值一定大于这个数的相反数9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则200!199!的值为( ) A .200B .199C .200199D .110.当2<a <3时,代数式|3﹣a|﹣|2﹣a|的结果是( ) A .﹣1 B .1C .2a ﹣5D .5﹣2a二、填空题 11.﹣23的绝对值的相反数与﹣223的相反数的差是_____. 12.如果两个数的绝对值相等,那么这两个数_____.13.已知m 为最大的负整数,x 与y 互为相反数,则(x+y )2018+m 2=_____. 14.在(-1)2 017,(-1)2 018,-22,(-3)2中,最大的数与最小的数的和等于______. 15.计算(-34)×(-112)÷(-214)的值为______. 16.有理数a ,b ,c 在数轴上的位置如图所示,化简|b ﹣c|﹣|c|+|c ﹣a|=_____.三、解答题 17.计算(1)﹣(3﹣5)+32×(1﹣3) (2)﹣32﹣3122(1)293-⨯-- . 18.(1)当a≠0时,求aa的值.(写出解答过程) (2)若a≠0,b≠0,且a a +b b=0,则abab 的值为 .(3)若ab >0,则a a+b b +abab 的值为 . 19.某公司的线路检修小组在一条东西方向的马路上工作,从甲地出发,如果规定向东行驶为正,向西行驶为负,下表记录的是检修小组从甲地出发后连续七次行驶情况.(单位:km,每次行驶终点为下次行驶的起点)解答下列问题:(1)检修小组在第几次纪录时距甲地最远?(2)检修小组收工时,位于出发点甲地哪一侧,距甲地多远?20.股民李叔叔在上周星期五以每股11.2元买了一批股票,共购进5000股,下表为本周星期一到星期五该股票的涨跌情况:(1)求本周星期三收盘时每股的价格;(2)本周内每股最高是多少元?最低是多少元?(3)已知李叔叔买进股票时支付了0.15%的手续费,卖出时还需支付成交额的0.15%手续费和0.1%的交易税,如果李叔叔在星期五收盘时将全部的股票卖出,你对他的收益情况如何评价?21.一只小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左记为负数,爬行的各段路程依次为+5,﹣3,+11,﹣8,﹣6,+12,﹣10.(单位:厘米)(1)小虫离开O点最远是厘米.(2)小虫最后是否回到出发点O的位置?为什么?(3)在爬行过程中,每爬行1厘米被奖励两粒芝麻,则小虫可得多少粒芝麻?22.把下列各数填入相应的大括号内:﹣13.5,0,+27,﹣45,227,﹣10,3.14(1)正数集合:{}(2)负数集合:{}(3)整数集合:{}(4)分数集合:{}(5)非负整数集合:{}23.请观察下列定义新运算的各式:1⊙3=1×4+3=7;3⊙(﹣1)=3×4﹣1=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4﹣3=13.(1)请你归纳:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a﹣b)⊙(2a+b),其中a是最大的负整数,b是绝对值最小的整数.参考答案1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将375亿用科学记数法表示为3.75×1010.故选B.【点睛】本题考查科学记数法—表示较大的数,解题关键是小数点移动了多少位,n的绝对值与小数点移动的位数相同2.B【分析】由数轴可得b<a<0,从而可以判断选项中的结论是否正确,从而可以解答本题.【详解】解:∵由数轴可得,b<a<0,∴a>b,(故A错误);ab>0,(故B正确);b-a<0,(故C错误);a+b<0,(故D错误).故选:B.【点睛】本题考查数轴,解题的关键是明确数轴的特点,能根据各数的大小判断选项中的结论是否成立.3.C【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.【详解】解:A、(﹣16)÷(﹣4)=4,故A错误;B、﹣|2﹣5|=﹣3,故B错误;C、(﹣3)2=9,故C正确;D、(﹣2)3=﹣8,故D错误;故选C.【点睛】本题考查有理数的除法,绝对值的化简,有理数的减法,有理数的乘方,解题关键是熟练掌握法则.4.B【分析】本题是一道较为基础的题型,考查的是对正数和负数的实际意义的熟练程度,对于本题而言,星期五收盘时,该股票每股是:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元).【详解】解:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元),故选B.【点睛】本题考查正数和负数的实际意义,解题关键是掌握本题中正数和负数的意义,这样可以提高解题的速度和准确率.5.D【解析】绝对值等于7的数有正负7,绝对值等于5的数有正负5.6.A【分析】根据题意可以得到第五次后剩下的小棒的长度,从而可以解答本题.