(完整word版)高中数学例题:利用平面向量基本定理证明三点共线问题
- 格式:doc
- 大小:57.31 KB
- 文档页数:2
利用向量证明三点共线与三线共点宋朝霞; 付昆朋【期刊名称】《《高中数理化》》【年(卷),期】2019(000)010【总页数】1页(P12)【作者】宋朝霞; 付昆朋【作者单位】山东省淄博市临淄中学【正文语种】中文证明三点共线、三线共点是几何中经常遇到的问题,直接证明往往较为困难,用向量进行证明则会更加简便,本文就此进行举例说明.1 证明三点共线证明A,B,C三点共线,只要证明与共线即可,即证明例1 已知两个非零向量e1和e2不共线,如果求证:A,B,D三点共线.证明因为所以向量与共线.又因为和有共同的起点A,所以A,B,D三点共线.点评欲证A,B,D三点共线,只需证与共线即可.例2 若a,b是两个不共线的非零向量,若a与b起点相同,则实数m为何值时,三个向量的终点在同一直线上?解析由题意可知,要使三个向量的终点在同一直线上,则存在唯一实数λ,使化简得因为a,b不共线,所以解之得综上所述,当时,三个向量的终点在同一直线上.点评已知向量a与b不共线,λ1,λ2为实数,若λ1a+λ2b=0,则λ1=λ2=0.2 证明三线共点证明三线共点一般需证两线交点在第三条直线上,可将某一个向量用同一基底下的两种不同的形式表达,即用“若e1,e2为基底,a=x1e1+y1e2=x2e1+y2e2,则求解.例3 证明三角形的三条中线交于一点.证明如图1所示,令并以a,b为基底,则图1设AD与BE相交于G1,并假定则有因为所以解得所以再设AD与CF相交于G2,同理可得因此,点G1与G2重合,也就是AD,BE,CF相交于同一点.综上所述,三角形的三条中线交于一点.点评应用平面向量基本定理证明平面几何问题,一般先选取一组基底,再充分运用向量的几何性质、坐标运算等向量的有关知识,把相关向量用基底表示即可.。
利用共线向量巧解三点共线例题:如图,A,B,C是平面内三个点,P是平面内任意一点,若点C在直线AB上,则存在实数λ,使得PC=λPA+(1-λ)PB.证法探究:分析:初看欲证目标,始感实难下手。
我们不妨从结论出发探寻线路,欲证PC=λPA+(1-λ)PB,只需证PC=λPA+PB-λPB⇔PC-PB=λ(PA-PB)⇔BC=λBA⇔BC∥BA.这样证明思路有了。
证法:∵向量BC与向量BA共线,∴BC=λBA,即PC-PB=λ(PA -PB),PC=λPA+PB-λPB,∴PC=λPA+(1-λ)PB.证毕,再思考一下实数λ的几何意义究竟如何。
考察向量等式BC=λBA,结合图形,易知,当点C在线段AB上时,则BC 与BA同向,有0≤λ≤1;当点C在线段AB延长线上时,则BC 与BA反向,有λ<0;当点C在线段BA延长线上时,则BC与BA 同向,有λ>1.此例题逆命题亦成立,即已知A,B,C是平面内三个点,P是平面内任意一点,若存在实数λ,μ,有PC=λPA+μPB,且λ+μ=1,则A,B,C三点共线.故此逆命题可作三点共线判定方法。
为方便起见,我们将两命题作为性质叙述如下:性质1:已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,使得PC =λPA +(1-λ)PB .或叙述为:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,μ,使得PC =λPA +μPB ,则有λ+μ=1.性质2:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μPB ,且λ+μ=1,则A ,B ,C 三点共线.三点共线性质在解题中的应用:例1 如图,在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB =AM m ,AC =AN n ,则n m +的值为 .解析:连结AO ,因为点O 是BC 的中点,所以有AO =AC AB 2121+=AN n AM m 2121+,又因为M 、O 、N 三点共线,所以12121=+n m ,故2=+n m .点评:因为点O 是BC 的中点,所以λ=21||=CB ,由性质1,μ=1-λ=21,简便求出n m +的值. 例2 如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC=+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C例3 所示:点是△的重心,、分别是边、上的动点,且、、三点共线.