离散数学10图的基本概念分解
- 格式:ppt
- 大小:911.00 KB
- 文档页数:111
离散数学图论整理总结第⼋章图论8.1 图的基本概念8.1.1 图定义8.1―1 ⼀个图G 是⼀个三重组〈V (G ),E (G ),ΦG 〉,其中V (G )是⼀个⾮空的结点(或叫顶点)集合,E (G )是边的集合,ΦG 是从边集E 到结点偶对集合上的函数。
⼀个图可以⽤⼀个图形表⽰。
定义中的结点偶对可以是有序的,也可以是⽆序的。
若边e 所对应的偶对〈a ,b 〉是有序的,则称e 是有向边。
有向边简称弧,a 叫弧e 的始点,b 叫弧e 的终点,统称为e 的端点。
称e 是关联于结点a 和b 的,结点a 和结点b 是邻接的。
若边e 所对应的偶对(a ,b )是⽆序的,则称e 是⽆向边。
⽆向边简称棱,除⽆始点和终点的术语外,其它术语与有向边相同每⼀条边都是有向边的图称为有向图。
每⼀条边都是⽆向边的图称为⽆向图。
有向图和⽆向图也可互相转化。
例如,把⽆向图中每⼀条边都看作两条⽅向不同的有向边,这时⽆向图就成为有向图。
⼜如,把有向图中每条有向边都看作⽆向边,就得到⽆向图。
这个⽆向图习惯上叫做该有向图的底图。
在图中,不与任何结点邻接的结点称为弧⽴结点。
全由孤⽴结点构成的图称为零图。
关联于同⼀结点的⼀条边称为⾃回路。
在有向图中,两结点间(包括结点⾃⾝间)若同始点和同终点的边多于⼀条,则这⼏条边称为平⾏边。
在⽆向图中,两结点间(包括结点⾃⾝间)若多于⼀条边,则称这⼏条边为平⾏边。
两结点a 、b 间互相平⾏的边的条数称为边[a ,b ]的重数。
仅有⼀条时重数为1,⽆边时重数为0。
定义8.1―2 含有平⾏边的图称为多重图。
⾮多重图称为线图。
⽆⾃回路的线图称为简单图。
仅有⼀个结点的简单图称为平凡图。
定义 8.1―3 赋权图G 是⼀个三重组〈V ,E ,g 〉或四重组〈V ,E ,f ,g 〉,其中V 是结点集合, E 是边的集合,f 是定义在V 上的函数,g 是定义在E 上的函数。
8.1.2 结点的次数定义 8.1―4 在有向图中,对于任何结点v ,以v 为始点的边的条数称为结点v 的引出次数(或出度),记为deg +(v );以v 为终点的边的条数称为结点v 的引⼊次数(或⼊度),记为deg -(v );结点v 的引出次数和引⼊次数之和称为结点v 的次数(或度数),记作deg (v )。
离散数学中的图论代表知识点介绍离散数学是数学的一个分支,它主要研究离散对象以及其离散性质和离散结构。
图论作为离散数学的重要组成部分,以图为研究对象,研究了图的基本概念、图的表示方法以及图的性质和应用。
本文将介绍离散数学中的图论代表知识点。
1. 图的基本概念图是由顶点集合和边集合组成的离散结构,用V表示顶点集合,E表示边集合。
图可以分为有向图和无向图两种类型。
有向图中的边是有方向的,而无向图中的边是无方向的。
图中的顶点可以表示为V={v1, v2, v3, ...},边可以表示为E={(vi, vj)}。
在图中,两个顶点之间有边相连时,称这两个顶点是相邻的。
2. 图的表示方法图可以用多种方式来表示。
常见的表示方法有邻接矩阵和邻接表。
邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。
邻接表则是通过链表的方式来表示图的结构,每个顶点都对应一个链表,链表中存储着与该顶点相邻的顶点。
3. 图的性质图论研究了图的许多性质和特性。
其中一些重要的性质包括连通性、路径、回路、度数、树和连通分量等。
连通性是指图中任意两个顶点之间是否存在路径。
如果图中任意两个顶点都存在路径相连,则图被称为连通图。
反之,如果存在无法通过路径相连的顶点对,则图为非连通图。
连通图中的任意两个顶点之间至少存在一条路径。
路径是指从一个顶点到另一个顶点的顶点序列。
路径的长度是指路径上边的数量。
最短路径是指两个顶点之间边的数量最少的路径。
回路是指路径起点和终点相同的路径。
如果回路中除起点和终点以外的顶点不重复出现,则称为简单回路。
度数是指图中顶点的边的数量。
对于有向图来说,度数分为入度和出度,分别表示指向该顶点的边和从该顶点指出的边的数量。
树是一种无回路的连通图,它具有n个顶点和n-1条边。
树是图论中一个重要的概念,它有广泛的应用。
