答案 A
图24-1-直径,由圆周角定理的推论可知直径所对的圆周角等
知识点三 圆内接四边形的性质
圆内接多边形
如果一个多边形的所有顶点都在同一个圆上,则这个多边形叫做圆内接多边形, 这个圆叫做这个多边形的外接圆
圆内接四边形的性质 圆内接四边形的对角互补
符号语言
如图所示,如果四边形ABCD内接于☉O,那么∠A+∠C=∠B+∠D=180°
方法总结 在与圆的内接四边形有关的计算或证明中,利用圆内接四边形对 角互补进行角度转化是解决问题的关键.
经典例题全解
题型一 构造圆内接四边形求角度 例1 (2019山东德州中考)如图24-1-4-6,点O为线段BC的中点,点A,C,D到点O的距 离相等,若∠ABC=40°,则∠ADC的度数是 ( )
∵AB是直径,
∴∠ACB=90°.
∵∠BAC=25°,
∴∠B=90°-∠BAC=90°-25°=65°.
∵∠B为
︵
AC
所对的圆周角,且根据翻折的性质知
︵
ABC
所对的圆周角的度数等于∠ADC
的度数,
∴∠ADC+∠B=180°, ∴∠ADC=180°-65°=115°. ∴∠DCA=180°-∠BAC-∠ADC=180°-25°-115°=40°.
例2 (2019辽宁营口中考)如图24-1-4-3,BC是☉O的直径,A,D是☉O上的两点,连接 AB,AD,BD,若∠ADB=70°,则∠ABC的度数是 ( )
A.20°
B.70°
图24-1-4-3
C.30°
D.90°
解析 如图24-1-4-4,连接AC, ∵BC是☉O的直径, ∴∠BAC=90°. ∵∠ACB=∠ADB=70°, ∴∠ABC=90°-70°=20°.故选A.