人教版五年级数学下 培优 最大公因数和最小公倍数(二) 培优练习
- 格式:docx
- 大小:12.63 KB
- 文档页数:2
第二单元因数与倍数(培优卷)小学数学五年级下册高频常考易错真题汇编(满分:100分,完成时间:60分钟)一、选择题(每题2分,共16分)1.a是一个质数,那么a()。
A.有一个因数。
B.有两个因数。
C.至少有三个因数。
2.“哥德巴赫猜想”中有一个命题:任何一个大于2的偶数都可以写成两个质数的和,下列式子中符合这个猜想的是()。
A.18=1+17 B.5=2+3 C.20=7+133.最小的质数与最小的合数组成的两位数中,最小的两位数的因数有()个。
A.4 B.6 C.84.同时是2、3、5的倍数的三位数中,最小的一个是()。
A.120 B.210 C.1505.几个质数相乘的积是()。
A.质数B.合数C.奇数6.在以下这些数中:1,8,25,17,2,97,45,70,23,11,20,0.12。
质数有()个,偶数有()个。
A.5,4 B.4,4 C.3,57.如果a表示非零自然数,那么偶数可以用()来表示。
A.a+2 B.2a C.2a+18.一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。
翻动50次,杯口()。
A.朝上B.朝下C.不确定二、填空题(每题2分,共16分)9.在0、1、2、3、4、5、6、7、8中,奇数是:( );偶数是:( )。
10.一个数既是6的倍数,又是54的因数,这个数最小可能是( ),最大可能是( )。
11.一个三位数,个位上是最小的合数,十位上是最小的奇数,百位上是最小的质数,这个三位数是( )。
12.从0、2、5、7四个数字中选三个,组成能同时被2、3、5整除的数,将这些数从小到大排列,第三个数是( )。
13.偶数+奇数=( );质数×质数=( )。
14.同时是2、5的倍数的最小两位数是( ),同时是2、3、5的倍数的最小两位数是( )。
15.布袋里有9张卡片分别写着1~9,摸出的卡片上如果是质数表示甲赢,如果是合数表示乙赢,这个规则是( )的。
2022学年五年级数学下册典型例题系列之第四单元求最大公因数和最小公倍数专项练习(解析版)1.用你喜欢的方法求出下列各组数的最大公因数。
(1)15和20(2)24和18(3)13和19【答案】(1)5 (2)6 (3)1【解析】【分析】(1)(2)对于一般的两个数来说这两个数的公有质因数连乘积是最大公因数(3)13和19是互质数是互质数的两个数它们的最大公因数是1 由此解答。
【详解】(1)15和2015=3×520=2×2×5最大公因数是5(2)24和1824=2×2×2×318=2×3×3最大公因数是2×3=6(3)13和1913和19是互质数最大公因数是1。
2.求下面各组数的最大公因数。
4和13 18和27 20和50【答案】1 9 10【解析】对每一组的两个数分别分解质因数两个数的最大公因数是这两个数公共的质因数的乘积。
【详解】4和13互质 4和13的最大公因数是1=⨯⨯27333=⨯⨯1823318和27的最大公因数是339⨯==⨯⨯=⨯⨯502552022520和50的最大公因数是2510⨯=。
3.求出下面每组数的最大公因数。
12和48 36和6 9和819和11 11和15 16和32【答案】12 6 91 1 16【解析】【分析】把每个数分别分解质因数再把各数中的全部公有质因数提取出来连乘所得的积就是这两个数的最大公因数。
【详解】12=2×2×348=2×2×2×2×3所以12和48的最大公因数是:2×2×3=4×3=1236=2×2×3×36=2×3所以36和6的最大公因数是:2×3=69=3×381=3×3×3×3所以9和81的最大公因数是:3×3=99=1×911=1×11所以9和11 的最大公因数是:111=1×1115=1×15=3×5所以11和15的最大公因数是:116=2×2×2×232=2×2×2×2×2所以16和32的最大公因数是:2×2×2×2=4×2×2=8×2=16【点睛】掌握求最大公因数的方法是解决本题的关键。
单元培优提高卷第二单元:因数与倍数五年级下册数学培优卷(人教版)姓名:___________班级:___________考号:___________一、选择题1.在下面数中,()既是合数,又是奇数。
A.76B.91C.372.100以内同时是3和5的倍数的最大的数是()。
A.95B.90C.753.任意非零自然数a的最小倍数与最大因数的差是()。
A.0B.1C.a4.因为54÷6=9,所以()。
A.54是9的倍数B.9和6都是因数C.54是6的因数5.两个奇数的和()。
A.一定是奇数B.一定是偶数C.可能是奇数也可能是偶数6.8723至少加(),得到的数就同时是2、3、5的倍数。
A.2B.1C.7D.47.41□是一个三位数,要使它既是2的倍数,又是5的倍数,□里可以填()。
A.0B.5C.28.下面说法不正确的是()。
A.三个连续的自然数中(0除外),一定有一个数是3的倍数。
B.个位上是6的数一定是2和3的倍数。
C.9的倍数一定是3的倍数。
二、填空题9.一个数的最大因数是25,这个数是_________,它的最小倍数是_________。
10.从5、0、7、8中任选三个数,组成一个同时是2,3,5的倍数的三位数是( )。
