地震波层析成像反演方法及其研究综述
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
No.13,2010现代商贸工业Modern Bus iness Trade Industry2010年第13期地震波层析成像反演方法及其研究综述冯 微(长江大学物理科学与技术学院,湖北荆州434025)摘 要:通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。
关键词:速度建模;层析成像;初至波中图分类号:TB 文献标识码:A 文章编号:1672 3198(2010)13 0368 01地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。
在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。
尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。
近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。
1 地震面波及波形反演利用面波进行结构反演一直是了解地球介质结构的重要途径。
近几年来,在面波理论和面波反演方面做了大量工作。
陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。
张碧星等(2000,2002)对瑞利波勘探中 之字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对 之字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。
众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。
根据走时反演地下结构是获取结构信息的经典做法。
基于反演技术的地震成像方法研究一、引言地震成像是地球科学中重要的手段之一,地震成像技术可以直接或者间接地探测地下结构和性质,为石油、矿产资源的勘探提供科学的依据。
地震反演技术是地震成像的一种基础方法,它通过观测波场数据并利用地球物理学理论和数学方法来恢复地下介质模型。
本文将重点介绍基于反演技术的地震成像方法。
二、地震反演技术基础地震反演技术是一种基于数学方法的地球物理探测方法。
利用地震波在地下传播过程中受到地下介质的反射、折射、穿透等作用,记录地震波传播路径上的信息,再利用数学方法反演出地下介质的物理参数,如速度、密度等的分布规律。
其中地震波传播路径上的信息包括,波头到达时刻、震级、波形等。
地震反演技术基础主要包括数值模拟、正演模拟和反演算法等。
1. 数值模拟数值模拟是指利用计算机技术对复杂物理模型进行数值计算,用于预测或模拟自然现象。
地震成像中的数值模拟通常指的是地震波的数值模拟,地震波传播是一种具有时间和空间因素的复杂物理现象,需要对地下介质和地震波等进行各种参数的计算和设置。
地震波数值模拟的基本方程是弹性波动方程,利用数值方法,将具体解析模型转化为离散型计算模型,经过计算,得出相关的波形和参数。
数值模拟是地震成像的基础,用于模拟各种地震探测情况,从而为反演算法提供数据支持。
2. 正演模拟正演模拟是指在已知地下介质条件下,利用波动方程模拟地震波的传播,得到模拟数据。
正演模拟常用于验证反演算法的可行性以及对比反演结果,是评价反演算法技术和反演成像效果的基础。
正演模拟的关键就是确定地下介质的模型和初始条件,基于这些已知数据进行计算模拟。
正演模拟得出的数据可以与实际观测数据进行对比,从而判断反演算法的可靠性以及反演结果优劣。
3. 反演算法反演算法是通过计算地震波传播路径上的数据,利用各种数学算法对地下介质进行恢复和成像,从而得到地下介质的参数分布。
反演算法的核心是根据已知数据反演未知模型,反演算法在数学上可以看作是最优化问题的解决方案,目标是使地下介质模型与真实情况尽可能接近。
地震波形反演与成像技术研究地震是自然界中一种常见而又具有毁灭性的现象,对于地震波形的反演与成像技术的研究,有助于我们更好地理解地震的发生机理以及预测地震活动。
