解斜三角形应用举例
- 格式:ppt
- 大小:401.00 KB
- 文档页数:18
§5-10-1解斜三角形的应用目的:要求学生利用数学建模思想,结合正弦定理、余弦定理和解任意三角形的知识解决实践中的有关问题。
例1、自动卸货汽车的车厢采用液压机构,设计时需要计算油泵顶杆BC 的长度,已知车厢的最大仰角为60o ,油泵顶点B 与车箱支点A 之间的距离为1.95米,AB 与水平线之间的夹角为6︒20’,AC 长为1.40米,计算BC 的长. 注意:引导学生分析题意,分清已知与所求,会将实际问题转化为解三角形问题. 分析:这个问题在△ABC 中,已知AB=1.95m ,AC=1.40m ,∠CAB=60o +6o 20`=66o 20`,求BC 的长.即解斜三角形中,已知两边和夹角,求其它的问题,故需使用余弦定理.解:由余弦定理,得:BC 2=AB 2+AC 2-2AB·ACcosA= 1.952+1.402-2×1.95×1.40×cos66o 20`=3.571∴BC≈1.89m答:顶杆BC 的长约为1.89米.例1`、[变题] 假定自动卸货汽车装有一车货物,货物与车箱的底部的滑动摩擦系数为0.3,油泵顶点B 与车箱支点A 之间的距离为1.95米,AB 与水平线之间的夹角为6︒20’,AC 长为1.40米,求货物开始下滑时BC 的长。
解:设车箱倾斜角为θ,货物重量为mg , θμμcos mg N f == 当θθμsin cosmg mg ≤即θμtan ≤时货物下滑 ∴ θμtan =,∴ θtan 3.0=,∴'42163.0arctan ==θ,∴ ∠BAC='0223'206'4216 =+在△ABC 中: BAC cos AC AB 2AC AB BC 222∠⋅-+= 787.10'0223cos 40.195.1240.195.122=⨯⨯⨯-+=∴ 28.3BC =AB C θA B C θ例2、如图是曲柄连杆机构的示意图,当曲柄CB 绕C 点旋转时,连杆AB 的传递,活塞作直线往复运动.当曲柄在CB o 位置时,曲柄和连杆成一条直线,连杆的端点A 在A o 处.设连杆AB 长为340mm ,曲柄CB 长为85mm ,曲柄自CB o 按顺时针方向旋转80o ,求活塞移动的距离(即连杆的端点A 移动的距离A o A)(精确到1mm)分析:因为A o A=A o C-AC ,又知A o C=AB+BC=340+85=425mm ,所以只要求出AC的长,问题就解决了.在△ABC 中,已知两边和其中一边的对角,可有正弦定理求出(也可由余弦定理求)解法1、在△ABC 中,由正弦定理可得: 2462.034080sin BC A sin o =⋅= ∵ BC<AB ∴ A 为锐角,可得:A=14o 15`∴ B=180o -(A+C)=85o 45` 由正弦定理得:m m 3.3449848.0`1585sin 340C sin B sin AB AC o =⨯=⋅= ∴ A o A=A o C-AC=(AB+BC)-AC=(340+85)-344.3=80.7≈81mm解法2、△ABC 中,由余弦定理得:AB 2=AC 2+BC 2-2AC·BC·cosC∴ 3402=AC 2+852-2AC·85·cos80o解得:AC=344.3mm∴ A o A=A o C-AC=(AB+BC)-AC=(340+85)-344.3=80.7≈81mm答:活塞移动的距离约为81m m .例3、某人在塔的正东方向沿南偏西60o 的方向前进40米以后,望见塔在东北方向,若沿途测得它的最大仰角为30o ,求塔高.分析:欲使仰角最大,则需离塔最近,作TC ⊥AB ,则在C 处看塔仰角最大,只需求出TC 长即可,然后在Rt △DTC 中解出DT 的长A o CB oA B解:由题意知:∠A=30o ,∠ATB=135o ,由正弦定理得:TAB sin TB ATB sin AB ∠=∠,即:o o 30sin TB 135sin 40=,解得TB=220 ∴ TC=TB×sin15o =220×)232(5426-=- 在Rt △DTC 中,∠C=30o ,∴ TD=TCtan30o =)33(310-(米) 答:塔高)33(310-米. 例4、我方缉私艇观察到走私船在它的北偏东60o 的方向,且相距50海里,此时走私船向北逃窜,我方船速食走私船的3倍,则我方应采取什么方向前进才能追上走私船?此时走私船行驶了多少海里?解:设∠CAB =θ,且走私船行驶BC=x 海里,则我方缉私艇行驶AC=3x 海里,且∠ABC=120o 由正弦定理,可得:ABC sin AC sin BC ∠=θ ∴ o 120sin x 3sin x =θ,解得:θ=30o ∴ 我方应沿北偏东30o 方向行驶又∵ θ=C=30o∴ BC=AB=50,故此时走私船行驶了50海里.例5、如图,河对岸有两目标A 、B ,在岸边去相距3千米的C 、D 两点,并测得∠ACB=75∠BCD=45∠ADC=30∠ADB=45,求目标AB 之间的距离.