设,,证明:是定值;证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+ 1OP xOA OA OP x =∴= 1OQ yOB OB OQ y=∴= 111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3G OAB P Q OA OB P G Q OA x OP =OB y OQ =yx 11+例4.如图,在ABC ∆中,OA OC 41=,OB OD 21=, AD 与BC 交于M 点,设b OB a OA ==,. (Ⅰ)用a ,b 表示OM ;(Ⅱ)在已知线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过点M .设OA p OE =,OB q OF =.求证:17371=+qp . 解析:(Ⅰ)因为B 、M 、C 三点共线,所以存在实数m 使得OM =OB m OC m )1(-+ =OB m OA m )1(41-+⋅=b m a m )1(41-+;又因为A 、M 、D 三点共线,所以存在实数n 使得OM =OD n OA n )1(-+=b n a n )1(21-+.由于a ,b 不共线,所以有⎪⎩⎪⎨⎧-=-=),1(211,41n m n m 解得,⎪⎩⎪⎨⎧==.n m 71,74 故OM =b a 7371+. (Ⅱ)因为E 、M 、F 三点共线,所以存在实数λ使得OM =OF OE )1(λλ-+ =b q a p )1(λλ-+.结合(Ⅰ),易得出⎪⎩⎪⎨⎧=-=,73)1(,71q p λλ消去λ得,17371=+q p . 点评:本题是以a ,b 作为一组基底,其他向量都由它们线性表示.解(Ⅰ)中的实数m ,n 的几何意义为:m ||BC =74,n ||DA DM =71, m ,n ∈(0,1);解(Ⅱ)中的实数λ||FE FM =p 71.例5.如图,平行四边形ABCD 中,点P 在线段AB 上,且m PBAP =,Q 在线段AD 上,且n QD AQ =,BQ 与CP 相交于点R ,求RCPR 的值. 解析:设RC PR =λ,则PC PR =1+λλ,BR =1+λλBC +(1-1+λλ)BP .因为m PB AP =,所以BA m BP 11+=,且BR =1+λλBC +11+λ·BA m 11+. 又n QD AQ =,∴AD n n AQ 1+==BC n n 1+,∴AQ BA BQ +=,即BA BC n n BQ ++=1.又∵BR 与BQ 共线,∴1+λλ-)1)(1(11++⋅+m n n λ=0,解得λ=)1)(1(++n m n . 点评:我们先要确定好一组基底BC BA ,,看准BR ,BQ 如何由它们线性表示;而欲求目标数值,因C R P ,,三点共线,中途要以BC BP ,作基底,BR 由它们线性表出时,分析清楚该两基底系数所表示的几何意义,由性质1,得BR =1+λλBC +(1-1+λλ)BP ;最终BR 与BQ 都得转化到由BC BA ,两基底线性表示,此时容易由共线向量性质列出等式,从而求出结果.例6 所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
平面向量基本定理一.教学目标:了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 22.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ⋅=⋅=2,3,则=MN ____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。
其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j作基底,则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a的坐标,记作____________。
3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:OM =________________,M 点的坐标为_____________.5.两个向量平行的充要条件是:向量形式:_____________)0(//⇔≠b b a ;坐标形式: _____________)0(//⇔≠b b a .6. a=(x,y ), 则a =___________.与a 共线的单位向量是:aa e = 四.例题分析:例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P点的坐标为( )A (-14,16) (B )(22,-11) (C )(6,1) (D ) (2,4) (2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )(A )⎪⎭⎫ ⎝⎛-54,53 (B)⎪⎭⎫ ⎝⎛-54,53 (C)⎪⎭⎫ ⎝⎛-53,54 (D)⎪⎭⎫ ⎝⎛-53,54(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。
