2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份) 解析版
- 格式:doc
- 大小:290.50 KB
- 文档页数:21
河南省洛阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )A .B .C .D .2.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A .平均数是3B .中位数是3C .众数是3D .方差是2.53.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )A .50°B .40°C .30°D .25°4.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )A .12B .25C .35D .7185.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .46.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A .40oB .50oC .60oD .80o7.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .198.下面计算中,正确的是( )A .(a+b )2=a 2+b 2B .3a+4a=7a 2C .(ab )3=ab 3D .a 2•a 5=a 79.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A ,B 在围成的正方体中的距离是( )A .0B .1C .2D .310.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数6y x=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B'DE 处,点B'恰好落在正比例函数y=kx 图象上,则k 的值是( )A .25-B .121-C .15- D .124- 11.tan30°的值为( )A.B.C.D.12.如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C 顺时针旋转60°,则点P随之运动的路径长是_________14.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.15.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.16.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.17.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)18.不等式组2012xxx-≤⎧⎪⎨-<⎪⎩的最大整数解是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.20.(6分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80 85 90 95人数/人 4 2 10 4根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.21.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?22.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF,求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23.(8分)(1)计算:(12-)﹣112﹣(π﹣2018)0﹣4cos30°(2)解不等式组:34(1)223x xxx≥-⎧⎪-⎨-≤⎪⎩,并把它的解集在数轴上表示出来.24.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.25.(10分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).26.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.27.(12分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】左视图就是从物体的左边往右边看.小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形13,故D错误,所以C正确.故此题选C.2.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3.A【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.4.A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个; ②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个, 概率为451=902. 故选A .点睛:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 5.B【解析】【分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①抛物线与y 轴交于负半轴,则c <1,故①正确;②对称轴x 2b a=-=1,则2a+b=1.故②正确; ③由图可知:当x=1时,y=a+b+c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误.综上所述:正确的结论有2个.故选B .【点睛】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6.B【解析】【分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可.【详解】解:由圆周角定理得,BOC 2A 80∠∠==o ,OB OC =Q ,BCO CBO 50∠∠∴==o ,故选:B .【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.7.D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC , ∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.8.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。
河南省洛阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16002.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=183.如果关于x的方程x2﹣k x+1=0有实数根,那么k的取值范围是()A.k>0 B.k≥0C.k>4 D.k≥44.不等式﹣12x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<45.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°6.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<a D.a<a2<﹣a7.当a>0 时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.(a2)3=a5A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a9.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .210.如图,在6×4的正方形网格中,△ABC 的顶点均为格点,则sin ∠ACB=( )A .12B .2C .255D .13411.在同一直角坐标系中,二次函数y=x 2与反比例函数y=(x >0)的图象如图所示,若两个函数图象上有三个不同的点A (x 1,m ),B (x 2,m ),C (x 3,m ),其中m 为常数,令ω=x 1+x 2+x 3,则ω的值为( )A .1B .mC .m 2D .12.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知x=2是一元二次方程x 2﹣2mx+4=0的一个解, 则m 的值为 .14.