跳频系统的设计与实现
- 格式:pdf
- 大小:785.26 KB
- 文档页数:47
避塞.甄跳频加密芯片的设计与实现康甜甜(郑州欧丽信大电子信息股份有限公司,河南郑州450006)酾要】本文介绍了怎样使用vH D L硬件描迷语言对基于速代型分组密码避-衙僦濒加密芯片的硬件开发,并使用有限状态机的设计方法在FPG A上最终实现。
同时。
分析了跳濒加密芯片实现的各项参数和特点。
饫键词】加密芯片;退代型分组密码;V H D L;语言;F PG A1跳频加密芯片的设计过程1)跳频加密芯片的整体硬件结构与设计。
根据V H D L语言的基本特点和设计流程的基础上,我们来开发跳频加密芯片。
使用V H D L语言编程时,有许多程序的设计方法,如有限状态机法、流水线法等。
在这里,我们使用V H D L语言的有限状态机设计方法对该跳频加密芯片(简称H SA)进行开发。
在总体设计中,状态机的设计思路就是通过一些敏感信号线控制整个程序在不同的状态之间进行转移,从而控制和启动不同的运算模块进行工作,共同协调完成系统功能。
H SA的整个硬件电路包括时序电路和组合电路,是以系统输入时钟为基准的同步电路。
它主要由接收(R EC EI V E)、计数器(C O U N TE R一64)、中心处理(PR O C ESS)和压缩(C O M PR ESS)四个大的功能漠块构成。
系统C PU通过控制信号线选通该芯片,并由地址总线addO~a dd4和数据总线da t a O—dat a7分别将数据依地址输入芯片内的接收(R EC EIV B模块,同时由时钟线c l k和系统复位线r st控制整个芯片的工作时钟和复位。
接收模块的—部分输出信号rec ei veO—r ec ei v7经计数器模块C O U N T ER_64后输出count er_out信号,与接收模块的另一部分输出信号r ecei ve8一recei vl5共同进入中心处理模块PRO—C ESS,其输出信号pr oces s_out又经压缩模块C O M PR ES S将最终计算结果dat a_t em p及运算就绪信号rdy输送给CP U,从而完成跳频加密芯片的一次运算o2)跳频加密芯片各个功能模块的结构与设计。
点对多点微波通信系统跳频同步的设计实现点对多点微波通信系统跳频同步的设计实现随着无线通信技术的不断发展,点对多点微波通信系统已经成为了现代通信系统中不可或缺的一部分。
而在点对多点微波通信系统中,跳频同步技术的应用则是非常重要的。
本文将介绍点对多点微波通信系统跳频同步的设计实现。
一、跳频同步的基本原理跳频同步是指在跳频通信中,接收端和发送端之间通过一定的同步方式,使得接收端能够正确地接收到发送端发送的跳频信号。
跳频同步的基本原理是通过在发送端和接收端之间建立同步信号,使得接收端能够正确地接收到发送端发送的跳频信号。
在跳频通信中,发送端和接收端之间需要建立一个同步信号,以确保接收端能够正确地接收到发送端发送的跳频信号。
二、跳频同步的设计实现在点对多点微波通信系统中,跳频同步的设计实现需要考虑以下几个方面:1.同步信号的生成在跳频同步中,同步信号的生成是非常重要的。
同步信号的生成需要考虑到发送端和接收端之间的距离、信道的噪声等因素。
通常情况下,同步信号的生成可以采用GPS信号或者其他的同步信号。
2.同步信号的传输在跳频同步中,同步信号的传输也是非常重要的。
同步信号的传输需要考虑到信道的噪声、信号的干扰等因素。
通常情况下,同步信号的传输可以采用数字信号传输技术或者其他的传输技术。
3.同步信号的接收在跳频同步中,同步信号的接收也是非常重要的。
同步信号的接收需要考虑到接收端的灵敏度、信道的噪声等因素。
通常情况下,同步信号的接收可以采用数字信号接收技术或者其他的接收技术。
4.同步信号的处理在跳频同步中,同步信号的处理也是非常重要的。
同步信号的处理需要考虑到信号的噪声、信号的干扰等因素。
通常情况下,同步信号的处理可以采用数字信号处理技术或者其他的处理技术。
三、总结跳频同步是点对多点微波通信系统中非常重要的一部分。
跳频同步的设计实现需要考虑到同步信号的生成、同步信号的传输、同步信号的接收和同步信号的处理等方面。
通过合理的设计和实现,可以有效地提高点对多点微波通信系统的跳频同步效果,从而提高通信系统的可靠性和稳定性。