连通分量是指图中的极大连通子图,即在该子图中的任意两个顶点都是连通的,且该子图不能再加入其他顶点使其连通。
离散数学图论基本概念解释离散数学是一个研究离散对象及其关系和操作的数学分支,而图论则是离散数学的一个重要分支,用于研究图结构以及图中各种相关问题。
本文将对离散数学图论的基本概念进行解释。
一、图的定义图是指由一组顶点和连接这些顶点的边组成的数学结构。
图可以用G=(V, E)来表示,其中V表示顶点集合,E表示边的集合。
顶点之间的连接关系用边来表示,边有可能是有向的或无向的。
二、图的分类1. 无向图:图中的边没有方向,表示顶点之间的无序关系。
无向图可以是简单图(没有自环和重复边)或多重图(包含自环和多条重复边)。
2. 有向图:图中的边有方向,表示顶点之间的有序关系。
有向图也可以是简单图或多重图。
3. 加权图:顶点之间的边带有权重,用于表示边的强度或成本。
加权图可以是无向图或有向图。
三、图的常用术语1. 顶点的度:无向图中与某个顶点连接的边的数量称为该顶点的度。
在有向图中,顶点的度分为出度和入度,分别表示从该顶点出发的边的数量和指向该顶点的边的数量。
2. 路径:在图中,路径是指由一系列顶点和它们之间所连接的边组成的序列。
路径的长度是指路径中经过的边的数目。
3. 连通图:如果图中的任意两个顶点都存在一条路径相连,则称该图为连通图。
如果图非连通,则称为非连通图。
4. 完全图:如果一个无向图的任意两个顶点之间都有边相连,则称该图为完全图。
完全图有边n(n-1)/2条,其中n表示顶点的数量。
四、图的表示方法1. 邻接矩阵:邻接矩阵是一种以二维矩阵的形式来表示图的方法。
矩阵的行和列分别表示顶点,矩阵中的元素表示相应的边。
如果两个顶点之间存在边,就用1表示;否则,用0表示。
2. 邻接表:邻接表是一种以链表的形式来表示图的方法。
每个顶点都对应一个链表,链表中存储与该顶点相连的其他顶点。
五、图的遍历算法1. 深度优先搜索(DFS):DFS是一种用于遍历图的算法,它从一个初始顶点开始,沿着一条路径一直走到底,然后回溯到上一个顶点,再继续沿另一条路径走到底。
图论部分第七章、图的基本概念7.1 无向图及有向图无向图与有向图多重集合: 元素可以重复出现的集合无序积: A&B={(x,y) | x∈A∧y∈B}定义无向图G=<V,E>, 其中(1) 顶点集V≠∅,元素称为顶点(2) 边集E为V&V的多重子集,其元素称为无向边,简称边.例如, G=<V,E>如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2),(v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} ,定义有向图D=<V,E>, 其中(1) V同无向图的顶点集, 元素也称为顶点(2) 边集E为V⨯V的多重子集,其元素称为有向边,简称边.用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的通常用G表示无向图, D表示有向图, 也常用G泛指无向图和有向图, 用e k表示无向边或有向边.V(G), E(G), V(D), E(D): G和D的顶点集, 边集.n 阶图: n个顶点的图有限图: V, E都是有穷集合的图零图: E=∅平凡图: 1 阶零图空图: V=∅顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=<V,E>的一条边, 称v i ,vj为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点,则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点.定义设无向图G=<V,E>, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l至少有一个公共端点, 则称e k,e l相邻.对有向图有类似定义. 设e k=〈v i,v j〉是有向图的一条边,又称v i是e k的始点, v j 是e k的终点, v i邻接到v j, v j邻接于v i.