因式分解:323x y x -=_______________.15.若一次函数y=﹣x+b (b 为常数)的图象经过点(1,2),则b 的值为_____.16.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.17.观察下列等式:111第2个等式:a 2=1111()35235=⨯-⨯; 第3个等式:a 3=1111()57257=⨯-⨯; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____;(2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为_____. 18.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的一元二次方程x 2+2(m ﹣1)x+m 2﹣3=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为非负整数,且该方程的根都是无理数,求m 的值.20.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求:①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)21.(6分)如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x轴相交于点C,求∠ACO的度数.结合图象直接写出:当1y>2y>0时,x的取值范围.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC 位似,且位似比为2:1,点C2的坐标是.23.(8分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.24.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?25.(10分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据(2)如图②,在△ABC中,∠B=15°,AB=32,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.26.(12分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°;(2)先化简,再求值:(1111a a--+)+2421aa+-,其中a=﹣2+2.27.(12分)如图,在▱ABCD中,AB=4,AD=5,tanA=43,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,考点:一元二次方程的应用.2.B【解析】【分析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.3.D【解析】【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】∵关于x 的方程x 2有实数根,∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1.故选D .【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x >3−1, 合并同类项得:−12x >2, 系数化为1得:x <-4.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法. 5.B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=1 2(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.D【解析】【分析】根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a<0,-a>0, 0<a2<a,所以,a<a2<﹣a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置. 7.A直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.【详解】A 选项:a 0=1,正确;B 选项:a ﹣1= 1a,故此选项错误; C 选项:(﹣a )2=a 2,故此选项错误;D 选项:(a 2)3=a 6,故此选项错误;故选A .【点睛】考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键. 8.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A .x 4•x 4=x 4+4=x 8≠x 16,故该选项错误;B .(a 3)2=a 3×2=a 6≠a 5,故该选项错误;C .(ab 2)3=a 3b 6≠ab 6,故该选项错误;D .a+2a=(1+2)a=3a ,故该选项正确;故选D .考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.9.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式2m x -≤﹣1的解集为x≥4,∴12m+3=4,解得m=1.故选D.考点:不等式的解集10.C【解析】【分析】如图,由图可知BD=2、CD=1、BC=5,根据sin∠BCA=BDBC可得答案.【详解】解:如图所示,∵BD=2、CD=1,∴BC=22BD CD+=2221+=5,则sin∠BCA=BDBC=5=25,故选C.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.11.D【解析】【分析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.12.C∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题分析:直接把x=1代入已知方程就得到关于m 的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x 1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.14.x 3(y+1)(y-1)【解析】【分析】先提取公因式x 3,再利用平方差公式分解可得.【详解】解:原式=x 3(y 2-1)=x 3(y+1)(y-1),故答案为x 3(y+1)(y-1).【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.15.3【解析】【分析】把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b ,可得:2=-1+b ,解得:b=3,故答案为316.85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:5AC ==,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.17.1111()9112911=⨯-⨯ 49 【解析】【分析】(1)观察等式可得()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭ 然后根据此规律就可解决问题; (2)只需运用以上规律,采用拆项相消法即可解决问题.【详解】(1)观察等式,可得以下规律:()()1111,212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭(2)12311111111111(1)()()2323525722121n a a a a n n ⎛⎫+++⋯+=⨯-+⨯-+⨯-+⋯+- ⎪-+⎝⎭ 1149(1)22199n =-=+, 解得:n=49. 故答案为:11119112911⎛⎫=⨯- ⎪⨯⎝⎭49. 【点睛】属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.18.50(1﹣x )2=1.【解析】由题意可得,50(1−x)²=1,故答案为50(1−x)²=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)m <2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m 2-3)=-8m+2>3,然后解不等式即可; (2)先利用m 的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m 的值.