仿真模型设计与实现共38页
- 格式:ppt
- 大小:4.04 MB
- 文档页数:38
仿真设计方案1. 简介本文档将介绍一个仿真设计方案,旨在帮助设计人员通过仿真技术验证其设计的可行性和性能。
本方案将涵盖仿真工具的选择和设置、仿真模型的建立和验证、仿真实验的执行和结果分析等方面。
2. 仿真工具的选择和设置为了有效地进行仿真,首先需要选择合适的仿真工具。
根据具体的需求和要求,选择一款功能强大、易于使用的仿真软件。
常见的仿真软件包括MATLAB、Simulink、SPICE等。
在选择仿真工具之后,需要对其进行一些设置,以确保仿真过程的准确性和稳定性。
2.1 仿真工具选择根据项目需求和人员的熟悉程度,可以选择合适的仿真工具。
对于电子电路设计,可以选择SPICE仿真工具。
对于系统级设计,可以选择MATLAB或Simulink。
2.2 仿真工具设置在选择好仿真工具之后,需要对其进行设置,以适应具体的仿真需求。
设置包括仿真时间步长、仿真精度、仿真模型等。
根据设计的复杂性和精度要求,进行相应的设置。
3. 仿真模型的建立和验证仿真模型是仿真设计的核心部分,它直接影响到仿真结果的准确性和可靠性。
在建立模型之前,需要对设计需求进行分析,确定仿真的关键参数和系统结构。
3.1 模型建立根据设计需求和系统结构,建立相应的仿真模型。
对于电子电路设计,可以使用电阻、电容、电感等元件建立电路模型;对于系统级设计,可以使用方程、状态空间模型等进行建模。
3.2 模型验证在建立好模型之后,需要对其进行验证。
通过输入不同的测试样例和参数,对仿真模型进行验证,确保其能够准确地模拟实际系统或电路的行为。
验证过程可以通过与实际测量数据的对比来进行。
4. 仿真实验的执行和结果分析在完成模型的建立和验证之后,可以进行仿真实验。
仿真实验可以通过改变不同的输入条件和参数来观察系统或电路的响应。
4.1 仿真实验设置在进行仿真实验之前,需要设置仿真的输入条件和参数。
根据设计需求,设置不同的输入信号和仿真参数,以观察系统或电路的特性。
4.2 实验执行和结果记录根据仿真实验设置,执行实验,并记录仿真结果。
收稿日期:2006201213 修回日期:20062042193基金项目:国家重点实验室资助项目(51448080105ZS 2601) 作者简介:李群力(19712 ),男,陕西礼泉县人,硕士生,工程师,研究方向为计算机应用研究。
文章编号:100220640(2007)0720077203协同仿真平台下鱼雷仿真模型设计与实现3李群力1,魏佳宁2(11西安工业大学,陕西 西安 710032,21西北工业大学航海学院,陕西 西安 710072) 摘 要:针对系统仿真建模可重用的需求,采用组件对象建模的思想对鱼雷进行建模,通过分析鱼雷模型的特点,完成了协同仿真平台下由鱼雷动力学、运动学模块、动力系统模块、控制系统模块、弹道解算系统模块、自导系统模块、引信系统模块、尾流自导模块、误差模块所组成的鱼雷层次结构模型设计,并已实现协同仿真环境中不同粒度的可重用模型的程序开发。
通过对鱼雷仿真模型的测试与应用,验证了协同仿真环境下组件对象建模方法具有建模过程快捷、灵活、适应性高、可重用性好和利于跨平台移植的优点。
关键词:协同仿真,鱼雷,建模,组件中图分类号:TJ 63012 文献标识码:AM odeli ng and Si m ulation of Torpedo i nCollaborative Si m ulation PlatformL I Q un 2li 1,W E I J ia 2n ing2(1.X i ’an T echnolog ica l U n iversity ,X i ’an 710032,Ch ina21M a rine Collag e ,N orthw estern P oly techn ic U n iversity ,X i ’an 710072,Ch ina ) Abstract :A i m ing at the requ irem en t fo r m odeling reu se in si m u lati on ,th is p ap er discu sses the m odeling p rocess fo r to rp edo by u sing the com ponen ts m ethod 1T he to rp edo m odel has been analyzed and divided in to six p arts 2dynam ic system ,con tro l system ,trajecto ry system ,w ake gu ide system ,fu sse system and erro r generating system 1T hen the h ierarch ical m odel of to rp edo has been designed and realized in co llabo rative si m u lati on p latfo rm 1T he test and app licati on of the to rp edo si m u lati on m odel verified that the m ethod is good at setting up fast ,vivid ,h igh adap tive m odels and has reso lved the p rob lem s in cro ss 2p latfo rm tran sp lan tati on 1Key words :co llabo rative si m u lati on ,to rp edo ,m odeling ,m odu le引 言在大多数仿真软件项目中,模型不必要的重复创建造成了资源的浪费。