邻域和关联集顶点的度数设G=<V,E>为无向图, v∈V,v的度数(度) d(v): v作为边的端点次数之和悬挂顶点: 度数为1的顶点悬挂边: 与悬挂顶点关联的边G的最大度∆(G)=max{d(v)| v∈V}G的最小度δ(G)=min{d(v)| v∈V}例如d(v5)=3, d(v2)=4, d(v1)=4,∆(G)=4, δ(G)=1,v4是悬挂顶点, e7是悬挂边, e是环1设D=<V,E>为有向图, v∈V,v的出度d+(v): v作为边的始点次数之和v的入度d-(v): v作为边的终点次数之和v的度数(度) d(v): v作为边的端点次数之和d(v)= d+(v)+ d-(v)D的最大出度∆+(D), 最小出度δ+(D)最大入度∆-(D), 最小入度δ-(D)最大度∆(D), 最小度δ(D)例如d+(a)=4, d-(a)=1, d(a)=5,d+(b)=0, d-(b)=3, d(b)=3,∆+(D)=4, δ+(D)=0, ∆-(D)=3,δ-(D)=1,∆(D)=5, δ(D)=3.握手定理定理任意无向图和有向图的所有顶点度数之和都等于边数的2倍, 并且有向图的所有顶点入度之和等于出度之和等于边数.证G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,m条边共提供2m度. 有向图的每条边提供一个入度和一个出度, 故所有顶点入度之和等于出度之和等于边数.图的度数列设无向图G的顶点集V={v1, v2, …, v n}G的度数列: d(v), d(v2), …, d(v n)1如右图度数列:4,4,2,1,3设有向图D的顶点集V={v1, v2, …, v n}D的度数列: d(v), d(v2), …, d(v n)1D的出度列: d+(v), d+(v2), …, d+(v n)1D的入度列: d-(v), d-(v2), …, d-(v n)1如右图度数列:5,3,3,3出度列:4,0,2,1入度列:1,3,1,2例1 (3,3,3,4), (2,3,4,6,8)能成为图的度数列吗?解不可能. 它们都有奇数个奇数.例2 已知图G有10条边, 4个3度顶点, 其余顶点的度数均小于等于2, 问G 至少有多少个顶点?解设G有n个顶点. 由握手定理,4⨯3+2⨯(n-4)≥2⨯10解得n≥8例3 证明不存在具有奇数个面且每个面都具有奇数条棱的多面体.证用反证法. 假设存在这样的多面体,作无向图G=<V,E>, 其中V={v | v为多面体的面},E={(u,v) | u,v∈V∧u与v有公共的棱∧u≠v}.根据假设, |V|为奇数且∀v∈V, d(v)为奇数. 这与握手定理的推论矛盾. 多重图与简单图定义 (1) 在无向图中,如果有2条或2条以上的边关联同一对顶点, 则称这些边为平行边, 平行边的条数称为重数.(2)在有向图中,如果有2条或2条以上的边具有相同的始点和终点, 则称这些边为有向平行边, 简称平行边, 平行边的条数称为重数.(3) 含平行边的图称为多重图.(4) 既无平行边也无环的图称为简单图.注意:简单图是极其重要的概念图的同构定义设G1=<V1,E1>, G2=<V2,E2>为两个无向图(有向图), 若存在双射函数f: V1→V2, 使得对于任意的v,v j∈V1,i(v i,v j)∈E1(<v i,v j>∈E1)当且仅当(f(v i),f(v j))∈E2(<f(v i),f(v j)>∈E2),并且, (v i,v j)(<v i,v j>)与 (f(v i),f(v j))(<f(v i),f(v j)>)的重数相同,则称G1与G2是同构的,记作G1≅G2.几点说明:图之间的同构关系具有自反性、对称性和传递性.能找到多条同构的必要条件, 但它们都不是充分条件:① 边数相同,顶点数相同② 度数列相同(不计度数的顺序)③ 对应顶点的关联集及邻域的元素个数相同,等等若破坏必要条件,则两图不同构至今没有找到判断两个图同构的多项式时间算法完全图:n阶无向完全图K n: 每个顶点都与其余顶点相邻的n阶无向简单图.简单性质: 边数m=n(n-1)/2, ∆=δ=n-1n阶有向完全图: 每对顶点之间均有两条方向相反的有向边的n阶有向简单图.