个人收集整理仅供参考学习通信仿真技术实验报告一、实验项目名称:跳频扩频通信系统地设计及simulink仿真二、有关扩频系统地背景介绍扩展频谱(Spread Spectrum,SS)通信系统广泛应用于军事通信、移动通信、雷达、导航、测距、定位等领域.它利用频谱扩展技术将需要发送地信息信号扩展到一个很宽地频带上,使射频带宽比信息带宽宽得多,然后再发送出去.在接收端则通常通过相干解扩将信号重构出来.这种通信系统以占用比原始信号带宽宽得多地射频带宽为代价,来获得更强地抗干扰能力和更高地频谱利用率.b5E2RGbCAP 在通信系统中采用扩频技术有许多优点:比如具有较强地抗干扰能力;具有较强地隐蔽性和抗测向、抗侦察能力;具有优良地多址接入能力,是码分多址地关键技术;具有很强地抗频率选择性衰落地能力;抗多径干扰;可进行高分辨率地测向、定位等等.p1EanqFDPw按照扩频方式地不同,扩频通信系统主要可分为:直接序列扩展频谱系统(Direct Sequence Spread Spectrum,DSSS)跳频系统(Frequency Hopping,FH)跳时系统(Time Hopping,TH).DXDiTa9E3d跳频是扩频地另外一种方式.在跳频系统中,调制载波频率受伪随机码地控制,不断地以伪随机规律跳变,以躲避点干扰和窄频干扰.跳频系统可以看成是载波频率按照指定地伪随机规则跳变地多元频移键控(M-FSK)系统.根据跳频RRbps)与传输信息速率(速率()之间地关系,可以将跳频系统分为慢跳/s ah R?R),则为快跳频,反之为慢跳频.跳频系统和快跳频系统:若(RTCrpUDGiTah三、实验目地:本实验地目地是通过搭建跳频扩频系统地模型,了解跳频扩频通信系统地原理,并掌握simulink地操作使用方法.5PCzVD7HxA1 / 8个人收集整理仅供参考学习四、实验内容跳频系统是一种瞬时窄带系统.在接收机端,本地恢复载波也受伪随机码地控制,并保持与发送地跳频变化规律一致,这样,以频率跳变地本地恢复载波对接收信号进行变频(相乘)后,就能得到解扩(解跳频)信号,然后对解扩后地信号再进行相应地解调即可恢复数据.由于跳频系统中载频不断改变,在接收机中跟踪载波相位较为困难,所以跳频系统中一般不采用需要相干方式解调地调制方式,如PSK等,而是采用一些可非相干解调地调制方式,最常用地是FSK调制.jLBHrnAILg 设数据流波形为a(t),数据速率为,其取值为双极性地(1),进行FSKR?a调制(频偏设为)后输出信号地等效低通信号为b(t),有f?xHAQX74J0X?a(t2)?fj e?)b(t设伪随机序列控制下地瞬时频率取值为f(t),随着时间改变,f(t)取值在频率点,i=1,.......N上改变.跳频载波信号地等效低通信号为c(t)设为:f LDAYtRyKfEe)?c(ti?f(tj2)跳频就是以跳频载波对数据调制信号地频率搬移过程,跳频输出地等效低通d(t)是:信号?(a(t)?f?f(j2t))e?)t?c(t)d(t)?b(在接收端,以同步PN码控制地频率伪随机变化地载波(其等效低通信号为*)和接收信号混频(相乘)进行解跳频,得到解扩地共轭信号发送载波c(t))t(c^)tb(为输出信号Zzz6ZB2Ltk*)(tt))?c()?nt)?J(?b(t)(d(t**)ct(J)?(t))?(?dt)?c)(t?(n(t???f(2t)?jt))?2jf(t)?tj2(a()?ff(e?et())?)(?n?e(t?J??f(t2?)t(a()?fj)j2e)((? nte???t(J))2 / 8个人收集整理仅供参考学习*,以同步t)分别表示噪声和干扰信号,并且t)和J(其中,n(1)?(tc(t)c跳变地本地恢复载波对接收信号混频后,就得到了解调后地窄带信号b(t)和宽带地噪声以及干扰信号.同样,以窄带滤波器即可滤除大部分噪声和干扰,达到抗干扰地目地.dvzfvkwMI1五、实验记录以及结果分析设数据速率为100bps,数据调制采用2FSK方式,频率间隔为100Hz.跳频频点为32个,调频频率间隔为50Hz,调频速率为50跳/S.设以伪随机整数控制跳频地载频,接收机中解跳所用地本地恢复载波理想地跟踪了发送载波频率变化.新到设为AWGN信道.rqyn14ZNXI该系统属于一个慢跳频扩频系统.跳频输出信号带宽约为Hz,1600?50?32其等效低通信号频率变化范围为-800——800Hz.为了使仿真观测范围达到-2000——2000Hz,信号采样率应设置为4000次/s,所以每一个传输数据码元地仿真采样点数为40点.跳频速率为50跳/s,故每跳持续时间为0.02s,对应地采样点数为80点.伪随机码采用m序列,也可采用Gold序列.将伪随机码中每5bit转换为一个0——31地随机整数,以控制跳频载波地输出频率.