水面舰艇战术训练仿真模型设计与实现作者:邹文萌, 刘喜作来源:《现代电子技术》2011年第20期摘要:运用模拟器在舰艇部队和院校进行战术模拟训练已经非常普遍,要求也越来越高。
为了使模拟器能够很好满足目前舰艇部队战术训练的需要,本文利用可重用标准组件设计方法,建立基于分布式的虚拟环境系统框架,对水面舰艇战术训练中的作战单元组件,虚拟环境组件,战术想定组件和网络服务管理组件等关键模型进行仿真建模,为舰艇战术训练模拟器提供可重用可扩展的环境和模型支持,并在舰艇模拟训练系统综合演练中得到应用,能够满足目前新型舰艇作战指挥和相关技能训练的需要,也为研制新型舰艇训练模拟器提供依据和模型参考。
关键词:战术训练;虚拟环境;仿真建模;舰艇模拟训练系统中图分类号:TN919-34 文献标识码:A文章编号:1004-373X(2011)20-0125-03Design of Virtual Combat Simulation Model for Naval Tactical TrainingZOU Wen-meng, LIU Xi-zuo(Simulation Training Center, Dalian Naval Academy, Dalian 116018,China)Abstract: It is very popular that the naval ship troops and academies use the simulators for tactical training. In order to meet the requirement of tactical training and military simulation in naval ship troop, the modular architecture methods are adopted for the establishment of virtual combat simulation system. The developed architecture is based on object oriented and modular design principles, while it explores the flexibility and strength of the simulation system. Some key components such as combat unit component, virtual environment unit component, tactical scenarios unit component and web sever unit component are simulated and modeled in the naval tactical training for the support of the simulation model and virtual environment. They were used in the simulator systems for integrate training, and show more effectiveness.Keywords: tactical training; virtual environment; modeling and simulation0 引言当前,运用模拟器在舰艇部队和院校进行战术模拟训练已经非常普遍,但随着新型舰艇的服役、新装备的出现更新和未来海战场的复杂多变,采用先进计算机技术的模拟器涉及的范围越来越广泛,要求也越来越高。
ProteusVSM仿真模型设计与实现2019-08-10在模拟仿真⼯程中,Proteus系统使⽤较为⼴泛。
利⽤ProteusVSM在仿真中可以有效的提⾼电⼦设备的使⽤效率,同时对于软件的实⽤性能有很⼤的提⾼。
在本⽂中详细的介绍了在编程软件的帮助下,对ProteusVSM系统进⾏调试,并在VSM模块的模拟下进⾏的实践过程。
【关键词】ProteusVSM 仿真模型设计⽅案在计算机技术⼀代⼀代的更新的过程中,仿真技术⼀直被⼈们⼴泛的使⽤,并将这些技术扩展到多个⾏业当中。
现有的Proteus作为⼀种较为新型的仿真多功能模拟⼯具,可以对于电⼦相关元件的模拟提⾼⼀个等级,同时可以促进电⼦信息技术的提⾼。
在现有的Proteus仿真设计包括有ACM7、839V、POC、Moror等,在不同的逻辑分析情况下,对于信号进⾏激励,并将Proteus中的VSM形成编辑程序,利⽤代码将环境进⾏模拟。
⽤这样的⽅式可以在单⽚机的控制下,对电路的整体使⽤有更好的调控作⽤。
其中,对于Proteus中的VSM仿真模型要进⾏合理的设计,并在实际的⼯程中实现。
1 Proteus系统中VSM的使⽤原理分析Proteus中的VSM主要作⽤是形成⼀定的数据扩展作⽤,在原有的模块当中系统的增加的选择性。
