块体非晶合金的主要制备方法与测试手段
- 格式:doc
- 大小:655.50 KB
- 文档页数:8
第1章 绪 论1.1 非晶合金的研究进展凝聚态物质一般可分为晶态物质、准晶态物质和非晶态物质。
理想晶体中原子的排列是十分有规则的,主要体现在原子具有周期性,或者称为长程有序;准晶体介于晶体和非晶体之间,具有长程的取向有序而没有长程的平移对称性;非晶体则是长程无序而短程有序,属于热力学亚稳态。
从广义分类,非晶态材料包括非晶态合金、非晶态半导体、非晶态超导体、非晶态电介质、非晶态离子导体、非晶态高聚物以及传统的氧化物玻璃等,其原子的结合方式可以是金属键、共价键、范德瓦尔斯键、氢键和离子键结合。
特殊的原子结构使非晶态材料具有较高的强度、硬度、高的耐磨性、好的抗腐蚀性及优良的软磁性能。
这些特性使非晶合金成为极具应用前景的新型材料,在国内外受到越来越广泛的重视。
首次报道成功地制备出非晶合金是在1934年,由德国人Kramer用蒸发沉积方法获得的非晶合金薄膜,不久后,Brenner等人采用化学沉积法制备了Ni-P非晶薄膜[1]。
1959年,Bemal首次用密集的自由堆积硬球模型来解释非晶结构;同年,Cohen 等人根据自由体积模型预言[2,3]:“假如冷却到足够快的程度,即使最简单的液体也可以通过玻璃化转变”,这一观点很快就得到了证实。
1960年美国加州理工学院的Duwez等人[4]采用熔体快速冷却的方法首次制备出Au75Si25非晶合金薄膜,从工艺上突破了制备非晶态合金的关键难题。
随后被Gilman等人[5]加以发展,工艺上能做到连续生产。
合金熔体经急冷形成的非晶合金通常又称为金属玻璃。
1969年,陈鹤寿[6]等人用轧辊法(冷却速率≥105K/s)可以一次性做出厚约30微米、宽几毫米、长可达几十米的非晶薄带,为非晶合金的大规模生产奠定了基础。
与此同时,Tumbull将成核理论运用于金属玻璃,提出了非晶形成的物理机理[7]。
1974年,陈鹤寿以及Turnbull 等人通过石英管水淬法等抑制非均质形核的方法,在103K/s淬火速率下制备出最大直径(D max)达1~3mm的Pd-Cu-Si、Pd-Ni-P非晶圆柱棒。
纳米非晶合金制备简介摘要:本文主要介绍了国内外几种非晶合金制备技术,其中包括水淬法、射流成型法、金属模铸造、复合爆炸焊接法及机械合金化法、粉末固结成形法等,并对各种制备技术的进行了比较分析。
关键词:块体金属玻璃块体金属玻璃的连接制备Introduction of the Preparation amorphous alloyAbstract:In this paper, Several fabricating methods of bulk metallic glass matrix composites from both home and abroad were presented,such as water quenching method, jet molding, metal mold casting, composite explosive welding and mechanical alloying, powder consolidation and forming method,than Analysis and comparing these preparation techniques bulk metallic glass.Key words:bulk metallic glass, joining of bulk metallic glass, preparation1.引言非晶态合金也称金属玻璃,与晶态合金相比,其三维空间的原子排列呈拓扑无序状,结构上没有晶界与堆垛层错等缺陷存在,但原子的排列也不像理想气体那样的完全无序。
非晶合金是以金属键作为其结构特征,虽然不存在长程有序,但在几个晶格常数范围内保持短程有序[1]。
与非晶聚合物及无机非晶材料一样,非晶合金在物理性能、化学性能及力学性能方面是各向同性的,并随着温度的变化呈现连续性[2]。