【详解】解:由题意可得,第五次后剩下的小棒的长度是:(1−13)(1−13)(1−13)(1−13)(1−13)=(23)5米,故选A.【点睛】本题考查有理数的乘方,解答本题的关键是明确题意,求出第五次后剩下的小棒的长度.7.D【分析】根据有理数的分类,可得答案.【详解】解:有理数既没有最大的数,也没有最小的数.故选:D.【点睛】本题考查了有理数,解决本题的关键是熟记没有最大的有理数,也没有最小的有理数.8.C【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选C.【点睛】本题考查的是绝对值的性质及相反数的定义,解答关键是熟知以下知识:(1)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;(2)相反数:只有符号不同的两个数叫互为相反数.9.A【分析】首先观察已知条件,不难找到规律n!=n×(n-1)×(n-2)×…×2×1,注意不要找错对应关系;然后根据新运算法则将待求式转化为一般的算式,再进行化简、计算即可求出所要求的结果. 【详解】解:根据题中的新定义得:原式=2001991 1991981⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯=200,【点睛】本题考查定义新运算,有理数的除法,有理数的乘法,解题关键是要根据题目所给的已知条件得到新运算的法则.10.D【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:∵2<a<3,∴3﹣a>0,2﹣a<0,∴|3﹣a|﹣|2﹣a|=3﹣a﹣a+2=5﹣2a,故选D.【点睛】本题考查的是绝对值的性质,解答关键是熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.11.﹣313.【分析】根据绝对值的性质和相反数的定义分别求出−23的绝对值的相反数与−223的相反数,再相减即可得出.【详解】解:﹣23的绝对值的相反数为﹣23,﹣223的相反数为223,﹣23﹣223=﹣313.故答案为﹣31 3【点睛】本题考查有理数的减法,相反数,绝对值,解题关键是熟练掌握绝对值、相反数的意义. 12.相等或互为相反数.【分析】根据绝对值的定义及性质可知,一对相反数的绝对值相等,故如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.【详解】解:如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.故答案为相等或互为相反数.【点睛】本题考查绝对值、相反数的意义,解题关键是熟练、准确掌握意义.13.1.【分析】根据有理数中最大的负整数为-1,可得m=﹣1;相反数的定义:实数a与-a叫做互为相反数,0的相反数是0本身,有理数中最大的负整数为-1【详解】解:由题意得:m=﹣1,x+y=0,∴原式=02018+(﹣1)2=1.故答案为1.【点睛】本题考查有理数、相反数、乘方的相关知识,解题关键是有理数中最大的负整数为-1,有理数中最大的负整数为-1.14.5【详解】(-1)2 017=-1,(-1)2 018=1,-22=-4,(-3)2=9,其中最大的数是9,最小的数是-4,它们的和等于5.故答案是5.15.﹣12.【分析】因为负数的倒数仍然是负数,所以把除法变成乘法,除数变为它的倒数后,先定积的符号,再算绝对值的积.【详解】解:(﹣34)×(﹣112)÷(﹣214)=(-34)×(-32)×(﹣49)=﹣12.故答案为﹣12.【点睛】本题考查有理数的混合运算,解题关键是运算顺序及符号的确定.16.a+b﹣c.【分析】首先根据数轴,确定a、b、c的大小及b﹣c 、c﹣a正负,然后根据绝对值的意义化简,绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号.①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│= -a (a为负值,即a≤0 时)【详解】解:由图知:c<b<0<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c|+|c﹣a|=b﹣c+c+a﹣c=a+b﹣c.故答案为a+b﹣c.【点睛】本题考查绝对值意义和整式的加减,解题关键是根据数轴上点的位置确定需要化简的式子的绝对值.17.(1)﹣16;(2)﹣811 12.【分析】(1)先算乘方,再算乘除,最后算加减即可;(2)先算乘方和绝对值,再算乘除,最后算加减即即可. 【详解】解:(1)﹣(3﹣5)+32×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(2)﹣32﹣31221293⎛⎫-⨯--⎪⎝⎭.=﹣9﹣(﹣278)×29﹣23=﹣9+34﹣23=﹣811 12.