【详解】(1)△=[2(m ﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得 m <2;(2)∵m <2,且 m 为非负整数,∴m=3 或 m=1,当 m=3 时,原方程为 x 2-2x-3=3,解得 x 1=3,x 2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x 2﹣2=3,解得 x 1x 2= ,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=3(a≠3)的根与△=b 2-4ac 有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.20.(122+2ab 4a b ;(2)+475. 【解析】【分析】(1)①由条件可知AC 为直径,可知BD 长度的最大值为AC 的长,可求得答案;②连接AC ,求得AD 2+CD 2,利用不等式的性质可求得AD•CD 的最大值,从而可求得四边形ABCD 面积的最大值;(2)连接AC ,延长CB ,过点A 做AE ⊥CB 交CB 的延长线于E ,可先求得△ABC 的面积,结合条件可求得∠D =45°,且A 、C 、D 三点共圆,作AC 、CD 中垂线,交点即为圆心O ,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D',交AC 于F ,FD'即为所求最大值,再求得 △ACD′的面积即可.【详解】(1)①因为∠B =∠D =90°,所以四边形ABCD 是圆内接四边形,AC 为圆的直径,则BD 长度的最大值为AC ,此时BD =22a +b , ②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =12AD ⋅CD≤14(AD 2+CD 2)=14(a 2+b 2),所以四边形ABCD 的最大面积=14(a 2+b 2)+12ab =22+2ab 4a b +; (2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =2AC =19=3819S △ACD’=12AC ⋅D’F =19(38192475,所以S max =S △ABC +S △ACD =32+475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.21.(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1. 【解析】【分析】(1)根据△AOB 的面积可求AB ,得A 点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.22.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.23.见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA与△CEB中,,∴△CDA≌△CEB.考点:全等三角形的判定;等腰直角三角形.24.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解25.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE ≌△FCE ,∴AE=EF ,在Rt △ADE 中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC ,∠AED=∠CEH ,∴△ADE ∽△CHE ,∴ = , ∴ = , ∴EH= ,∴△ACF 中边AF 的中垂距为26.(1)-1;(2)26182+【解析】【分析】 (1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +- 当a=﹣2时,原式222542+-=26182+ 【点睛】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.27.(1)127;(2)45(9﹣t );(3)①S =﹣23t 2+163t ﹣327;②S=﹣27t 2+1.③S=24175(9﹣t )2;(3)3或215或4或173. 【解析】【分析】(1)根据题意点R 与点B 重合时t+43t=3,即可求出t 的值; (2)根据题意运用t 表示出PQ 即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB .S=S △PQR ﹣S △KBR =12×3×3﹣12×t×47t=﹣27t 2+1. ③如图3中,当3<t <9时,重叠部分是△PQK .S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53,∴t=9﹣103=173.综上所述,满足条件的t的值为3或215或4或173.【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2019-2020年七年级(下)第二次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.49的平方根是()A.7 B.﹣7 C.±7 D.2.在平面直角坐标系中,点P(6,﹣5)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.估计的值在哪两个整数之间()A.8和9 B.7和8 C.6和7 D.75和774.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个5.如图,已知AB∥CD,∠A=70°,则∠1度数是()A.70°B.100°C.110°D.130°6.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)7.下列四个命题中是真命题的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.垂直于同一条直线的两条直线互相平行D.实数与数轴上的点是一一对应的8.如图,下列能判定AB∥CD的条件的个数是()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个9.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°10.如图,在平面直角坐标系中,半径为1个单位长度的半圆O1,O2,O3,…组成一条平滑曲线,点P从点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第xx秒时,点P的坐标是()A. B. C. D.二、填空题(每小题5分,共20分)11.比较大小:﹣﹣.12.已知|x﹣2|+=0,则=.13.把命题“对顶角相等”改写成“如果…那么…”的形式:.14.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为.三、(本题共2小题,每小题8分,满分16分)15.计算:﹣﹣.16.解方程:(x﹣1)2=4.四、(本大题共2小题,每小题8分,共16分)17.如图是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移得到三角形DEF,若AB=8cm,BE=4cm,DG=3cm,则图中阴影部分的面积是多少cm2?18.如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()五、(本题共2小题,每小题10分,满分20分)19.小丽想用一块面积为400平方厘米的正方形纸片,沿着边的方向裁出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.不知能否裁出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?请说明理由.20.如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?六、(本题12分)21.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC 变化位置,并写出A′、B′、C′的坐标.(3)求出S.△ABC七、(本题12分)22.解答下列三个问题:(1)已知一个数的平方根是3a+1和a+11,求这个数的立方根;(2)实数a,b在数轴上的位置如图所示,试化简:|a+b|+;(3)如何用两个面积为1的拼成一个面积为2的正方形,画出图形并求出面积为1的正方形的对角线的长.