通常其具有以下四个基本特征:(1)结构上呈拓扑密堆长程无序,但在长程无序的三维空间又无序的分布着短程有序的“晶态小集团”或“伪晶核”,其大小不超过几个晶格的范围;(2)不存在晶界、位错、层错等晶体缺陷;(3)具有非晶体的一般特性:物理、化学和机械性能各向同性;(4)热力学上处于亚稳态,当处于晶化温度以上时将发生晶态结构相变,但晶化温度以下能长期稳定存在[3]。
块体非晶合金的制备及物理性能验证党的十八大及十八届三中全会以来,节能降耗、绿色发展已成为全社会的共识。
作为一种全新的低能耗、高效率的合金材料--非晶合金材料越来越受到各行业的广泛关注,该材料作为一种强度高、耗能低的新型材料,其优异的化学及物理性能使之在各行业中具有广泛的应用潜力。
目前,对于块体非晶合金的制备工艺、脆性问题、塑性变形能力改善途径、韧化等方面的研究也越来越深入。
文章希望从进口块体非晶合金的制备及物理性能研究验证出发,为今后更准确地把关该进口商品的质量、建立对该进口金属更有效的检验机制提供参考。
标签:进口块体非晶合金;制备工艺;脆性问题党的十八大及十八届三中全会以来,节能降耗、绿色发展已成为全社会的共识,作为一种全新的低能耗、高效率的合金材料——非晶体合金材料越来越受到各行业的广泛关注,越来越多制造企业、研究机构、学术学院已不断进口块体非晶合金用来研究和生产加工,因为不存在晶界及第二相,也没有差排等晶体内部微观缺陷,所以块体非晶合金拥有独树一帜的化学和物理性能。
块体非晶合金的强抵抗形变能力、极高的塑性变形抗力,良好的耐磨损耐腐蚀能力,使其作为新型结构材料进行大量应用有了极强的潜力。
文章旨在从自我制备块体非晶合金的方式以及研究验证其物理性能角度出发,为今后更准确地把关该进口商品的质量、建立对该进口金属更有效的检验机制提供参考。
1 Zr基块体非晶合金的制备非晶结构金属首次被人知晓是在1934年,来自德国的科学家Kramer制备了Sn非晶合金。
1960年人类第一次出现了采用人工合成的非晶合金,美国的Duwez 教授用比正常工艺过程中快得多的冷却速度制备出了Au2Si非晶合金。
1984年,Turnbull等人利用采用熔融玻璃包裹合金熔液,获得了合金熔液深过冷状态,铸造出了厚度达10毫米的Pd40Ni20P10块体非晶。
1993年,美国加州理工学院研究小组发现了至今为止成型能力最佳的锆-钛-铜-镍-铍非晶合金,他们利用高速冷却的方式,制备了直径达100mm的块体非晶合金。
非晶态合金的一种制备方法非晶态合金是指具有非晶态结构的金属合金。
与晶体结构的金属合金相比,非晶态合金具有具有更高的硬度、强度和韧性,以及优异的阻尼特性和导电性。
非晶态合金制备方法主要有快速凝固法、化学合成法、机械合金化法以及溶液淬火法等。
以下将详细介绍这些制备方法。
1. 快速凝固法:快速凝固法是制备非晶态合金最常用的方法之一。
该方法在金属熔体状态下,通过快速冷却将熔体迅速凝固成非晶态结构的固体。
常用的快速凝固方法包括水淬法、微滴法以及薄带法等。
其中,水淬法是最常用的方法之一,其原理是将熔融金属注入到冷却剂中,迅速冷却凝固成非晶态合金。
这种方法可以制备出具有高度非晶态结构的合金,但是需要对冷却速度进行精确控制。
2. 化学合成法:化学合成法是通过化学反应来制备非晶态合金。
这种方法通常使用金属有机前体与其他化合物反应生成非晶态合金。
例如,通过气相沉积法,可以将金属有机前体在高温条件下分解成金属原子,然后与其他气体反应生成非晶态合金。
这种方法可以控制合金的化学组成和结构,可以制备出多种不同的非晶态合金。
3. 机械合金化法:机械合金化法是通过机械力的作用来制备非晶态合金。
这种方法通常使用高能球磨、挤压、冲击等机械力对金属粉末进行处理。
机械合金化的原理是通过机械力使金属粉末发生变形、断裂和重新结合,形成非晶态和纳米晶态结构的合金。
机械合金化法制备非晶态合金具有简单、可扩展性好的特点。
4. 溶液淬火法:溶液淬火法是将金属合金在高温状态下快速冷却至低温,制备非晶态合金。
在溶液淬火法中,液体金属合金先加热至高温状态,然后迅速浸入低温淬冷液体中,使其迅速冷却凝固为非晶态合金。
该方法需要对淬冷温度和淬冷液体进行精确控制,可以制备出高度非晶态结构的合金。
总的来说,制备非晶态合金的方法有快速凝固法、化学合成法、机械合金化法以及溶液淬火法等。