11.一个两位数,个位上是最小的合数,十位上是3的倍数,这个数最大是( )。
12.两个相邻的偶数中,设较小的数为n,则较大的数为( );如果这两个偶数的和为118,那么这两个偶数分别是( )和( )。
13.在2、12、19、25、39、47、56这些数中,最大的质数是( ),最小的合数是( ),最小的奇数是( ),最大的偶数是( )。
14.一个数的最大因数是16,这个数的所有的因数有( )。
15.18的因数中,最小的是( ),最大的是( )。
16.3个连续奇数的和是63,这3个数是( )、( )和( )。
三、判断题17.因为57=3×19,所以57只有3和19两个因数。
【小学五升六年级数学培优练习最大公因数和最小公倍数专项练习(含答案)一、填空题。
1、几个数()叫做这几个数的公因数。
其中,()叫做这几个数的最大公因数。
2、如果两个相邻奇数的和是20,那么这两个相邻奇数的最大公因数是(),最小公倍数是()3、最小的质数与最小的合数的最大公因数是(),最小公倍数是()。
4、在5、6、9和16这四个数中,()和()是互质数;()和()是互质数;()和()是互质数;()和()是互质数。
5、已知m=2×2×3,n=2×3×5,那么m与n的最大公因数是(),最小的公倍数是()。
6、已知乙数是甲数的2倍,并且甲数和乙数的最大公因数是12,则甲数是(),乙数是()。
7、有两个连续的自然数,它们的和是11,则这两个数的最大公因数是(),最小公倍数是()。
8、与19相邻的两个自然数是()和(),它们的最大公因数是(),它们的最小公倍数是()。
二、选择题。
1、如果两个数的最大公因数是4,最小公倍数是84,那么这两个数是()。
A、8和26B、12和28C、4和842、用一个数除以2、3、5时余数都是1,这个数最小是()。
A、30B、31C、323、如果两个数的最大公因数是6,那么这两个数可能是()。
A、18和30B、16和24C、12和48三、计算题。
1、找出下列各组数的最大公因数。
(1)12和27;(2)18和24;(3)7和10;(4)22和66;(5)32和56;(6)13和39;(7)15、40和75;(8)8、24和42;(9)18、27和36;(10)16、48和72;2、找出下列各组数的最小公倍数。
(1)7和13;(2)8和28;(3)9和24;(4)28和42;(5)40和60;(6)54和72;四、解决问题。
1、饲养员有一筐桃子,如果分给9只小猴子或12只大猩猩,正好可以分完,这些桃子最少有多少个?2、鲜花店有36支红玫瑰和42支黄玫瑰,如果把这些玫瑰平均扎成几束花,要使得每束花的数量都相等,每束最多有多少支玫瑰?参考答案。
人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除。
(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除)。
因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1。
(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b ,最小公倍数是其中的较大数α。
B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小。
( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1.( )C 分子分母分别是不同的合数,分子、分母的最大公因数一定不是1.( )D 分子分母是两个连续的非零自然数,分子、分母的最大公因数一定是1.( )E两个不同的自然数的最大公因数一定比最小公倍数小.()三、求最大公因数的实际问题1.五年级(2)班男生有48人,女生有36人。
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
人教版五年级下册数学最大公因数与最小公倍数总结习题一、求几个数的最大公因数12、30、24:它们的最大公因数是6.39、78、84:它们的最大公因数是39.36、60、45:它们的最大公因数是3.45、75、60:它们的最大公因数是15.42、105、62、36、48:它们的最大公因数是6.二、给下面的分数约分24:约分为12.36:约分为18.45/18:约分为5/2.75/27:约分为25/9.35:无法约分。
8:无法约分。
20:无法约分。
16/17:无法约分。
80/51:无法约分。
10:无法约分。
三、求几个数的最小公倍数。
25、30、39:它们的最小公倍数是1950.60、84、18:它们的最小公倍数是420.126、45、75:它们的最小公倍数是450.12、45、60:它们的最小公倍数是180.76、36、27、72:它们的最小公倍数是2052.42、105、62、36、48:它们的最小公倍数是1512.四、将下列各组分数通分。
5/6和7/3:通分后为35/18和XXX。
2/4和5/7:通分后为14/28和20/28.1/2和5/9:通分后为9/18和10/18.5/7和3/5:通分后为25/35和21/35.15/35和9/6:通分后为18/42和105/42.六、用短除法求几个数的最大公因数与最小公倍数。