平面向量三点共线证明
假设有三个平面向量a,b,c,它们的起点分别为A、B、C。
现在需要证明这三个向量共线,即它们的终点在同一条直线上。
首先,我们可以将向量b平移,使它的起点与a的终点重合。
设平移后的向量为b',起点为A,终点为D。
接着,我们可以将向量c平移,使它的起点与b'的终点重合。
设平移后的向量为c',起点为D,终点为E。
现在,我们需要证明向量a和c'的终点也是在直线DE上的。
由于向量a和b的终点已经在同一点,根据向量加法的规则,我们可以得到:
a +
b = AD
同样地,根据向量加法的规则,我们也可以得到:
a + b' = AB
将b'带入上式,得到:
a + b' = AD
将c'带入上式,得到:
a + c' = AE
因此,向量a和c'的终点也是在直线DE上的,三个向量共线得证。
注:平面向量三点共线也可以运用叉积的概念加以证明。
- 1 -。
高中数学解题技巧:平面向量三点共线定理,关键点λμ=1
综述:先对平面向量之三点共线定理进行证明;此定理简称
λ+μ=1;若三点共线,则分解某向量,引进唯一参数λ,再用分解定理的唯一性求λ,此即待定系数法;亦可用平行向量求参数;
这点不难证明,只需证明由这三点A,B,C所组成的向量中有两个向量共线,而本结论可作定理直接使用。
平面向量题型要充分认识平面向量具有几何形式和代数形式的“双重身份”,重视向量的工具作用和应用意识,强化知识的联系,善于构造向量解决问题。
若,3.已知B 为OAC 边AC 上一点,且满足OC y OA x OB +=4,不等式222313x y m m x y +≥-++恒成立时,实数m 的最值范围为___________.巩固练习1.在ABC ∆中,4AB =,O 为三角形的外接圆的圆心,若),(R y x AC y AB x AO ∈+=且21x y +=,则ABC ∆的面积的最大值为_____.2.在P AB ∆中,,60,9,80=∠==APB PB P A 点C 满足PB y P A x PC +=,且,0,0,532≥≥=+y x y x 其中则||PC 的最大值为______,最小值为______.3.已知ABC ∆的外心为O 满足AC y AB x AO +=,若,10,6==AC AB 且,5102=+y x 则=∠BAC cos ______.例5.如图,M 为△ABC 的中线AD 的中点,过点M 的直线分别交线段AB 、AC 于点P 、Q 两点,设AP xAB =,AQ y AC =,记()y f x =,设32()32g x x a x a =++,[0,1]x ∈,若对任意11[,1]3x ∈,总存在2[0,1]x ∈,使得12()()f x g x =成立,则实数a 的取值范围为______.巩固练习2.(2022·辽宁葫芦岛·高三期末)如图,在等腰ABC 中,已知2AB AC ==,120A ∠= ,E ,F 分别是边AB ,AC 上的点,且AE AB λ= ,AF AC μ=,其中λ,R μ∈,且21λμ+=,若线段EF ,BC 的中点分别为M ,N ,则MN的最小值是()A .77B .217C .2114D .213.(2023·全国·高三专题练习)直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM m AB = ,AN nAC =,()0,0m n >>,则下列结论错误的是()A .12m n+为常数B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为12m =,2n =巧用杠杆原理处理三角形中的向量问题数值,各线段上得如图所示各点的标数则根据杠杆平衡原理可,已知三角形中的赋值标数法,d,cNC AN b a MB AM ==点数值乘数值等于点数值乘线段上,段数值乘积相等。