其中模块的类型包括:电路信息模块和图像显⽰模块。
在对于电路信息模型的模拟当中,⾸要是对于电路的特性进⾏分析,根据不同的运⾏状态和运⾏时间来对参数进⾏量化,并由图像显⽰模模块进⾏图像的显影。
显⽰的图象在仿真模拟的阶段可以进⾏⼈机交流。
在VSM元件中,实现电路模型的模拟。
通常情况下,在Proteus电⼦系统的仿真操作中会出现应⽤程序与配件的代码⽆法兼容的情况,导致这样情况的发⽣⼀般的解决办法是在模拟⾯板和仿真器的代码同时修改为相同的进制,并在电路中增加新的调试装置,还有⼀种⽅式是将原有的设计系统不做任何的改变移⾄模拟器当中。
Proteus是⼀种C语⾔模式下的操作平台,⽤户可以根据需要在界⾯中选取不同的通信⽅式,以抽象的原理在图形显⽰模块中标⽰出来,并根据系统函数来将VSM⾃动成成的模型系统相互结合,以达到图像显⽰和操作界⾯的⼀体化。
作战仿真模型体系分析及其模型设计与实现关键技术研究一、本文概述随着信息技术的快速发展和广泛应用,作战仿真模型已成为军事领域的重要研究工具。
通过构建高度逼真的战场环境,作战仿真模型能够帮助军事决策者更好地理解战争复杂性,优化作战策略,提高实战能力。
本文旨在对作战仿真模型体系进行全面分析,深入探讨模型设计与实现过程中的关键技术问题,以期为我国军事仿真技术的发展提供理论支撑和实践指导。
本文将简要介绍作战仿真模型的基本概念、发展历程及其在军事领域的应用价值。
随后,通过对国内外相关文献的综述,分析当前作战仿真模型体系的研究现状和发展趋势。
在此基础上,本文将重点探讨作战仿真模型设计与实现过程中的关键技术问题,包括模型构建方法、数据融合与处理、模型验证与评估等方面。
针对这些关键问题,本文将提出相应的解决方案和技术路线,并通过实例分析验证其可行性和有效性。
本文将对作战仿真模型体系的发展趋势进行展望,探讨未来作战仿真技术的发展方向和应用前景。
通过本文的研究,旨在为军事领域提供一套科学、高效的作战仿真模型设计与实现方法,推动我国军事仿真技术的创新发展。
二、作战仿真模型体系分析作战仿真模型体系是一个复杂的系统工程,它涉及到多个领域的知识和技术,包括军事战略、战术决策、武器系统性能、战场环境模拟等。
这一体系的主要目标是通过对实际作战过程的模拟,以预测和分析不同策略和条件下的作战结果,为军事决策提供科学依据。
在作战仿真模型体系的分析中,首先要明确模型的层次结构和组成要素。
这包括战略层、战役层、战术层等不同层次的模型,每个层次的模型都有其特定的功能和作用。
同时,还需要分析模型之间的逻辑关系和数据流,以确保整个体系的一致性和协调性。
作战仿真模型体系的分析还需要关注模型的动态性和适应性。
由于实际作战过程中存在着许多不确定性和变化性,因此模型需要具备足够的动态性和适应性,以应对这些变化。
这包括模型的参数调整、规则修改、场景更新等方面的工作。
实验四 SIMULINK仿真模型的建立及仿真(一)一、实验目的:1、熟悉SIMULINK模型文件的操作。
2、熟悉SIMULINK建模的有关库及示波器的使用。
3、熟悉Simulink仿真模型的建立。
4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。
二、实验内容:1、设计SIMULINK仿真模型。
2、建立SIMULINK结构图仿真模型。
3、了解各模块参数的设定。
4、了解示波器的使用方法。
5、了解参数、算法、仿真时间的设定方法。
例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。
弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。
步骤:1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。
图一:SIMULINK模块浏览器2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。
图二:已经复制进库模块的新建模型窗3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。
4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。
5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。
如图三所示:图三:已构建完成的新模型窗6、根据理论数学模型设置模块参数:①设置增益模块<Gain>参数,双击模型窗重的增益模块<Gain>,引出如图四所示的参数设置窗,把<Gain>增益栏中默认数字改为2,单击[OK]键,完成设置;图四:参数已经修改为2的<Gain>增益模块设置窗②参照以上方法把<Gain1>增益模块的增益系数改为100;③修改求和模块输入口的代数符号,双击求和模块,引出如图五所示的参数设置窗,把符号栏中的默认符号(++)修改成所需的代数符号(--),单击[OK]键,完成设置;图五:改变输入口符号的求和模块参数设置窗④对积分模块<Integrator1>的初始状态进行设置:双击积分模块<Integrator1>,引出如图六所示的参数设置窗,把初始条件Initial condition 栏中的默认0初始修改为题目给定的0.05,单击[OK]键,完成设置。