45和60:它们的最大公因数是15,最小公倍数是180. 36和60:它们的最大公因数是12,最小公倍数是180.27和76:它们的最大公因数是1,最小公倍数是2052.12和47:它们的最大公因数是1,最小公倍数是564.21和498:它们的最大公因数是3,最小公倍数是6986.12和36:它们的最大公因数是12,最小公倍数是36.七.填空题。
1.都是自然数,如果a=10,的最大公约数是(2),最小公倍数是(30)。
2.甲=2×3×3,乙=2×3×5,甲和乙的最大公约数是(2×3)=6,甲和乙的最小公倍数是(2×3×3×5)=90.3.所有自然数的公约数为1.4.如果m和n是互质数,那么它们的最大公约数是1,最小公倍数是m×n。
(完整版)五年级数学最大公因数与最小公倍数练习题一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),最小公倍数()(2)(25,15)最大公因数(),最小公倍数()(3)(140,35)最大公因数()最小公倍数()(4)(24,36)最大公因数()最小公倍数()(5)(3,4,5)最大公因数()最小公倍数()(6)(4,8,16)最大公因数()最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续自然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都正好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个不同质数的最小公倍数是105,这三个质数是()、()和()。
13、自然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
这三个数分别是()、()和()。
五年级数学下册求最大公因数和最小公倍数提高专项练习(含答案)一. 口算。
(1)1.5÷0.3=(2)1.8×0.4=(3)5.2×10=(4)4.2÷0.7=(5)3.6÷0.9=(6)0.32÷0.8=(7)14.7÷7=(8)3.5×0.2=(9)2.1×0.6=(10)9.5÷5=(11)12.5×0.8=(12)50×2.4=(13)0.38×10=(14)1.5×0.4=(15)2.8÷0.7=(16)30×1.2=(17)5.6÷0.7=(18)0.03×40=(19)0.5×0.12=(20)11.2×0.2=二、找出下列各组数的最大公因数。
(1)6和18 (2)12和28 (3)48和56 (4)33和55 (5)35和75 (6)40和95 (7)63和54 (8)120和125(9)42和63 (10)168和126 (11)24和58 (12)84和96 (13)270和405 (14)228和177 (15)25、45和75 (16)12、36和42 (17)40、20和35 (18)18、84和120三、找出下列各组数的最小公倍数。
(1)5和7 (2)9和12 (3)6和15 (4)4和12 (5)30和50 (6)45和25 (7)12和32 (8)28和18 (9)15和35 (10)24和18 (11)12和20 (12)45和75 (13)90和27 (14)24和120 (15)6、8和15 (16)12、36和40参考答案:一. 口算。
(1)1.5÷0.3=5 (2)1.8×0.4=0.72 (3)5.2×10=52 (4)4.2÷0.7=6 (5)3.6÷0.9=4 (6)0.32÷0.8=0.4 (7)14.7÷7=2.1 (8)3.5×0.2=0.7 (9)2.1×0.6=1.26 (10)9.5÷5=1.9 (11)12.5×0.8=10 (12)50×2.4=120 (13)0.38×10=3.8 (14)1.5×0.4=0.6 (15)2.8÷0.7=4 (16)30×1.2=36 (17)5.6÷0.7=8 (18)0.03×40=1.2(19)0.5×0.12=0.06(20)11.2×0.2=2.24二、找出下列各组数的最大公因数。
五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。
人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
例如:求36,24,48的最大公因数。
2 36 24 482 18 12 243 9 6 123 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除。
(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除)。
因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1。
(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用 作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b ,最小公倍数是其中的较大数α。
B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小。