本文将介绍地震波形反演与成像技术的研究内容和应用,旨在探讨其在地震科学领域中的重要意义。
一、地震波形反演技术地震波形反演技术是指通过测定和分析地震波传播过程中的振动波形,来获取地下介质的结构和物性参数的方法。
这项技术在地震勘探、地震震源研究、地下构造研究以及地震灾害评估等方面都有着广泛的应用。
1.地震波一维反演地震波一维反演是指通过解析地震波在单一纵向剖面上的振动波形,来获取地下介质的速度结构和各向异性参数等信息。
这项技术在地震探测和勘探中起到了至关重要的作用,可以帮助人们确定石油和矿产资源的分布情况,也有助于开展地震灾害评估与防治工作。
2.地震波二维反演地震波二维反演是指通过多道地震记录的波形数据,结合已知的地震波传播理论及其他约束条件,来重建地下介质的速度结构和波阻抗分布的方法。
相较于一维反演,二维反演能够提供更全面、更精细的地下结构信息,对于地震地质研究和勘探定位等方面都具有重要的意义。
二、地震波形成像技术地震波形成像技术是指将地震波信号转化为图像,通过图像来描述地下介质的分布和特征,以及地震源的定位和强度等参数。
这项技术在地震监测和地震预防工作中扮演着重要角色。
1.地震波形叠加成像地震波形叠加成像是将多道地震记录的波形数据进行叠加处理,从而增强地震信号的强度和清晰度,以便更准确地解释地下结构和特征。
通过波形叠加成像技术,我们可以观察到地下构造中的异常变化、隐蔽断层等信息,有助于我们对地震活动的分析和预测。
2.地震层析成像地震层析成像是一种通过分析地震记录波形的波速变化,来重建地下介质速度结构的方法。
这项技术可以提供更高分辨率的地下结构图像,有助于地震地质研究和资源勘探工作。
同时,地震层析成像还可以用于定位地震震源,并对地震灾害进行评估和预测。
地震波阻抗反演方法综述地震波阻抗反演方法可以分为直接方法和间接方法。
直接方法是指直接根据地震波观测数据反演地下结构的方法,常见的直接方法有全波形反演。
间接方法是指通过建立模型和计算地震波传播路径来反演地下结构的方法,常见的间接方法有层析成像、正则化反演和遗传算法等。
全波形反演是一种直接方法,它利用完整的地震波观测数据来反演地下结构。
全波形反演的核心是通过比较实际观测数据和模拟数据的差异来优化模型参数。
全波形反演可以获取高分辨率的地下结构信息,但由于计算复杂度高、非线性程度强等因素,全波形反演面临着一些挑战。
层析成像是一种常用的间接方法,它通过在空间上离散化模型并计算地震波在传播路径上的传播时间与振幅的差异来重建地下结构。
层析成像的原理是建立了地震波传播路径上的散射模型,通过优化模型参数使计算值与实际观测值吻合。
层析成像具有分辨率高、计算效率高等优点,适用于复杂地质环境的反演。
正则化反演是一种常用的间接方法,它通过在反演过程中引入先验信息来约束模型的解。
正则化反演的核心是将反演问题构建成最优化问题,并添加正则化项以保证解的稳定性。
常见的正则化方法有Tikhonov正则化、L1正则化和全变差正则化等。
正则化反演可以提高反演结果的稳定性,但其分辨率相对较低。
遗传算法是一种通过模拟进化过程来求解最优问题的优化方法。
在地震波阻抗反演中,遗传算法可通过定义模型参数的染色体编码、适应度函数以及遗传操作等步骤来最优解。
遗传算法能够全局,适用于非线性、多峰反演问题,但也存在计算复杂度高、空间维度大等问题。
除了上述的方法,还有一些其他地震波阻抗反演方法,如基于人工神经网络的反演、基于模糊数学的反演等。
这些方法各有特点,适用于不同的反演问题。
地震波阻抗反演方法在地球物理勘探、地震灾害预测等领域有着广泛的应用。
不同的反演方法具有不同的优点和缺点,需要根据具体问题的需求选择合适的方法。
未来地震波阻抗反演方法的发展方向将是提高反演的分辨率和稳定性,减少计算复杂度,开展多物理场的耦合反演研究。
地震层析成像正反演方法嘿,朋友们!今天咱来聊聊地震层析成像正反演方法。
这玩意儿啊,就像是给地球做了一次超级详细的“体检”!想象一下,地球就像是一个巨大无比的神秘物体,我们想知道它内部的结构到底啥样。
地震层析成像正反演方法呢,就是我们探索这个神秘世界的有力工具。
正演就好比是我们根据已知的地球模型,去预测地震波会怎么传播。