共线定理以及三点共线一、向量共线定理平面向量共线定理:对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=例1.设与是两个不共线的向量,且向量与共线,则A. 0B.C.D.【解答】 解:因为向量与共线,所以存在实数x 有,则,解得故选D .例2.已知向量,,且与共线,,则 A.B.C.或D.或【解答】 解:与共线,,, , 或.故选:D .例3.若、是不共线向量,,,且,则k等于A. 8B. 3C.D.【解析】解:,是不共线向量,,,且,存在实数使得..,解得.故选D.例4.向量,,若与共线且方向相反,则______.【解答】解:,,解得,又与方向相反,.故答案为.例5.已知点P在线段AB上,且,设,则实数______.【解析】解:如图所示,点P在线段AB上,且,;又,.故答案为:.例6.已知向量______.【解析】解:,,则有,解得,故答案为.例7.已知是平面内两个不共线向量,,若A,B,D三点共线,则k的值为A. 2B.C.D. 3【解答】解:,,、B、D三点共线,与共线,存在唯一的实数,使得即解得.故选A.例8.已知、是两个不共线向量,设,,,若A,B,C三点共线,则实数的值等于A. 1B. 2C.D.【解答】解:,,,,,,B,C三点共线,不妨设,,,解得.故选C.例9.设,是两个不共线的向量,已知,,,若三点A,B,D共线,则k的值为A. B. 8 C. 6 D.【解答】解:,因为三点A,B,D共线,所以与共线,则存在实数,使得,即,由向量相等的条件得,所以.故选A.例10.设,是不共线向量,与共线,则实数k为______ .【解答】解:与共线,且,是不共线向量,存在实数满足:,且,.故答案为.例11.设向量,不平行,向量与平行,则实数________.【解答】解:向量,不平行,向量与平行,,,解得实数.故答案为.二、三点共线定理在平面中A、B、P三点共线的充要条件是:对于该平面内任意一点的O,存在唯一的一对实数x,y使得:OP xOA yOB=+且1x y+=。
高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。
高考达标检测(二十一) 平面向量的基本运算一、选择题1.(2017·长春模拟)如图所示,下列结论正确的是( ) ①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误,故选C.2.(2017·长沙一模)已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.13解析:选A AB ―→=OB ―→-OA ―→=(4-k ,-7), AC ―→=OC ―→-OA ―→=(-2k ,-2). ∵A ,B ,C 三点共线, ∴AB ―→,AC ―→共线,∴-2×(4-k )=-7×(-2k ), 解得k =-23.3.(2016·嘉兴调研)已知点O 为△ABC 外接圆的圆心,且OA ―→+OB ―→+CO ―→=0,则△ABC 的内角A 等于( )A .30°B .45°C .60°D .90°解析:选A 由OA ―→+OB ―→+CO ―→=0得,OA ―→+OB ―→=OC ―→,由O 为△ABC 外接圆的圆心,结合向量加法的几何意义知,四边形OACB 为菱形,且∠CAO =60°,故A =30°.4.(2017·武汉武昌区调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→等于( )A .OM ―→B .2OM ―→C .3OM ―→D .4OM ―→解析:选D 因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→,故选D.5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC ―→=2BD ―→,CE ―→=2EA ―→,AF ―→=2FB ―→,则AD ―→+BE ―→+CF ―→与BC ―→( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,BE ―→=BA ―→+AE ―→=BA ―→+13AC ―→,CF ―→=CB ―→+BF ―→=CB ―→+13BA ―→,因此AD ―→+BE ―→+CF ―→=CB ―→+13(BC ―→+AC ―→-AB ―→)=CB ―→+23BC ―→=-13BC ―→,故AD ―→+BE ―→+CF ―→与BC ―→反向平行.6.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则xy x +y的值为( )A .3 B.13 C .2D.12解析:选B 利用三角形的性质,过重心作平行于底边BC 的直线,易得x =y =23,则xyx +y=13. 7.(2017·兰州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=( )A.π6 B.π4 C.π3D.5π12解析:选B 因为a ∥b ,所以(1-sin θ)×(1+sin θ)-1×12=0,得sin 2θ=12,所以sin θ=±22,故锐角θ=π4. 8.