【点睛】本题考查有理数的混合运算,解题关键是运算顺序、乘方、绝对值化简. 18.(1)1或-1;(2)﹣1;(3)3或﹣1.【分析】(1)当a≠0时,可能a>0.也可能a<0,所以需要分两种情况解答.(2),因为两个式子的和为0,所以两个加数互为相反数,a、b是异号. (3)需要分a、b同号和异号两种情况解答.【详解】解:(1)当a>0时,|a|=a,则原式=1;当a<0时,|a|=﹣a,则原式=﹣1;(2)∵a≠0,b≠0,且aa+bb=0,∴a与b异号,即ab<0,∴|ab|=﹣ab,则原式=﹣1;(3)∵ab>0,∴a与b同号,当a>0,b>0时,原式=1+1+1=3;当a<0,b<0时,原式=﹣1﹣1+1=﹣1.故答案为(2)﹣1;(3)3或﹣1【点睛】本题考查绝对值的意义及式子化简,解题关键是分类讨论.19.(1)检修小组在第五次纪录时距甲地最远;(2)检修小组位于出发点甲地东侧,距甲地5千米.【分析】(1)分别计算每次距A地的距离,进行比较即可;(2)收工时距A地的距离等于所有记录数字的和的绝对值;【详解】解:(1)第一次距甲地|﹣4|=4千米;第二次距甲地:|﹣4+7|=3千米;第三次距甲地:|﹣4+7﹣10|=7千米;第四次距甲地:|﹣4+7﹣10+9|=2千米;第五次距甲地:|﹣4+7﹣10+9+6|=8千米;第六次距甲地:|﹣4+7﹣10+9+6﹣1|=7千米;第七次距甲地:|﹣4+7﹣10+9+6﹣1﹣2|=5千米.所以检修小组在第五次纪录时距甲地最远;(2)因为收工时,﹣4+7﹣10+9+6﹣1﹣2=5千米,所以此时检修小组位于出发点甲地东侧,距甲地5千米.【点睛】此题主查考查正负数在实际生活中的应用及有理数的加减混合运算,掌握运算法则是解答此题的关键.20.(1)本周星期三收盘时每股的价格为11.7元;(2)本周内每股最高是12.2元,最低是11.5元;(3)盈利2768.5元.【分析】(1)用每股原价加上每天每股涨跌数就是该天每股的钱数,依次类推,计算出周三股价;;(2),根据统计表所提供的每天涨跌的数据,计算出每一天的股价,从中找出本周内最高价每股的钱数,同理,计算出本周内最低价每股的钱数;(3),用周五每股的钱数乘1000,再分别减去买进股票时付的手续费、卖出时付的手续费、交易税,即得他的收益.【详解】解:(1)根据题意得:11.2+0.3+0.4+(﹣0.2)=11.7(元),则本周星期三收盘时每股的价格为11.7元;(2)星期一收盘价格为11.2+0.3=11.5(元),星期二收盘时价格为11.5+0.4=11.9(元),星期三收盘时价格为11.9﹣0.2=11.7(元),星期四收盘时价格为11.7+0.5=12.2(元),星期五收盘时价格为12.2﹣0.4=11.8(元),所以本周内每股最高是12.2元,最低是11.5元;(3)买进的费用:5000×11.2×(1+0.15%)=56084(元);卖出时的受益:5000×11.8×(1﹣0.15%﹣0.1%)=58852.5(元).则盈利:58852.5﹣56084=2768.5(元).【点睛】本题考查如何根据统计表所提供的数据,进行有关计算.解题关键是:读懂表格中正、负数的含义,涉及的知识点有理数的大小比较、有理数的加减、百分数乘法的应用等.21.(1)13;(2)小虫最后没有回到出发点O的位置;(3)小虫可得110粒芝麻.【分析】(1)由于向右爬行的路程记为正数,向左爬行的路程为负数,所以要计算出它爬行所有数的和,于是可判断到离出发点多远;(2)依次往后计算看哪个数最大即可得到离O点的最远距离;(3)计算所有数的绝对值的和得到小虫爬行的路程,再把路程乘以2得到小虫共得的芝麻.【详解】解:(1)第一次爬行距离O点是5cm,第二次爬行距离O点是5﹣3=2(cm),第三次爬行距离O点是2+11=13(cm),第四次爬行距离O点是13﹣8=5(cm),第五次爬行距离O点是|5﹣6|=|﹣1|=1(cm),第六次爬行距离O点是﹣1+12=11(cm),第七次爬行距离O点是11﹣10=1(cm),从上面可以看出小虫离开O点最远是13cm.故答案为13;(2)小虫最后没有回到出发点O的位置.理由如下:∵(+5)+(﹣3)+(+11)+(﹣8)+(﹣6)+(+12)+(﹣10)=1(cm ), ∴小虫最后没有回到出发点O 的位置;(3)(|+5|+|﹣3|+|+11|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=55×2=110(粒),所以小虫可得110粒芝麻.【点睛】本题考查数轴,正数和负数,22.见解析【分析】利用正数,负数,整数,分数,以及非负整数定义判断即可.【详解】(1)正数集合:{+27,227,3.14}; (2)负数集合:{413.5,,105---}; (3)整数集合:{0,+27,10-};(4)分数集合:{13.5-,45-,227,3.14}; (5)非负整数集合:{0,+27},【点睛】此题考查了有理数,熟练掌握各自的定义是解本题的关键.23.(1)4a +b ;(2)≠;(3)-6.