嘿,这不就像是我们知道了一个建筑的设计图,然后能想象出光线在里面是怎么穿梭的一样嘛!那反演呢,可就更有意思啦!它是根据实际观测到的地震波数据,反过来去推测地球内部的结构。
这就好像是我们根据一个房间里光线的分布情况,去反推这个房间的布局和摆设!是不是很神奇呀?通过这种正反演的结合,我们就能越来越清楚地了解地球内部的情况啦。
比如说哪里有大的地质构造呀,哪里的物质分布不太一样呀。
这可太重要啦,就好像我们了解自己身体里的器官分布一样,能帮助我们更好地理解地球的“脾气”和“性格”呢!而且啊,这正反演方法可不是随便玩玩的。
它需要科学家们花费大量的时间和精力去研究、去计算。
要处理那些海量的数据,就跟我们整理一个超级大的杂乱房间一样,得有耐心,还得有技巧!你说要是没有这正反演方法,我们对地球内部的了解得多模糊呀!就像在黑暗中摸索一样。
但有了它,我们就像是有了一盏明灯,能照亮地球内部的神秘角落。
咱再想想,如果我们能更准确地了解地球内部,那对我们的生活得有多大的影响啊!比如说在地震预测方面,就能更有把握一些,提前做好防范措施,减少损失。
这可不是开玩笑的呀,这关系到多少人的生命和财产安全呢!总之呢,地震层析成像正反演方法真的是太重要啦!它让我们对地球这个大家伙有了更深入的认识,也为我们的生活带来了很多好处。
咱可得好好珍惜和利用这个厉害的工具呀,让它为我们的生活保驾护航!怎么样,现在你对地震层析成像正反演方法是不是有了更深的了解呢?。
石油勘探中的地震反射层析成像算法研究地震反射层析成像算法是石油勘探中关键的技术之一。
地震勘探是通过地震波在地下传播的特性来获取地下地质结构信息的一种方法。
地震反射层析成像算法则是根据地震波在地下不同界面上的反射和折射现象,重建地下界面的方法。
本文将介绍地震反射层析成像算法的基本原理和研究进展。
地震反射层析成像算法的基本原理是通过地震记录数据和走时信息来推断地下地质界面的位置和形状。
其过程可以分为数据预处理、波场模拟和反演三个步骤。
数据预处理是算法的第一步,其目的是对地震记录数据进行噪声去除和时域滤波,以提高数据质量和信噪比。
地震记录数据通常包含了许多不同的波形,其中包括有用信号和干扰信号。
通过应用滤波器和其他信号处理技术,我们可以从地震记录数据中去除噪声和干扰信号,保留有用的地震信号。
波场模拟是地震反射层析成像算法的核心部分。
波场模拟通过计算地震波在地下介质中的传播过程,模拟地震波在不同界面上的反射和折射现象。
波场模拟可以使用有限差分法(FDM)、有限元法(FEM)和伪谱法等数值计算方法来实现。
通过波场模拟,我们可以得到地震波在地下不同深度和位置上的响应,从而构建地震数据集和反射信息。
反演是地震反射层析成像算法的最后一步,用于重建地下地质界面。
反演过程通过将测量数据与模拟数据进行对比,将地震记录数据与地下介质参数相联系。
反演算法可以分为线性反演和非线性反演两种类型。
线性反演方法基于正演模拟和与观测数据之间的线性关系,通过反演矩阵将地震记录数据转换为地下介质参数。
非线性反演方法则通过迭代优化算法,将观测数据与模拟数据之间的差异最小化,求解最优的地下介质参数。
随着计算机技术的发展和地震勘探的需求增加,地震反射层析成像算法在过去几十年中取得了重要的研究进展。
研究者们提出了许多不同的技术和方法,以改进反演的效率和精度。
例如,有些算法采用多尺度分析和模型约束的方法,可以更好地处理数据中的噪声和不确定性。
还有一些算法结合了机器学习和人工智能的方法,通过学习大量的地震数据样本,提高地震反射层析成像的准确性和速度。
地震波传播与地球结构的反演问题地震波传播与地球结构的反演是地震学领域的一个重要研究课题。
通过分析地震波在地球内部的传播特征,可以揭示地球内部结构的分布和性质,对于地球科学的研究和自然灾害的预测都具有重要的意义。
本文将从地震波传播的基本原理、地球结构的反演方法以及最新的研究成果等方面进行探讨。
一、地震波传播的基本原理地震波是由地震源产生的,它在地球内部传播的过程中会遇到地球结构的不同介质,如固体岩石、液态地球核、混合介质等。
根据地震波在介质中传播的物理性质,可以将地震波分为P波、S波和表面波等类型。