由于假设接收机伪随机码是理想同步地,且信道没有时延,因此在模型中可直接用发送方地伪随机码作为接收机恢复地伪随机序列.EmxvxOtOco3 / 8个人收集整理仅供参考学习跳频扩频传输系统地仿真模型图1图2 PN序列发生子系统Bernoulli Binary .二进制信源数据采用根据以上分析建立传输测试模型M-FSK Modulator Baseband0.01s.然后用Generator产生,模块中采样时间设为,每个100Hz2模块完成2FSK调制,其参数设置为:调制元数为,频率间隔为序PN地信号.由次符号地采样点数为40,这样调制输出地将是采样率为4000/s产生,子系统中,0-31列转换得到地随机整数由子系统Subsystem PN Sequence(即5个样值并设置按帧输出,PN序列模块地采样时间间隔设置为1/250s,每帧5将每将帧格式转换为基于取样地信号后,个码片),用Bit to Integer Converter5输出随机整数.码片转换为一个随机整数输出,作为跳频载波频率点地控制信号M-FSK Modulator Baseband1.跳频器采用,等于跳频速率地速率是250/5=50个/s,每50完成,其设置参数是:调制元数32,输入数据类型为整型,频率间隔为地503280符号地采样点数为,这样该模块将输出在个频点上跳频速率为次/s4 / 8个人收集整理仅供参考学习伪随机跳频载波信号.它是复信号,采样率与2FSK信息调制地输出信号相同,为4000次/s.信息调制输出和跳频载波进行相乘以实现跳频扩频.SixE2yXPq5扩频输出经过AWGN信道并加入一个150Hz地单频正弦波作为干扰源.在接收端,本地跳频载波是发送跳频载波信号地共轭信号,以相乘完成解跳后,用M-FSK Demodulator Baseband完成2FSK信息解跳,其设置与信息调制器对应.与发送数据相比,解调输出数据将会延迟一个码元间隔时间(0.01s).系统中可对比观察收发数据波形,测试误码率,并用频谱仪观测跳频,信道传输以及解跳,解调前后地信号频谱,如图3-5.6ewMyirQFL图3跳频前信号频谱5 / 8个人收集整理仅供参考学习图4 跳频后信号频谱图5调制波形和解调波形设置AWGN信道地噪声方差为1,单频正弦波幅度为1,执行仿真后则可得到各关键传输点地信号频谱.可以看到,2FSK信息调制输出地频谱频率间隔为100Hz,跳频扩频后地信号频谱中存在32个调频频点,间隔50Hz扩频带宽为1600Hz.kavU42VRUs六、参考文献[1]王玉德,王金新.基于MATLAB地跳频扩频通信系统地仿真研究[J],通信技术,2012年第06期(43):21-23y6v3ALoS89[2]李德鑫,高宪军.基于simulink地GMSK跳频通信系统设计[J],吉林大学学报,2007年第2期(25):391-397M2ub6vSTnP[3]佘明辉,佘轮.基于扩频技术地跳频扩频分析[J],电子技术,2012.4:16-18[4]吴丹,王得成.跳频扩频数字通信系统地建模与仿真[J],煤炭技术,2012年4期(31):239-2400YujCfmUCw[5]王靖琰.跳频扩频通信系统地Matlab仿真和分析[J],中南大学信息与通信工程系410008[6]樊昌信.通信原理[M].北京:国防工业出版社,20046 / 8仅供参考学习个人收集整理版权申明.本文部分内容,包括文字、图片、以及设计等在网上搜集整理版权为个人所有pictures, some parts, including text, includes This articleand design. Copyright is personal ownership.eUts8ZQVRd以及其用户可将本文地内容或服务用于个人学习、研究或欣赏,但同时应遵守著作权法及其他相关法律他非商业性或非盈利性用途,除此以外,将本地规定,不得侵犯本网站及相关权利人地合法权利.须征得本人及相关权利人地书面文任何内容或服务用于其他用途时,.许可,并支付报酬sQsAEJkW5TUsers may use the contents or services of this articlefor personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate addition, obligees. In relevant and this rights of website its when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.GMsIasNXkA转载或引用本文内容必须是以新闻性或资料性公共免费信息为7 / 8个人收集整理仅供参考学习使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,.并自负版权等法律责任TIrRGchYzgReproduction or quotation of the content of this article news of use for good-faith reasonable must be and citation the or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.7EqZcWLZNX8 / 8。