这些方法各有优缺点,选择合适的制备方法要根据具体的要求和实际情况来确定。
非晶态合金的制备方法的研究和应用将为制备高性能材料和开发新颖器件提供重要的技术支持。
非晶态合金的制备与性能研究一、引言非晶态合金是一种特殊的材料,它是由高浓度的合金元素混合制成的。
与传统的多晶材料相比,非晶态合金具有更高的强度、更低的磨损和更好的防腐蚀性。
近年来,非晶态合金在汽车、航空、电子和能源等领域得到了广泛的应用。
二、非晶态合金的制备方法非晶态合金的制备方法有多种,主要包括溶液冷却、气相淬火、电弧溅射和机械合成等。
其中,溶液冷却法是一种简单有效的方法,它可以制备出大量的非晶态合金样品。
该方法通常是将合金元素混合在一起,然后将混合物放入高温溶液中,迅速冷却。
通过这种方法,可以制备出各种不同的非晶态合金样品。
气相淬火是另一种制备非晶态合金的方法。
该方法可以通过在惰性气体中快速冷却合金样品来制备非晶态合金。
这种方法可以获得优异的非晶态合金样品。
电弧溅射是一种常见的合金制备方法,它适用于制备各种金属薄膜和表面涂层。
该方法通过在真空环境下对目标材料进行电弧放电来制备非晶态合金。
这种方法还可以制备出多层复合薄膜和纳米多层结构薄膜。
机械合成是一种非常简单的方法,它利用机械力来制备非晶态合金样品。
该方法可以通过球磨等机械装置对合金粉末进行处理,得到非晶态合金样品。
该方法制备的非晶态合金样品具有良好的均匀性和可控性。
三、非晶态合金的性能研究非晶态合金具有许多出色的性能,其中最突出的是其高强度和良好的延展性。
这两种性能的组合使非晶态合金被广泛应用于许多重要的领域。
非晶态合金还具有优良的耐腐蚀性和高温性能。
这些性能使得非晶态合金在汽车、航空和能源领域得到广泛的应用。
除了高强度和高温性能外,非晶态合金还具有出色的热稳定性和化学稳定性。
这些性能使得非晶态合金适用于各种特殊环境下的应用。
最近的研究表明,非晶态合金还是一种优秀的催化剂材料。
非晶态合金催化剂可以用于水处理、气体处理和化学加工等领域。
四、结论非晶态合金是一种具有广泛应用前景的高性能材料。
它的制备方法多种多样,而且具有许多出色的性能。
未来的研究应该集中于探索非晶态合金在各个领域中的应用,以及制备更高性能的非晶态合金材料。
非晶合金材料的制备和性能探究近年来,非晶合金材料逐渐引起了科学界和工业界的广泛关注。
其制备和性能探究已成为材料科学和工程学领域的热点之一。
本文将就非晶合金材料的制备方法和性能进行探究。
一、非晶合金材料的定义和特点非晶合金材料,简称非晶态材料,是指没有规则晶体结构的复杂合金材料。
相比于晶态材料,非晶态材料具有更高的硬度、强度和耐腐蚀性能。
同时,其电学、磁学、光学和力学等性能也有很大的潜力。
二、非晶合金材料的制备方法1. 快速凝固法快速凝固法是制备非晶合金材料的传统方法之一。
通过将金属液体急速冷却,使其无法形成晶体结构。
目前,常用的快速凝固方法有水冷却法、气体冷却法和激光熔覆法等。
2. 电弧溅射法电弧溅射法是一种制备薄膜和纳米晶非晶材料的方法。
通过高温高能的电弧火花,将材料原子释放并沉积在基底表面上,形成非晶态或纳米晶态薄膜。
3. 机械合金化法机械合金化法是一种粉末冶金的方法。
通过球磨、高能球磨等机械处理手段,将不同的金属粉末混合并形成非晶合金材料。
三、非晶合金材料的性能探究1. 显微结构分析非晶合金材料的显微结构可以通过透射电子显微镜和扫描电子显微镜等设备来观察和分析。
这些研究可以揭示非晶合金的晶体结构、微观运动和相变机制等。
2. 机械性能研究非晶合金材料的高硬度、高强度和高韧性是其重要的机械性能。
通过纳米压痕测试、拉伸测试、弯曲测试和压缩测试等方法,可以探究非晶合金材料的机械性能变化规律。
3. 物理性能研究非晶合金材料的电学、磁学和光学性能也值得关注。
通过电学、磁学和光学测试等手段,对非晶合金材料的物理性能进行探究。
四、非晶合金材料在材料工程上的应用非晶合金材料在材料工程领域具有广泛的应用前景。
例如,非晶合金材料可以被制成高强度和高韧性的螺栓、弹簧、齿轮和涡轮叶片等机械部件;也可以被用作生物医学领域的材料,如智能植入体、药物开发等。
总之,随着非晶合金材料制备和性能研究的深入,其在工业、医疗等领域的应用前景可期。