P波是一种压缩波,可以在固体和液体中传播,传播速度相对较快;S波是一种剪切波,只能在固体中传播,传播速度相对较慢;表面波主要沿地表传播,是地震中破坏力较大的波动。
地震波传播的路径与速度分布是地球内部结构信息的重要来源。
通过对地震波传播路径的分析,可以了解地球内部不同介质的边界形态和分布情况。
二、地球结构的反演方法地球结构的反演是指通过地震波的传播特征,推测和重建地球内部的结构信息。
目前,常用的地球结构反演方法主要包括层析成像、反射震相和地震波形反演等。
层析成像是一种通过反演地震波传播路径上的速度分布,重建地球内部结构的方法。
它基于地震波路径上对应的旅行时间差异,利用数学模型和迭代算法进行计算。
反射震相方法则是通过利用地震波在不同介质边界反射的特性,进行地球结构的推断。
地震波形反演是一种直接反演地球结构的方法。
它通过对地震记录的波形进行修正和计算,根据波形的变化推测地球内部结构的分布和特征。
这种方法具有较高的分辨率和准确性,但对数据要求较高。
三、最新研究成果与应用近年来,地震波传播与地球结构的反演研究在国内外取得了重要进展。
科学家们通过对大量的地震记录和观测数据进行分析,获得了地球内部不同介质的速度、密度和性质信息。
利用这些数据,地球科学家可以推断地球内部部分结构的细节和特征,如地幔的温度分布、地核-地幔边界的形态和地壳的结构等,为我们对地球内部的认识提供了重要线索。
地球物理学研究中的反演方法地球物理学研究是一门涉及地球内部结构和物质组成的学科,从事这项研究需要掌握一定的物理知识和专业技能,而反演方法则是地球物理学研究的重要工具之一。
反演方法是指根据测量得到的地球物理数据,推算出地球内部结构和物质组成的过程,是一种重要的物理数学分析手段。
在地球物理学研究中,常用的反演方法包括地震层析成像、电磁场反演、地磁场反演、重力反演等。
本文将就地球物理学研究中的反演方法进行阐述。
一、地震层析成像方法地震层析成像方法是一种通过地震波传播路径来推断地球的三维结构的方法。
地震波可以沿着曲折的路径穿过地球中的各种物质,而当地震波沿着不同的路径传播时,它们会受到不同的影响,如反射、折射、散射、压缩等,根据这些影响就可以推断地球内部横截面的结构。
地震层析成像方法主要包括射线追踪、全波形反演和双向波路径方法等。
二、电磁场反演方法电磁场反演方法是一种通过测量地球表面或近表面电磁场的变化来推断地下物质电导率的分布状况的方法。
电磁场反演方法主要包括电阻率层析成像、磁化率层析成像、电场、磁场重力反演等。
三、地磁场反演方法地磁场反演方法是一种通过测量地球表面或近表面磁场的变化来推断地下物质磁性的分布状况的方法。
地磁场反演方法主要包括磁性层析成像、重力反演等。
四、重力反演方法重力反演方法是一种通过测量地球表面或近表面重力值的变化来推断地下物质密度分布状况的方法。
重力反演方法主要包括引力异常反演、引力梯度反演、重力谱反演等。
总之,地球物理学研究中的反演方法是一个复杂的科学体系,需要将物理学、数学、计算机科学等多个学科融合在一起,才能够高效地推算出地球内部结构的分布情况。
虽然反演方法在地球物理学研究中起到了重要的作用,但是它也存在一定的局限性。
例如测量误差、相位问题、非唯一性等问题都会影响到反演结果的准确性。
因此,在进行地球物理学研究的过程中,需要结合多种反演方法,将不同的地球物理数据综合起来,才能获得更加准确和完整的地球内部结构信息,为地球科学研究提供更加可靠的数据支撑。
地震波层析成像反演方法及其研究综述
通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。
标签:速度建模;层析成像;初至波
地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。
在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。
尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。
近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及
静校正的精度等地震勘探的各个环节和最终的勘探成果。