已知△ABC 是边长为4的正三角形,D ,P 是△ABC 内的两点,且满足AD ―→=14(AB ―→+AC ―→),AP ―→=AD ―→+18BC ―→,则△APD 的面积为( )A.34B.32C. 3 D .2 3解析:选A 取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE ―→=12(AB ―→+AC ―→),又AD ―→=14(AB ―→+AC ―→),所以点D 是AE 的中点,AD = 3.取AF ―→=18BC ―→,以AD ,AF 为邻边作平行四边形,可知AP ―→=AD ―→+18BC ―→=AD ―→+AF ―→.而△APD 是直角三角形,AF =12,所以△APD 的面积为12×12×3=34. 二、填空题9.在矩形ABCD 中,O 是对角线的交点,若BC ―→=5e 1,DC ―→=3e 2,则OC ―→=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC ―→=12AC ―→=12(AB ―→+AD ―→)=12(DC ―→+BC ―→)=12(5e 1+3e 2)=52e 1+32e 2.答案:52e 1+32e 210.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD ―→=x AB ―→+y AC ―→+z AS ―→,则x +y +z =________.解析:依题意得BD ―→=AD ―→-AB ―→=12(AS ―→+AC ―→)-AB ―→=-AB ―→+12AC ―→+12AS ―→,因此x +y +z =-1+12+12=0.答案:011.(2017·贵阳模拟)已知平面向量a ,b 满足|a |=1,b =(1,1),且a∥b ,则向量a 的坐标是________.解析:设a =(x ,y ).∵平面向量a ,b 满足|a |=1,b =(1,1),且a∥b , ∴x 2+y 2=1,x -y =0.解得x =y =±22. ∴a =⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-22. 答案:⎝⎛⎭⎪⎫22,22或⎝ ⎛⎭⎪⎫-22,-2212.(2016·抚顺二模)如图,平面内有三个向量OA ―→,OB ―→,OC ―→,其中OA ―→与OB ―→的夹角为120°,OA ―→与OC ―→的夹角为30°,且|OA ―→|=|OB ―→|=1,|OC ―→|=23,若OC ―→=λOA ―→+μOB ―→ (λ,μ∈R),即λ+μ的值为________.解析:如图,构成平行四边形,∵∠OCD =90°,|OC |=23,∠COD =30°,∴|CD |=23×33=2=|OE |=|μ|, |OD |=23cos 30°=|λ|=4,注意共线的条件和单位向量有λ+μ=6.答案:6 三、解答题13.图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE ―→=23AD ―→,AB ―→=a ,AC ―→=b .(1)用a ,b 表示向量AD ―→,AE ―→,AF ―→,BE ―→,BF ―→; (2)求证:B ,E ,F 三点共线.解:(1)延长AD 到G ,使AD ―→=12AG ―→,连接BG ,CG ,得到平行四边形ABGC ,所以AG ―→=a +b ,AD ―→=12AG ―→=12(a +b ),AE ―→=23AD ―→=13(a +b ),AF ―→=12AC ―→=12b ,BE ―→=AE ―→-AB ―→=13(a +b )-a =13(b -2a ),BF ―→=AF ―→-AB ―→=12b -a =12(b -2a ).(2)证明:由(1)可知BE ―→=23BF ―→,又因为BE ―→,BF ―→有公共点B , 所以B ,E ,F 三点共线.14.(2017·郑州模拟)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)若(a +kc )∥(2b -a ),求实数k ;(2)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d 的坐标. 解:(1)a +kc =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0, 解得k =-1613.(2)设d =(x ,y ),则d -c =(x -4,y -1), 又a +b =(2,4),|d -c |=5,∴⎩⎪⎨⎪⎧x --y -=0,x -2+y -2=5,解得⎩⎪⎨⎪⎧x =3,y =-1或⎩⎪⎨⎪⎧x =5,y =3.∴d 的坐标为(3,-1)或(5,3).。
高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。