离散数学第七章图的基本概念
- 格式:pdf
- 大小:552.62 KB
- 文档页数:39
离散图论知识点总结一、基本概念图(Graph)是离散数学中的一个重要概念,它由顶点集合V和边集合E组成。
一般用G (V,E)来表示,其中V={v1,v2,…,vn}是有限非空集合,E是V中元素的无序对的集合。
图分为有向图和无向图。
无向图中的边是无序的,有向图中的边是有序的。
图中存在一些特殊的图,比如完全图、树、路径、回路等。
二、图的表示方法1. 邻接矩阵邻接矩阵是一种常见的图的表示方法,它使用一个二维数组来表示图的关系。
对于一个n 个顶点的图,邻接矩阵是一个n*n的矩阵A,其中A[i][j]表示顶点i到顶点j之间是否存在边。
对于无向图,A[i][j]=1表示顶点i与顶点j之间存在边,A[i][j]=0表示不存在。
对于有向图,A[i][j]=1表示i指向j的边存在,A[i][j]=0表示不存在。
2. 邻接表邻接表是另一种常见的图的表示方法。
它将图的信息储存在一个数组中,数组的每个元素与图的一个顶点相对应。
对于每个顶点vi,数组中储存与该顶点邻接的顶点的信息。
邻接表可以用链表或者数组来表示,链表表示的邻接表比较灵活,但是在查找某个边的相邻顶点时需要遍历整个链表。
三、图的性质1. 度图中每个顶点的度是与其相邻的边的数目。
对于无向图,顶点的度等于与其相邻的边的数目;对于有向图,则分为入度和出度。
2. 连通性对于无向图G,若图中任意两个顶点都有路径相连,则称图G是连通的。
对于有向图G,若从任意一个顶点vi到任意一个顶点vj都存在路径,则称G是强连通的。
3. 路径和回路路径是指图中一系列的边,连接图中的两个顶点;回路是指起点与终点相同的路径。
路径的长度是指路径中边的数目。
4. 树和森林一个无向图,如果是连通图且不存在回路,则称为树。
一个无向图,若它不是连通图,则称为森林。
四、图的常见算法1. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法,它从图的某个顶点vi出发,访问它的所有邻接顶点,再对其中未访问的顶点继续深度优先搜索。
离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
第七章图在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。
例如用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。
图论起源于18世纪,它是研究由线连成的点集的理论。
一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。
事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。
由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。
由此经数学抽象产生了图的概念。
研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。
7.1 图的基本概念7.1.1图的定义7.1.1.1无向图定义7.1.1 设A,B是任意集合。
集合{(a,b)|aA且bB}称为A和B的无序积,记为A&B。
在无序积中,两个元素间的顺序是无关紧要的,即(a,b)=(b,a)。
定义7.1.2 无向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为结点(顶点)。
E是一个V&V的多重子集,其元素称为边(无向边)。
我们可用平面上的点来表示顶点,两点间的连线表示边,从而将任一个无向图用图形表示出来。
[例7.1.1]无向图G=<V,E>,其中V={a,b,c,d,e,f},E={(a,b),(a,c),(a,d),(b,b),(b,c),(b,c),(b,d),(c,d)}。
7.1.1.2有向图定义7.1.3 有向图G是一个二元组<V,E>,记作G=<V,E>,其中V是一个非空有限集合,其元素称为顶点,E是一个V V的多重子集,其元素称为有向边或弧,简称为边。
注:1)在有向图G=<V,E>中,若e=〈u,v〉,则称u和v为e的起点和终点;2)自回路既可看成是有向边又可看成是无向边;3)去掉有向图中边的方向得到的图称为该有向图的基图。