简单性质: 边数m=n(n-1), ∆=δ=2(n-1),∆+=δ+=∆-=δ-=n-1子图:定义设G=<V,E>, G '=<V ',E '>是两个图(1) 若V '⊆V且E '⊆E,则称G '为G的子图, G为G '的母图, 记作G '⊆G(2) 若G '⊆G 且V '=V,则称G '为G的生成子图(3) 若V '⊂V 或E '⊂E,称G '为G的真子图(4) 设V '⊆V 且V '≠∅, 以V '为顶点集, 以两端点都在V '中的所有边为边集的G的子图称作V '的导出子图,记作G[V '](5) 设E '⊆E且E '≠∅, 以E '为边集, 以E '中边关联的所有顶点为顶点集的G的子图称作E '的导出子图, 记作G[E ']补图:定义设G=<V,E>为n阶无向简单图,以V为顶点集,所有使G成为完全图K n的添加边组成的集合为边集的图,称为G的补图,记作 .若G≅ , 则称G是自补图.例对上一页K4的所有非同构子图, 指出互为补图的每一对子图, 并指出哪些是自补图.7.2 通路、回路、图的连通性简单通(回)路, 初级通(回)路, 复杂通(回)路定义给定图G=<V,E>(无向或有向的),G中顶点与边的交替序列Γ=v0e1v1e2…e l v l,(1) 若∀i(1≤i≤l), v i-1, v i是e i的端点(对于有向图, 要求v i-1是始点, v i是终点), 则称Γ为通路, v0是通路的起点, v l是通路的终点, l为通路的长度. 又若v=v l,则称Γ为回路.(2) 若通路(回路)中所有顶点(对于回路, 除v0=v l)各异,则称为初级通路(初级回路).初级通路又称作路径, 初级回路又称作圈.(3) 若通路(回路)中所有边各异, 则称为简单通路(简单回路), 否则称为复杂通路(复杂回路).说明:表示方法① 用顶点和边的交替序列(定义), 如Γ=v0e1v1e2…e l v l② 用边的序列, 如Γ=e1e2…e l③ 简单图中, 用顶点的序列, 如Γ=v0v1…v l④ 非简单图中,可用混合表示法,如Γ=v0v1e2v2e5v3v4v5环是长度为1的圈, 两条平行边构成长度为2的圈.在无向简单图中, 所有圈的长度≥3; 在有向简单图中, 所有圈的长度≥2.在两种意义下计算的圈个数① 定义意义下在无向图中, 一个长度为l(l≥3)的圈看作2l个不同的圈. 如v0v1v2v0 ,v 1v2vv1, v2v0v1v2, v0v2v1v0 , v1v0v2v1 , v2v1v0v2看作6个不同的圈. 在有向图中, 一个长度为l(l≥3)的圈看作l个不同的圈.② 同构意义下所有长度相同的圈都是同构的, 因而是1个圈.定理在n阶图G中,若从顶点v i到v j(v i≠v j)存在通路,则从v i到v j存在长度小于等于n-1的通路.推论在n阶图G中,若从顶点v i到v j(v i≠v j)存在通路,则从v i到v j存在长度小于等于n-1的初级通路.定理在一个n阶图G中,若存在v i到自身的回路,则一定存在v i到自身长度小于等于n的回路.推论在一个n阶图G中,若存在v i到自身的简单回路,则一定存在长度小于等于n的初级回路.无向图的连通性设无向图G=<V,E>,u与v连通: 若u与v之间有通路. 规定u与自身总连通.连通关系R={<u,v>| u,v∈V且u~v}是V上的等价关系连通图:任意两点都连通的图. 平凡图是连通图.连通分支: V关于连通关系R的等价类的导出子图设V/R={V1,V2,…,V k}, G[V1], G[V2], …,G[V k]是G的连通分支, 其个数记作p(G)=k.G是连通图⇔p(G)=1短程线与距离u与v之间的短程线: u与v之间长度最短的通路(u与v连通)u与v之间的距离d(u,v): u与v之间短程线的长度若u与v不连通, 规定d(u,v)=∞.性质:d(u,v)≥0, 且d(u,v)=0 ⇔u=vd(u,v)=d(v,u)d(u,v)+d(v,w)≥d(u,w)点割集与割点记G-v: 从G中删除v及关联的边G-V ': 从G中删除V '中所有的顶点及关联的边G-e : 从G中删除eG-E': 从G中删除E'中所有边定义设无向图G=<V,E>, V '⊂V, 若p(G-V ')>p(G)且∀V ''⊂V ', p(G-V '')=p(G), 则称V '为G的点割集. 若{v}为点割集, 则称v为割点.