人教版五年级下数学第二单元因数和倍数知识点与习题——培优(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版五年级下数学第二单元因数和倍数知识点与习题——培优(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版五年级下数学第二单元因数和倍数知识点与习题——培优(word版可编辑修改)的全部内容。
因数和倍数一、因数和倍数。
1、因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数.倍数和因数是相互依存的.注意:倍数与因数之间的关系是相互的,不能单独存在倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
2、关于因数和倍数需记内容(1)、一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。
(2)、一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。
(3)、1是任一自然数(0除外)的因数。
也是任一自然数(0除外)的最小因数。
(4)一个数的因数最少有1个,这个数是1.除1以外的任何整数至少有两个因数(0除外)。
(5)、一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身.(6)、一个数的最小倍数=一个数的最大因数=这个数3、确定因数和倍数(1)确定一个数的所有因数,我们应该从1的乘法口诀一次找出如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36。
重复的和相同的只算一个因数。
最大公约数、最小公倍数定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。
a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。
求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。
与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。
例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。
把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。
例如:求6和15的最小公倍数。
先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。
短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。
短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。
[1]短除法的格式短除法的本质就是质因数分解法,只是将质因数分解用短除符号来进行。
最大公因数与最小公倍数练习课-------天河区华景小学马伟豪教学内容:义务教育教科书《数学》五年级下册P60-61,P68-69学情分析:学生在最大公因数和最小公倍数新授课的学习过程中已经理解了最大公因数和最小公倍数的概念,初步掌握了求两数最大公因数和最小公倍数的普遍方法。
但是,当把最大公因数和最小公倍数混合在一起的时候,学生还存在计算不够灵活,把最大公因数填成最小公倍数,最小公倍数填成最大公因数,以及在利用知识解决实际问题的过程中还存在思路不是很清晰,不太清楚用什么解决问题,本节课以学生已有的知识为基础,针对学生存在的问题,设计本节练习课,既夯实学生的四基,又锻炼他们的数学思维,引导学生透过现象看本质,熟练掌握求最大公因数和最小公倍数的技巧以及应用。
教学目标:1.进一步深化理解公因数、最大公因数、公倍数和最小公倍数的意义。
2.会运用简便方法求最大公因数和最小公倍数,计算技能在原有基础上得到进一步的提升。
3.能运用知识解决生活中的实际问题,体会到数学与生活之间的密切联系。
教学重点:准确快速地求出两个数的最大公因数和最小公倍数,并运用这些知识解决生活中的实际问题。
教学难点:通过分析对比,灵活运用最大公因数或最小公倍数解决生活中的实际问题。
教学过程:一、复习旧知师:什么叫两个数的公因数(最大公因数)?什么叫公倍数(最小公倍数)?生:两个数公有的因(倍)数叫作它们的公因(倍)数,两个数最小的公倍数叫作它们的最小公倍数,最大的公因数叫作它们的最大公因数。
师:你能说出常用的求最大公因数(最小公倍数)的方法吗?生:列举法、短除法等。
【设计意图:通过对旧知的复习,学生对概念有了进一步清晰的认识,为后面的探索练习做铺垫。
复习求最小公倍数的方法,为下一环节找到比列举法和大数翻倍法更快的方法提供充足的素材】二、探索规律师:求出下面每组数的最小公倍数第一组:[3,6] [5,6] [9,21]第二组:[8,2] [8,7] [14,4]生:第一组6 30 63 第二组8 56 28师:同桌两人小组讨论一下,每组中的两数有什么特殊关系,两数与它们的最小公倍数又有何联系,你能发现什么规律?生:小组讨论。
最大公因数和最小公倍数这节课主要复习最小公因数和最小公倍数的意义,重点掌握找最大公因数和最小公倍数的方法,利用其解决相应的实际问题。
