第2章 电磁辐射与地物光谱特征(1)090921讲解
- 格式:ppt
- 大小:3.19 MB
- 文档页数:85
第二章电磁辐射与地物波谱特征电磁辐射(Electromagnetic Radiation)是一种包括可见光、红外线、紫外线、无线电波等各种波长的能量传播方式。
它是电磁场在空间中传播形成的波动现象。
地物波谱特征则是指地球表面物体在不同波长的电磁辐射下所表现出的不同特征。
电磁辐射具有波动性和小粒子性的双重本质,速度等物理特性由自由空间的固有性质决定。
它在空间中的传播速度近似为光速,即每秒约30万公里。
电磁辐射的波长与频率呈反比关系,波长越长频率越低,波长越短频率越高。
根据波长的不同,电磁辐射被分为不同的区域,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
地物波谱特征是指地球表面物体在不同波长的电磁辐射下所表现出的不同特征。
不同物体对电磁辐射的散射、吸收和反射特性不同,因此它们在不同波长下的反射率也会有所差异。
通过对这些反射率的观测和分析,可以研究地球表面的物质组成和结构。
在可见光波段下,地物的颜色和明暗程度是反射率的重要特征。
例如,植被通常呈现绿色,因为植被对绿色光的吸收率较低,反射率较高。
而水体则呈现蓝色,因为水对蓝色光的吸收较少,反射率较高。
在红外线波段下,地物的辐射特征主要与物体的温度有关。
根据斯特藩-玻尔兹曼定律,物体的辐射功率与温度的四次方成正比。
因此,相同温度下的物体,辐射功率也会有所差异。
通过红外线遥感技术,可以测量物体的表面温度,以及区分不同物体的各个部分的温度差异。
在微波和雷达波段下,地物的散射特征是研究的重点。
微波和雷达波可以穿透云层和雾霾,因此在大气透明波段具有独特的优势。
微波与地物的相互作用主要是散射和吸收。
地面、植被和建筑物等物体对微波有不同的散射特征,可以通过微波遥感技术获取地物的三维结构信息。
总之,电磁辐射与地物波谱特征密切相关。
通过对不同波长电磁辐射的观测和分析,可以研究地球表面的物质组成、结构和温度等特征。
这对于遥感技术的应用具有重要意义,可以广泛应用于气候变化、环境保护、资源调查和自然灾害监测等领域。
第二章电磁辐射与地物光谱特征第二章电磁辐射与地物光谱特征02107021 张波一、名词解释:1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。
2、后向散射:在两个均匀介质的分界面上,当电磁波从一个介质中入射时,会在分界面上产生散射,这种散射叫做表面散射。
在表面散射中,散射面的粗糙度是非常重要的,所以在不是镜面的情况下必须使用能够计算的量来衡量。
通常散射截面积是入射方向与散射方向的函数,而在合成孔径雷达及散射计等遥感器中,所观测的散射波的方向是入射方向,这个方向上的散射就称作后向散射3、电磁波:当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁振荡在空间传播,这就是电磁波。
4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱。
5绝对黑体:能够完全吸收任何波长入射能量的物体6、瑞利散射:当大气中的粒子的直径比波长小得多时发生的散射。
这种散射主要由大气中的原子和分子,如氮、二氧化碳、臭氧和氧分子等引起的。
7灰体:在各种波长处的发射率相等的实际物体。
8、绝对温度:按热力学温标度量的温度。
单位为开[尔文],符号“K”。
9、辐射温度:如果实际物体的总辐射出射度(包括全部波长)与某一温度绝对黑体的总辐射出射度相等,则黑体的温度称为该物体的辐射温度。
10、光辐射通量密度:单位时间内通过单位面积的辐射通量,E=,单位:。
S为面积。
11大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称为大气窗口。
12发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。
13、米氏散射:当大气中的粒子的直径与辐射的波长相当时发生散射。
这种散射主要由大气中的微粒,如烟、尘埃、小水滴以及气溶胶等引起的。
14、地球辐射:地球及地球大气系统所发射的辐射。
15反射率:物体的反射辐射通量与入射辐射通量之比。
16光谱反射特性曲线:反射波普曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。