边割集与割边(桥)定义设无向图G=<V,E>, E '⊆E, 若p(G-E ')>p(G)且∀E ''⊂E ',p(G-E '')=p(G), 则称E '为G的边割集. 若{e}为边割集, 则称e为割边或桥.在上一页的图中,{e1,e2},{e1,e3,e5,e6},{e8}等是边割集,e是桥,{e7,e9,e5,e6}是边割集吗?8几点说明:K无点割集nn阶零图既无点割集,也无边割集.若G连通,E '为边割集,则p(G-E ')=2若G连通,V '为点割集,则p(G-V ')≥2有向图的连通性设有向图D=<V,E>u可达v: u到v有通路. 规定u到自身总是可达的.可达具有自反性和传递性D弱连通(连通): 基图为无向连通图D单向连通: ∀u,v∈V,u可达v或v可达uD强连通: ∀u,v∈V,u与v相互可达强连通⇒单向连通⇒弱连通定理(强连通判别法) D强连通当且仅当D中存在经过每个顶点至少一次的回路定理(单向连通判别法) D单向连通当且仅当D中存在经过每个顶点至少一次的通路有向图的短程线与距离u到v的短程线: u到v长度最短的通路 (u可达v)u与v之间的距离d<u,v>: u到v的短程线的长度若u不可达v, 规定d<u,v>=∞.性质:d<u,v>≥0, 且d<u,v>=0 ⇔u=vd<u,v>+d<v,w> ≥d<u,w>注意: 没有对称性7.3 图的矩阵表示无向图的关联矩阵定义设无向图G=<V,E>, V={v1, v2, …, v n}, E={e1, e2, …, e m},令m ij为v i 与e j的关联次数,称(m ij)n⨯m为G的关联矩阵,记为M(G).性质(1) 每一列恰好有两个1或一个2有向图的关联矩阵定义设无环有向图D=<V,E>, V={v1, v2, …, v n},E={e, e2, …, e m}, 令1性质(1) 每一列恰好有一个1和一个-1(2) 第i行1 的个数等于d+(v i), -1 的个数等于d-(v i)(3) 1的总个数等于-1的总个数, 且都等于m(4) 平行边对应的列相同有向图的邻接矩阵有向图的可达矩阵7.4 最短路径及关键路径带权图G=<V,E,w>, 其中w:E→R.∀e∈E, w(e)称作e的权. e=(v i,v j), 记w(e)=w ij . 若v i,v j不相邻, 记w ij =∞.设L是G中的一条路径, L的所有边的权之和称作L的权, 记作w(L).u和v之间的最短路径: u和v之间权最小的通路.标号法(E.W.Dijkstra, 1959)PERT图与关键路径PERT图(计划评审技术图)设有向图G=<V,E>, v∈Vv的后继元集Γ+(v)={x|x∈V∧<v,x>∈E}v的先驱元集Γ-(v)={x|x∈V∧<x,v>∈E}PERT图:满足下述条件的n阶有向带权图D=<V,E,w>,(1) D是简单图,(2) D中无回路,(3) 有一个入度为0的顶点, 称作始点; 有一个出度为0的顶点, 称作终点.通常边的权表示时间, 始点记作v1, 终点记作v n关键路径关键路径: PETR图中从始点到终点的最长路径v的最早完成时间TE(v i): 从始点v1沿最长路径到v ii所需的时间TE(v)=01TE(v)=max{TE(v j)+w ji|v j∈Γ-(v i)}, i=2,3,⋯,niv的最晚完成时间TL(v i): 在保证终点v n的最早完成i时间不增加的条件下, 从始点v1最迟到达v i的时间TL(v)=TE(v n)nTL(v)=min{TL(v j)-w ij|v j∈Γ+(v i)}, i=n-1,n-2,⋯,1iv的缓冲时间TS(v i)=TL(v i)-TE(v i), i=1,2,⋯,niv在关键路径上⇔TS(v i)=0i最晚完成时间TL(v)=128TL(v)=min{12-6}=67TL(v)=min{12-1}=116TL(v)=min{11-1}=105TL(v)=min{10-4}=64TL(v)=min{6-2,11-4,6-4}=23TL(v)=min{2-0,10-3,6-4}=22TL(v)=min{2-1,2-2,6-3}=01缓冲时间TS(v)=0-0=01TS(v)=2-1=12TS(v)=2-2=03TS(v)=6-4=24TS(v=10-8=25TS(v)=11-9=26TS(v)=6-6=07TS(v)=12-12=08关键路径: v1v3v7v8。