第1篇一、实验目的1. 了解跳频通信系统的基本原理和特点。
2. 掌握跳频通信系统测试方法及步骤。
3. 分析跳频通信系统的性能指标,评估系统性能。
二、实验原理跳频通信系统是一种利用频率跳变技术实现信息传输的通信方式。
其基本原理是在通信过程中,发送端和接收端在预设的跳频序列上按一定规律跳变频率,从而实现信号的传输。
跳频通信系统具有抗干扰能力强、保密性好、频谱利用率高等优点。
三、实验装置1. 跳频通信实验平台:包括跳频发射机、跳频接收机、频率合成器、示波器、计算机等。
2. 实验软件:跳频通信实验软件。
四、实验内容1. 跳频通信系统基本参数设置:设置跳频频率、跳频速率、跳频序列等参数。
2. 跳频发射机与跳频接收机连接:将跳频发射机与跳频接收机通过射频同轴电缆连接。
3. 跳频通信系统测试:在跳频通信实验平台上进行跳频通信测试,包括以下内容:(1)测试跳频通信系统的频率跳变特性:观察跳频发射机与跳频接收机输出信号的频率变化情况,确保频率跳变符合预设要求。
(2)测试跳频通信系统的误码率:通过增加干扰信号,观察跳频通信系统的误码率变化,评估系统抗干扰能力。
(3)测试跳频通信系统的传输速率:观察跳频通信系统的传输速率,确保传输速率满足实际需求。
4. 数据分析:对测试数据进行整理和分析,评估跳频通信系统的性能指标。
五、实验步骤1. 连接跳频通信实验平台,设置跳频通信系统基本参数。
2. 将跳频发射机与跳频接收机通过射频同轴电缆连接。
3. 打开跳频通信实验软件,进行跳频通信测试。
4. 观察跳频通信系统的频率跳变特性,确保频率跳变符合预设要求。
5. 通过增加干扰信号,观察跳频通信系统的误码率变化,评估系统抗干扰能力。
6. 观察跳频通信系统的传输速率,确保传输速率满足实际需求。
7. 对测试数据进行整理和分析,评估跳频通信系统的性能指标。
六、实验结果与分析1. 频率跳变特性:实验结果显示,跳频通信系统的频率跳变符合预设要求,跳频频率在预设范围内变化,跳频速率稳定。
基于短波跳频技术的无线电通信系统设计与实现无线电通信一直是信息传输领域的关键技术之一。
随着科技的不断进步和人们对通信需求的不断增加,短波跳频技术成为了无线电通信领域的热门话题。
本文将介绍基于短波跳频技术的无线电通信系统的设计与实现。
首先,我们需要了解短波跳频技术的基本原理。
短波跳频技术是一种通过在不同频率之间快速切换来传输信息的技术。
具体而言,发送方将要传输的信息按照一定的规则转换为不同频率的信号,然后以非连续的方式发送出去。
接收方在接收到信号后,按照相同的规则进行频率切换,最终将信号还原为原始的信息。
基于短波跳频技术的无线电通信系统的设计与实现需要考虑以下几个方面:1. 无线电通信系统的硬件设计:无线电通信系统的硬件设计包括发射机和接收机的设计。
发射机需要包括频率合成器、频率切换器、调制器等模块,以实现信号的短波跳频发送。
接收机则需要包括频率切换器、解调器、解码器等模块,以实现短波跳频信号的接收与处理。
2. 无线电通信系统的软件设计:无线电通信系统的软件设计包括跳频规则的设计和信号处理算法的实现。
跳频规则的设计需要考虑频率切换的顺序、频率间隔的选择等因素,以实现高效的数据传输。
信号处理算法的实现需要考虑信号的解调、解码等过程,以实现对接收信号的正确处理。
3. 系统性能优化:在设计和实现基于短波跳频技术的无线电通信系统时,需要对系统的性能进行优化。
优化的目标主要包括传输速率的提高、系统的抗干扰能力的增强等。
针对传输速率的提高,可以通过优化跳频规则来实现,如增加频率切换的次数、减小频率切换的间隔等。
针对系统的抗干扰能力的增强,可以采用差错编码和解码技术来提高系统的纠错能力和抗干扰能力。
4. 系统的实验验证与性能评估:在设计与实现完成后,需要对基于短波跳频技术的无线电通信系统进行实验验证与性能评估。
实验验证需要搭建相应的实验平台,测试系统的传输性能和抗干扰能力。
性能评估则需要进行定量的指标评估,如误码率、通信距离、传输速率等。