【分析】(1)根据题目中的式子可以猜出a ⊙b 的结果;(2)根据(1)中的结果和a≠b ,可以得到a ⊙b 和b ⊙a 的关系;(3)根据(1)中的结果可以得到(a-b )⊙(2a+b )的值,【详解】解:(1)由题目中的式子可得,a ⊙b=4a+b ,故答案为4a+b ;(2)∵a ⊙b=4a+b ,b ⊙a=4b+a ,∴(a ⊙b )-(b ⊙a )=(4a+b )-(4b+a )=4a+b-4b-a=4(a-b)+(b-a),∵a≠b,∴4(a-b)+(b-a)≠0,∴(a⊙b)≠(b⊙a),故答案为≠;(3)(a-b)⊙(2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b.由题意a=-1,b=0∴原式=6×(-1)-3×0=-6.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
第一章有理数培优训练2024-2025学年七年级上册数学人教版1.1 正数和负数考点 1 认识正数和负数1. 下列各数:−14,+2,3.5,−9,0,+27,25%,−π,0.12.其中,是负数的有 ( )A.2个B.3个C.4个D.5个考点2 用正数、负数表示具有相反意义的量2.下列选项中,是具有相反意义的量的是 ( )A.气温升高6℃与气温零下8 ℃B.增加 2 L与减少2kgC.超过0.5mm 与不足0.3mD. 向东走 4k m和向南走 5km3.某粮店出售的三种品牌的面粉袋上,分别标有“(50±0.1) kg、(50±0.2) kg、(50±0.3) k g”的字样,从中任意拿出两袋,它们的质量最多相差 ( )A.0.8kgB.0.6kgC.0.5kgD.0.4kg4.以下的五个时钟显示了同一时刻国外四个城市时间和北京时间,若表中给出的是国外四个城市与北京的时差,则这五个时钟对应的城市从左到右依次是 ( )A.C. 伦敦、纽约、北京、罗马、悉尼D.北京、罗马、伦敦、悉尼、纽约易错点对正数、负数、0的概念理解不透5. 下列说法:①带正号的数就是正数,带负号的数就是负数;②海拔高度是0米表示没有高度;③0是正数与负数的分界;④任意一个正数的前面加上“-”号就是负数;⑤字母a既是正数,又是负数;⑥不大于0的数一定是负数.正确的有 .(填序号)1.2 有理数考点1有理数的概念与分类1.下列说法中,正确的是 ( )A. 非负数一定是正数B.有最小的正整数,也有最小的有理数C. 前面有“-”号的数一定是负数D.最大的负整数是-12.将各数填在相应的集合的圈里:-8,+6,75,-0.4,25%,0,-2023,-2.8, 37考点2 数轴(重点)3.在数轴上距表示-2.5的点有3.5个单位长度的点所表示的数是 ( )A. -6B.1C.-1或6D.-6或1 >> 对点专练P4,P334.有理数a,b 在数轴上的位置如图所示,则数a,b,-a,-b 的大小关系为 ( )A. -a<-b<b<aB.-a<b<a<-bC.-a<b<-b<aD.-a<-b<a<b考点3 相反数5.下列各组数中,互为相反数的是 ( )A.-(+7)与+(-7)B.−12与+(-0.5)C.−54与 45 D. +(-0.01)与-(-0.01) 考点4 绝对值(重点)6.下列四个数中,最大的数是 ( )A.-(-1021)B.|- 022|C.-|-1023|D.-(+1024)7.若 |−m|=|−12|,则m 的值为 .易错点 多重符号化简时,正负号易出错8.(1)相反数等于本身的数是 ;化简−[−(+3)]=.(2)当+1的前面有99 个负号时,化简结果是 ,当-2的前面有 99 个负号时,化简结果是 .能力诊断1.若|a-1|与|b-2|互为相反数,则a+b 的值为 ( )A.3B. -3C. 1D. -12.如图,某同学用直尺画数轴,数轴上点A ,B 分别在直尺的1cm ,9 cm 处,若点A 对应-2,直尺的0刻度位置对应-4,则点 B 对应的数为 ( )A.6B.7C.12D.143.把下列各数对应的序号填在相应的大括号里:①-8,②π,③-121,④ 227,⑤4,⑥-0.9,⑦5.4,⑧-3.6,⑨0.负有理数集合:{ …}; 正分数集合:{ …};自然数集合:{ …}; 非正整数集合:{ …}.4.|m-n|表示数轴上表示数m和数n的两点之间的距离.结合数轴回答下列问题.(1)数轴上表示 3 和2 的两点之间的距离是;表示-2和1的两点之间的距离是.(2)如果|x-1|=3,那么x= .(3)若数轴上表示数a的点位于-4与2之间,则|a+4l+|a-2l= .(4)|a-(-3)|+|a-5|的最小值是 .5.如图,A,B分别为数轴上的两点,点A 对应的数是-20,点B 对应的数为80.现在有一只电子蚂蚁P从点 B出发,以2个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A 出发,以3个单位长度/秒的速度向右运动,设两只电子蚂蚁在数轴上的点 C相遇.(1)求出点 C 在数轴上所对应的数.