一、方法:求两个数的最大公因数和最小公倍数,首先判断这几个数是何种关系。
(1)互质数关系:最大公因数是1。
最小公倍数是这两个数的乘积。
(2)倍数关系:最大公因数是较小的数。
最小公倍数是较大的数。
(3)既不是互质数关系又不是倍数关系:用短除法来求。
二、解决实际问题在例1中贝贝用一块长6分米,宽4分米的长方形纸板裁成若干个边长是整分米数的小正方形,裁完后正好没有剩余,小正方形的边长最大是多少?可以裁成多少块?把长方形分割成若干个小正方形而且没有剩余,转化成数学问题就是利用因数和倍数关系来解决。
说明小正方形的边长是大正方形边长的因数。
求边长最大是多少,就是求6和4的最大公因数。
我们可以判断这道题中的2个数,可以用短除法来求。
即:最大公因数是2。
裁成的小正方形的边长最大是2厘米。
在典型例题2中明明用一些长6分米.宽4分米的长方形纸板拼成了一个正方形,正方形的边长至少是多少?要用多少块小长方形纸板?(已知每份数,求总数,应用公倍数知识。
如果正方形的边长在20分米至30分米之间,你知道是多少吗?用小正方形拼成一个大正方形,就可以说明大正方形的边长是小正方形边长的倍数。
求大正方形边长至少是多少厘米就是求6和4 的最小公倍数。
即:6和4的最小公倍数是12.所以大正方形的边长至少是12厘米。
如果正方形的边长在20——30之间,那么它的边长还可以是24厘米。
即:12、24厘米。
在培优训练中从培优训练1中我们可以通过转化法把这道题转化成我们学过的因数和倍数关系。
从题中我们可以知道水果糖-4块,奶糖+1块就正好能平均分给小朋友们,也就是说45块水果糖和30块奶糖正好是小朋友人数的倍数,求最多有多少个小朋友就是求45和30的最大公因数。
45和30的最大公因数是15。
即:小班最多有15位小朋友。
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好! 经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!1五年级下册数学单元测试-第二单元因数和倍数(培优卷)一、选择题(满分16分)1.下面的数中是3的倍数的是( )。
A.13B.452C.67D.49502.一个数的最大因数()它的最小倍数.A.大于B.等于C.小于3.下面的每组数中,第一个数是第二个数的倍数的是( )A.4和12B.60和12C.2.4和0.4D.25和64.在两位数中,同时是2、3、5的倍数的数有( )个.A.2B.3C.45.要使123□这个四位数能被3整除,□里可以填的数是( )个.A.2B.3C.46.用1、2、4组成的三位数( )三的倍数.A.一定是B.不一定是C.一定不是7.在自然数中,凡是2的倍数都是( )。
人教版五年级数学下培优
第十四讲最大公因数和最小公倍数(二)
例题精讲:
1、有一列数5,10,15……5995,6000共1200个,其中12的倍数有多少个?
2、有一批书分给三个小组,平均每个人正好分6本,如果只分给第一组,则平均每个人分10
本;如果只分给第三组,平均每个人分得21本,第二组人数接近10人,每组各有多少人?
3、两个数的最大公因数是6,最小公倍数是144,这两个数各是多少?有几组这样的数?
4、甲.乙.丙三人到图书馆借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果3
月5日他们三人在图书馆相遇,那么下一次到图书馆是几月几日?
5、某派出所共有男警察9人,女警察6人。
4月20日起,该派出所每天安派男女警察各1人负责夜间治安巡防,在巡防值勤表上,所有男女警察都编上固定序号,按照序号从小到大一轮一轮循环下去。
如4月20日,“男1号”与“女1号”搭档,接下来依次是“男2号”与“女2号”,“男3号”与“女3号”…….“男7号”与“女1号”,“男8号”与“女2号”。
(1)5月26日轮到哪两位警察搭档?
(2)按值勤表上安排,“男1号”与“女5号”是否会在同一天巡防?为什么?
(3)如果从5月8日起,新调来一名女警察(“女7号”)接在“女6号”后参加巡防,那么“男1号”与“女5号“是否能在同一天巡防?如果能,他们最早将在几月几日同
时巡防?
6. 1+2+3+4+……+1997是奇数还是偶数?
练习:
1、65,42 ,120 的最小公倍数是.
2、两个数的最大公因数是18,最小公倍数是180,两个数相差54,求这两个数各是多少?
3、一种新型电子钟,每到正点和半点都响一次铃,每过9分钟亮一次灯,如果中午12点时,它既响了铃又亮了灯,那么下一次既响铃又亮灯要到什么时间?
4、爷爷现在的年龄是明明现在年龄的7倍,过几年之后就是他的6倍,再过几年就分别是明明年龄的5倍,4倍,3倍,2倍,你能算出爷爷现在的年龄吗?
5、大雪后的一天,甲乙二人用步测的方法测一个花圃的周长,甲每步长54厘米,乙每步长72厘米,他俩起点和走的方向完全相同,由于两人脚印有重合,所以各走完一圈后,雪地上只留下60个脚印,求花圃周长。
6、如果n是奇数,那么n-3和n+4分别是和(填奇数或偶数)
7、1+2+3+4+……+2006+2007是奇数还是偶数?
8、有很多方法能将2001写成25个自然数(可以相同,也可以不相同)的和,对
于每一种分法,这25个自然数均有相应的最大公因数,那么这些最大公因数中的最大植是多少?。