解:△ACD 中,AC=CD=3△BDC 中,(正)BC=226+ △ABC 中,(余)AB=5AB C练、我舰在敌岛A 南50︒西相距12 nmile 的B 处,发现敌舰正由岛沿北10︒西的方向以10nmile/h 的速度航行,问:我舰需要以多大速度,沿什么方向航行才能用功小时追上敌舰?解:在△ABC 中:AB=12 AC=10×2=20 ∠BAC=40︒+80︒=120︒BAC AC AB AC AB BC ∠⋅-+=cos 2222784)21(20122201222=-⨯⨯⨯-+= BC=28 即追击速度为14mile/h又:∵△ABC 中,由正弦定理:ABC B AC sin sin = ∴1435sin sin ==BC A AC B ∴1435arcsin =B ∴我舰航行方向为北)1435arcsin 50(- 东。
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点13 解斜三角形及应用举例1.(2010·湖北高考理科·T3)在△ABC 中,a =15,b=10, ∠A=60,则cos B =( ) (A)3-(B)3 (C(D)-【命题立意】本题主要考查解三角形时正、余弦定理的应用,以及三角形边角的性质.【思路点拨】先由正弦定理求出sinB ,再结合三角形“大边对大角”的性质判断角B 的范围,最后利用平方关系求出cosB.【规范解答】选C.由正弦定理知sin sin a b A B = 知sin sin b AB a=10215==32<,又a b >,故A B >,从而()0,60B ∈(0,)3π,6cos 3B =. 【方法技巧】利用“大边对大角”判断出∠B 是锐角是本题解题关键.2.(2010·上海高考理科·T18)某人要制作一个三角形,要求它的三条高的长度分别为111,,13115, 则此人能( )(A )不能作出这样的三角形 (B )作出一个锐角三角形 (C )作出一个直角三角形 (D )作出一个钝角三角形【命题立意】本题主要考查三角形的有关性质及用余弦定理判定三角形形状的应用. 【思路点拨】先由高转化到边长,再由余弦定理判定最大边所对的角的余弦值的正负. 【规范解答】选D.设三角形的面积为S ,则S a =⨯13121,所以S a 26=,同理可得另两边长S b 22=,S c 10=,由余弦定理,所以A 为钝角.所以能作出一个钝角三角形.【方法技巧】由三边长判定三角形是锐角、直角、还是钝角三角形时,一般只要由余弦定理求出最大边所对角的余弦值即可.若余弦值为负,则三角形为钝角三角形;若余弦值为0,则三角形为直角三角形;若余弦值为正,则三角形为锐角三角形.3.(2010·上海高考文科·T18)若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC ( )(A )一定是锐角三角形 (B )一定是直角三角形(C )一定是钝角三角形 (D)可能是锐角三角形,也可能是钝角三角形【命题立意】本题主要考查三角形的有关性质、正弦定理及余弦定理判定三角形形状等有关知识. 【思路点拨】由余弦定理判定最大边所对的角的余弦值的正负.【规范解答】选 C .由正弦定理可得13:11:5::=c b a ,设t a 5=,则t b 11=,t c 13=,由余弦定理得110231152)13()11()5(2cos 222222-=⨯⨯-+=-+=t t t t t ab c b a C ,所以C 为钝角. 【方法技巧】由三边长判定三角形是锐角、直角、还是钝角三角形时,一般只要由余弦定理求出最大边所对角的余弦值即可.若余弦值为负,则三角形为钝角三角形;若余弦值为0,则三角形为直角三角形;若余弦值为正,则三角形为锐角三角形.4.(2010·全国高考卷Ⅱ文科·T17)ABC ∆中,D 为边BC 上的一点,33BD =,5sin 13B =,3cos 5ADC ∠=,求AD . 【命题立意】本题考查了正弦定理、两角和的正弦公式及解三角形知识.【思路点拨】由已知可得cosB ,利用两角和的正弦公式可得sin ∠BAD 。
第五章平面向量课题:解斜三角形应用举例(一)教学目标:1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题;2.了解常用的测量相关术语教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解。
教学难点:根据题意建立数学模型,画出示意图。
教学过程:Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
Ⅱ.讲授新课(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解](2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒75。
求A、B两点的51,∠ACB=︒距离(精确到0.1m)启发提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB边。