(2)何时两只电子蚂蚁在数轴上相距15个单位长度?专题数轴与绝对值类型一数轴1. 数轴上表示整数的点称为整点.某数轴的单位长度为1cm,若在这条数轴上任意画一条长1 000 cm的线段,则线段盖住的整数点的个数是 ( )A. 1 000B. 1 001C. 1 000 或 1 001D.999 或1 00 02.在数轴上,点A,B在原点O 的两侧,分别表示数a,2,将点A 向右移动1个单位长度得到点C,若点 B 与点 C到原点的距离相等,则a的值为 ( )A. -3B. -2C. -1D. 13. 如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数-556将与圆周上的数字 重合.4. 一把刻度尺在数轴上的位置摆放如图①所示,刻度尺右端点 B 的刻度为“0”,刻度“10c m ”和“25cm ”分别与数轴上表示数0和-2 的点重合,现将该刻度尺沿数轴向右平移4个单位长度,如图②,使刻度尺的左端点 A 与数轴上表示的数1重合,则该刻度尺的长度为 cm.类型二 绝对值5. 若a 的绝对值等于它的相反数,则a 的值不可以是 ( )A. -1B.-0.5C.0D. 16. 若|a-1|+|b-2|=0,则a+b 的相反数是 ( )A. 1B.3C. -3D. -27. 已知 |73−a|=a −73,请写一个符合条件的整数a : . 8. 根据数轴,求绝对值不大于11.1的整数有多少个.第一章 章 末 检 测一、 选择题1.下列各数中: +3,-π,- 23,9,- 227,-(-8),0,-|3|,正有理数有 ( )A.1个B.2 个C.3 个D. 4个2.下列说法:①-a 一定是负数;②0不是有理数;③有理数都可以用数轴上的点来表示;④任何有理数必定等于或小于它的绝对值.其中正确的个数为 ( )A.1B.2C.3D.43.若m表示正整数,且−3m >−37,则m的值可以是 ( )A.3B.5C.7D.94.规定45分钟为1个单位时间,并将每天上午9时记为0,9时以前的时间记为负数,9时以后的时间记为正数,例如:8:15记为-1;9:45记为+1;以此类推,则上午7:30应记为( )A.+2B. -2C.-1.50D.-7.305.在数轴上有间隔相等的四个点M,N,P,Q,所表示的数分别为m,n,p,q,其中有两个数互为相反数,若m的绝对值最大,则数轴的原点是 ( )A. 点 NB.点 PC.点P或点N,P的中点D.点 P或点P,Q的中点二、填空题6.-100的相反数是;绝对值是 .7. 点A,B,C在同一条数轴上,其中点A,B表示的数分别为-4,1,若BC=2,则AC等于 .8. 按一定规律排列的一列数依次为2, −53,105,−177,269,−3711,…·按此规律排列下去,第10个数是 .三、解答题9. 根据以下信息,完成相应的任务:a是最大的负整数,b是最小的正整数,c是负数且数轴上表示c的点到原点的距离为2,d的相反数是其本身.任务:求出有理数a,b,c,d的值,并用“>”将值连接起来.10. 邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)由数轴可得 C村离A 村 km;(3)若摩托车的油耗为每千米0.03 L,求邮递员这次出行的耗油量.11. 如图,一只甲虫在:5×5的方格(每小格边长为1m)上沿着网格线运动.它从A 处出发去看望B,C,D处的其他甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),,从B到A记为:B→A(−1,−4),,其中第一个数表示左右方向,第二个数表示上下方向.(1)A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A 处去P 处的行走路线依次为(+2,+1),(+3,+2),(−2,−1),(−2,−2),请在图中标出点 P 的位置.。
有理数培优题一、填空:一、如图,四个有理数在数轴上对应点M ,P ,N ,Q ,假设点P ,N 表示的有理数互为相反数,那么图中表示绝对值最大的数的点是________. 二、假设∣a ∣=-a,那么a______0.3、已知|a|=3,|b|=4,且a<b ,则a -ba +b 的值为________.4、假设﹣1<n <0,那么n 、n 2、 的大小关系是 . 五、将毫米的厚度的纸对折20次,列式表示厚度是 。
六、已知||3,||2,||a b a b a b ==-=-,那么a b += 7、|2||3|x x -++的最小值是 。
八、在数轴上,点A 、B 别离表示2141,-,那么线段AB 的中点所表示的数是 。
九、假设,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,那么()20102a b mn p p++-= 。
10、假设abc ≠0,那么||||||a b c a b c++的值是 . 1一、以下有规律排列的一列数:一、43、32、85、53、…,其中从左到右第100个数是 。