1 地震面波及波形反演
利用面波进行结构反演一直是了解地球介质结构的重要途径。
近几年来,在面波理论和面波反演方面做了大量工作。
陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。
张碧星等(2000,2002)对瑞利波勘探中“之”字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对“之”字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。
众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构
作了反演,揭示了横向结构差异的广泛存在。
根据走时反演地下结构是获取结构信息的经典做法。
刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。
同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。
李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型
反演。
在利用远震体波接收函数反演地下结构方面。
钱辉等(2001)对接收函数反演
地壳结构速度的算法作了分析,使之适应正演参数的变化,并利用天然地震接收函数揭示了青藏高原东部地壳结构。
近年来,非线性反演越来越受到重视,许多研究者把新的最优化理论引入地震学反演中。
孟洪鹰和刘贵忠(1999)提出了多尺度地震波形反演的小波变换方法。
对于一维非线性地震波形反演问题,此方法和已有的简单迭代法及多重网格法比较表明,此方法更为有效。
杨峰和聂在平(2000)提出了用于二维轴对称非均匀介质结构的反演和成像的一种新的反演迭代方法变分玻恩迭代方法.与传统的玻恩迭
代方法相比,其收敛速度和成像质量均有较大改善。
2 地震勘探、测井问题中的地震波研究及其它
在地震勘探和测井方面,许多研究者针对实际问题,提出了新的方法。
沈建国和张海澜(2000)计算了井内靠近井壁的偏心声源激发的声场,得到了在井壁不同位置的接收波形,分析了直达波、井壁反射波、纵波、横波和面波在这些波形中的反映。
为了处理横向强变速介质中的深度成像问题,程玖兵等(2001)提出一种基于共炮道集的优化系数的傍轴近似方程叠前深度偏移算子,在基于反射系数估算的成像条件下,可实现叠前深度偏移成像。
陈生昌等(2001)实现了一种基于拟线性Born近似的叠张海明等:地震波研究前深度偏移方法,扩大了拟线性Born近似的应用范围,使其能够适应更强的横向速度变化。
张美根和王妙月(2001)利用有限元法和最小走时射线追踪的界面点法,实现了各向异性弹性波的叠前逆时偏移.陈志德等(2002)利用叠前深度域地震成像对速度模型变化的敏感性,采用偏移迭代逐次逼近最佳成像速度,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术。
顾汉明等(2002)在频率-波数域中采用解析法,解出多层条件下海底实测的多分量地震数据分解成上行和下行P波和S波的算法,导出海底各层地震反射系数随入射角变化(简称RV A)的递推计算公式。
金胜汶等(2002)给出了一种高效率、高精度的炮检距域叠前深度偏移方法,并得到各个不同照射角下的成
像结果。
3 讨论和结论
地震波理论是固体地球物理学研究的重要基础.地震波研究领域的任何实质性进展都会促进固体地球物理学的发展.在过去的4年里,中国地球物理学家在该领域做了很多有意义的研究工作,其中不乏创新性的理论工作.当前地震波研究领
域的重要课题包括:
(1)复杂地球介质中地震波激发与传播理论;
(2)高效计算三维介质中地震波传播的数值方法;
(3)利用先进的地震波数值模拟方法,开展设定地震与强地面运动的数值模拟研究,为精细的地震危险分析与预测奠定基础。
参考文献
[1]周庆凡.我国天然气发展前景广阔[J].中国石化,2009.
[2]刘英祥.我国天然气价格与天然气发展问题研究[J].企业经济,2009.
[3]牛建娣.我国天然气市场供需状况及发展对策分析[D].对外经济贸易大学,2007.。