1二、已知四个互不相等的整数a ,b ,c ,d 知足abcd=77,那么a+b+c+d=________.13、如图,数轴上的A ,B ,C 三点所表示的数别离是a ,b ,c ,其中AB =BC ,若是|a |>|b |>|c |,那么该数轴的原点的位置应该在( )A .点A 的左侧B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边14、如图,数轴上一动点A 向左移动2个单位长度抵达点B ,再向右移动5个单位长度抵达点C .假设点C 表示的数为0,那么点A 表示的数为1五、小亮在计算28-N 时,误将“-”号看成了“÷”号,取得的结果为-7,那么28-N 的正确值为 1六、已知:23C =212×3⨯=3,35C =321345⨯⨯⨯⨯=10,46C =4×3×21?3×4×5×6=15,…,观看上面的计算进程,寻觅规律并计算610C =_______.17、假设三个有理数,,a b c 知足||||||1a b c a b c ++=,那么||abc abc的值为1八、方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个 二、解答问题:一、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。
第二章 有理数及其运算(B 卷·培优卷)(考试时间:120分钟 试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在2--、()2--、()2-+、()2+-、42-,负数有( )个.A .2B .3C .4D .52.长江干流上的乌东德、白鹤滩、溪洛渡、向家坝、三峡和葛洲坝6座梯级电站,共同构成目前世界最大的清洁能源走廊.建成一年来,6座电站累计发电量突破2700亿千瓦时,将数据“270000000000”用科学记数法表示为( )A .8270010´B .102.710´C .112.710´D .110.2710´【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时n 是负整数;由此进行求解即可得到答案.【详解】解:1127000000000 2.7010=´,故选:C3.数轴上表示 x 的点与表示 8- 的点的距离为( )A .8x +∣∣B .8x -∣∣C .8x +D .8x--4.下列说法中,正确结论的序号是( )①一个数的绝对值一定不是负数;②一个数的相反数一定是负数;③若a b =,则a b =或0a b +=;④若a b >,则a b >.A .①②B .②④C .③④D .①③5.若x 是一个有理数,且31x -<<,则13x x -++=( )A .22x +B .22x --C .4D .-2【答案】C【分析】根据31x -<<判断x 在数轴上的位置,从而判断1x -和3x +的正负性,通过绝对值的非负性的解出答案.【详解】解:31x -<<Q \在数轴上x 在1的左边,3-的右边10x \-<,x +3>01x \-为负数,3x +为正数6.已知|2|3x +=,249y =,=x y y x --,则x y +的值为( )A .8或6-B .12-或2C .6-或12-D .2或87.有理数a ,b 在数轴上的对应点的位置如图所示,则下面式子中正确的是( )A .1>-a B .a b <C .0a b +<D .0a b ->8.等边ABC V 在数轴上的位置如图所示,点A 、C 对应的数分别为0和1-.若ABC V 绕顶点沿顺时针方向在数轴上连续翻转,翻转一次后点B 所对应的数为1,则连续翻转2023次后点B 所对应的数是( )A .不对应任何数B .2021C .2022D .2023【答案】D【分析】根据ABC V 是等边三角形,找出它的运动规律并进行计算即可.【详解】解:由题意可得,每3次翻转为一个循环组依次循环∵202336741¸=¼¼,∴翻转2023次后点B 在数轴上,∴点B 对应的数是674312023´+=.故选:D .【点睛】本题考查了数轴,找到ABC V 的运动规律是解决此类问题的关键.第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.实数a 在数轴上的位置如图所示,则a ,a -,1a,2a 从小到大排列为:a-和6,点P表示的数为x,点P到B的距离是点P到A距离的3 10.在数轴上,点A、B表示的数分别是10倍,则点P表示的数为.11.已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于4的负数,则()()20212m a b cd m cd ++++的值为 .【答案】13【分析】先根据相反数性质、倒数定义及绝对值的性质得出a +b =0,cd =1,m =-4,再代入计算即可.【详解】根据题意知a +b =0,cd =1,m =-4,()()2021222021(4)(01)(4)1164113m a b cd m cd ++++=-++´-+=-+=故答案为:13【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则、相反数性质、倒数定义及绝对值的性质.12.一只跳蚤在数轴上从原点开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…依此规律跳下去,当它跳第20次落下时,落点处离原点的距离是个单位长度.13.如图,已知点A 、点B 是直线上的两点,14AB =厘米,点C 在线段AB 上,且5BC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B 同时出发在直线上运动,则经过 秒时线段PQ 的长为8厘米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.把下列各数填入相应集合的括号内: 6.5+,123-,0.5,0, 3.2-,13,9-,152,1-, 3.6-.(1)正数集合:{______…};(2)整数集合:{______…};(3)非负数集合:{______…};(4)分数集合:{_______…}.15.计算:(1)37-+;(2)512.584æö-¸´-ç÷èø;(3)()1731123124æö+-´-ç÷èø;(4)()20221135322---+¸´.16.已知有理数a 、b 、c 在数轴上位置如图所示,化简:|1|||||a c b a b c +---++.【答案】21b -【分析】本题考查数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.根据数轴可以判断a 、b 、c 的正负和绝对值的大小,从而可以化简题目中的式子.【详解】解:根据数轴,得10,0,0a c b a b c +<->++<,|1|(1),||,||()a a c b c b a b c a b c \+=-+-=-++=-++,|1|||||a cb a bc \+---++(1)()()a cb a bc =-+--+++1a c b a b c=---++++21b =-.17.为切实做好杭州亚运会安全保卫工作,一天下午杭州市某街道张警官开车从警务所出发对所辖街道重点单位的门卫值勤岗进行一次巡查。
人教版七年级数学 第1章 有理数 培优测试卷一附答案解析(全卷总分150分)一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D.)(33a a --=6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )0 AGF E D C BA A. 464010⨯ B. 56410⨯ C. 66410⨯.D. 6410⨯7. 12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( )A. 万位B. 十万位C. 百万位D. 千位二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 如果x 2=9,那么x 3= .6. 如果2-=-x ,则x = .7. 化简:|π-4|+|3-π|= .8. 绝对值小于2.5的所有非负整数的和为 ,积为 . 9.使25++-x x 值最小的所有符合条件的整数x有 .10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 .12. 已知()0422=-++y x ,求x y 的值为 .13. 近似数2.40×104精确到 位,它的有效数字是 . 14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 . 15. 观察等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n -1)= .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 三、解答题(共82分)1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121 (999)110001-2. (5分)计算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2016+a 2017.6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:20162)2017+x-a++-.b++cd)()((cdab7. (6分)已知│a│=4,│b│=3,且a>b,求a、b的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与.
联系电话:主校6296326(健康街) 常年开设各学科预科与同步班.
1
树诚初一《有理数》培优测试卷
一、选择题
1、在–1,–2,1,2四个数中,最大的一个数是( ) (A )–1 (B )–2 (C )1 (D )2
2、有理数3
1的相反数是( )
(A )
3
1 (B )3
1- (C )3 (D ) –3
3、计算|2|-的值是( ) (A )–2 (D )2
1-
(C )
2
1 (D )2
4、有理数–3的倒数是( ) (A )–3 (B )3
1-
(C )3 (D )
3
1
5、π是( )
(A )整数 (B )分数 (C )有理数 (D )以上都不对
6、计算:(+1)+(–2)等于( )
(A )–l (B ) 1 (C )–3 (D )3 7、计算3
2
a a ⋅得( )
(A )5a (B )6a (C )8a (D )9a 8、计算()23x 的结果是( )
(A )9x (B )8x (C )6
x (D )5
x
9、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( ) (A )4
101678⨯千瓦
(B )6
1078.16⨯千瓦 (C )710678.1⨯千瓦 (D )8101678.0⨯千瓦
10、1999年国家财政收入达到11377亿元,用四舍五入法
保留两个有效数字的近似值为( )亿元
(A )4
101.1⨯ (B )5
101.1⨯ (C )3
104.11⨯ (D )3103.11⨯
11、用科学记数法表示0.0 0625,应记作( )
(A )110625.0-⨯ (B )21025.6-⨯(C )3105.62-⨯ (D )410625-⨯
12、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )3
13、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )
(A )2 (B )–2 (C )1 (D )–1 14、如果a a =||,那么a 是( )
(A )0 (B )0和1 (C )正数 (D )非负数 15、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )
(A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大
(C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大
16、当6-<a 时,化简||3|3|a +-的结果为 ( )
(A)6--a (B)a +6 (C)a - (D)a 二、填空题:
17、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。
18、比较大小:–π________–3.14(填=,>,<号)。
19、计算:()()4
6
2
2-÷-=___________。
20、()642
=。
21、一个数的倒数等于它的本身,这个数是_____________。
22、已知
0|
|||=+
b b a
a ,则
=⨯⨯b
a b a ||___________。
三、解答题:
23、在数轴上表示下列各数:0,–2.5,2
13,–2,+5,
3
11。
并且按照从小到大的顺序排列。
24、直接写出答案: (1)|2
3||32|+
÷-
=____________;
(2)()()75-++=____________;
学校___________________ 班级________________ 学号______________ 姓名__________________
树诚学校集小学.初中.高中全程式培训于一体.聘请有丰富经验与教学技巧的一线优秀教师(教学能手与学科骨干).期待你的参与.
联系电话:主校6296326(健康街) 常年开设各学科预科与同步班.
2
(3)122131⨯⎪⎭
⎫
⎝⎛-=____________;
(4)=⨯4102.1_______________; (5)4
21⎪⎭
⎫
⎝⎛--=_______________;
(6)()
()
2000
1999
11---=_________。
加试部分
一、填空: 1、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5整除。
答:____________。
2、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
3、已知0||=--a a ,则a 是__________数;已知
()01||<-=b ab
ab ,那么a 是_________数。
4、计算:()()()
2000
2
1
111-+-+- =_________。
5、已知()02|4|2
=-++b a a ,则b a 2+=_________。
6、________________________范围内的有理数经过四舍五入得到的近似数3.142。
二、推理题
7、由书中知识,+5的相反数是–5,–5的相反数是5,那么数x 的相反数是______,数 –x 的相反数是________;数b
a 12+-的相反数是
_________;数n m 2
1+
的相反数是____________。
8、因为到点2和点6距离相等的点表示的数是4,有这样的关系()622
14+=
,那么到点100和到点999距离相等
的数是_____________;到点7
6,54-距离相等的点表示的数
是____________;到点m 和点–n 距离相等的点表示的数是________。
9、已知点4和点9之间的距离为5个单位,有这样的关系495-=,那么点10和点2.3-之间的距离是____________;点m 和点n (数n 比m 大)之间的距离是_____________。
10、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来。
由这句话,正数–a 的绝对值为__________;负数–b 的绝对值为________;负数1+a 的绝对值为________,正数–a+1的绝对值___________。
11、已知有理数c b a ,,满足
1
||||||=+
+
c
c b
b a
a ,则
=|
|abc abc ____________。
12、已知|1|x += 4,2
(2)4y +=,求x y +的值。