八、(本题14分)23.我们知道同一平面内的两条直线有相交和平行两种位置关系.(1)观察与思考:如图1,若AB∥CD,点P在AB、CD内部,∠BPD、∠B、∠D之间的数量关系为,不必说明理由;(2)猜想与证明:如图2,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,利用(1)中的结论(可以直接套用)求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(3)拓展与应用:如图3,设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为度,∠A比∠F大度.xx学年安徽省阜阳市颍州区十二里中学七年级(下)第二次月考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)1.49的平方根是()A.7 B.﹣7 C.±7 D.【考点】平方根.【分析】根据一个正数有两个平方根,它们互为相反数解答即可.【解答】解:∵(±7)2=49,∴±=±7,故选:C.2.在平面直角坐标系中,点P(6,﹣5)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(6,﹣5)在第四象限.故选D.3.估计的值在哪两个整数之间()A.8和9 B.7和8 C.6和7 D.75和77【考点】估算无理数的大小.【分析】根据=8,=9得出的范围,即可得出选项.【解答】解:∵8<<9,∴在8和9之间,故选A.4.在﹣2,,,3.14,,,这6个数中,无理数共有()A.4个B.3个C.2个D.1个【考点】无理数.【分析】要确定题目中的无理数,在明确无理数的定义的前提下,知道无理数分为3大类:π类,开方开不尽的数,无限不循环的小数,根据这3类就可以确定无理数的个数.从而得到答案.【解答】解:根据判断无理数的3类方法,可以直接得知:是开方开不尽的数是无理数,属于π类是无理数,因此无理数有2个.故选:C.5.如图,已知AB∥CD,∠A=70°,则∠1度数是()A.70°B.100°C.110°D.130°【考点】平行线的性质;对顶角、邻补角.【分析】两条直线平行,内错角相等,然后根据邻补角的概念即可解答.【解答】解:∵AB∥CD,∠A=70°,∴∠2=70°(两直线平行,内错角相等),再根据平角的定义,得∠1=180°﹣70°=110°,故选C.6.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)【考点】坐标与图形变化-平移.【分析】根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.【解答】解:∵点P(﹣2,1)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.7.下列四个命题中是真命题的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.垂直于同一条直线的两条直线互相平行D.实数与数轴上的点是一一对应的【考点】命题与定理.【分析】利用对顶角的性质、平行线的性质、垂线的定义及实数的性质分别判断后即可确定正确的选项.【解答】解:A、相等的角不一定是对顶角,故错误,是假命题;B、两条平行直线被第三条直线所截,同位角相等,故错误;C、同一平面内垂直于同一条直线的两条直线互相平行,故错误,是假命题;D、实数与数轴上的点一一对应,正确,是真命题,故选D.8.如图,下列能判定AB∥CD的条件的个数是()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个【考点】平行线的判定.【分析】根据平行线的判定定理分别进行判断即可.【解答】解:当∠B+∠BCD=180°,AB∥CD;当∠1=∠2时,AD∥BC;当∠3=∠4时,AB ∥CD;当∠B=∠5时,AB∥CD.故选C.9.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【考点】平行线的性质.【分析】首先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补进行做题.【解答】解:过点P作PA∥a,则a∥b∥PA,∴∠1+∠MPA=180°,∠3+∠NPA=180°,∴∠1+∠2+∠3=360°.故选C.10.如图,在平面直角坐标系中,半径为1个单位长度的半圆O1,O2,O3,…组成一条平滑曲线,点P从点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第xx秒时,点P的坐标是()A. B. C. D.【考点】规律型:点的坐标.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A xx的坐标.【解答】解:半径为1个单位长度的半圆的周长为,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵xx÷4=504,∴A xx的坐标是,故选:B.二、填空题(每小题5分,共20分)11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:|﹣|≈1.73,|﹣|≈1.57,∵1.73>1.57,∴﹣<﹣.故答案为:<.12.已知|x﹣2|+=0,则=﹣2.【考点】立方根;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出方程组,求出x、y的值,代入所求代数式计算即可.【解答】解:由题意知,|x﹣2|+=0,得|x﹣2|=0,=0,∴x﹣2=0,y+10=0,解得:x=2,y=﹣10,∴==﹣2,故答案为﹣2.13.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.14.有一个英文单词的字母顺序对应如图中的有序数对分别为(5,3),(6,3),(7,3),(4,1),(4,4),请你把这个英文单词写出来或者翻译成中文为study(学习).【考点】坐标确定位置.【分析】根据图形找出有序数对代表的每个字母,合在一起即可得出结论.【解答】解:由图形可知:(5,3)表示s;(6,3)表示t;(7,3)表示u;(4,1)表示d;(4,4)表示y.∴这个英文单词为study,翻译成中文为学习.故答案为:study(学习).三、(本题共2小题,每小题8分,满分16分)15.计算:﹣﹣.【考点】实数的运算.【分析】根据算术平方根、立方根进行计算即可.【解答】解:原式=3﹣6﹣(﹣3)=3﹣6+3=0.16.解方程:(x﹣1)2=4.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法,方程两边直接开平方即可.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.四、(本大题共2小题,每小题8分,共16分)17.如图是重叠的两个直角三角形,将其中一个直角三角形沿BC方向平移得到三角形DEF,若AB=8cm,BE=4cm,DG=3cm,则图中阴影部分的面积是多少cm2?【考点】平移的性质.【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EG和CF的长.由于CG∥DF,可得出△ECG∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知了EG、EC,DE、EF的长,即可求出△ECG和△EFD的面积,进而可求出阴影部分的面积.【解答】解:由平移的性质知,DE=AB=8,CF=BE=4,∠DEC=∠B=90°∴EG=DE﹣DG=5cm∵HC ∥DF∴△ECH ∽△EFD∴===,又∵BE=CF ,∴EC=,∴EF=EC +CF=,∴S 阴影=S △EFD ﹣S △ECG =DE •EF ﹣EC •EG=26cm 2.18.如图,已知∠1=∠2,∠B=∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠1=∠CGD ( 对顶角相等 )∴∠2=∠CGD (等量代换)∴CE ∥BF ( 同位角相等,两直线平行 )∴∠ C =∠BFD ( 两直线平行,同位角相等 )又∵∠B=∠C (已知)∴∠BFD=∠B (等量代换)∴AB ∥CD ( 内错角相等,两直线平行 )【考点】平行线的判定与性质.【分析】首先确定∠1=∠CGD 是对顶角,利用等量代换,求得∠2=∠CGD ,则可根据:同位角相等,两直线平行,证得:CE ∥BF ,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B ,则利用内错角相等,两直线平行,即可证得:AB ∥CD .【解答】解:∵∠1=∠2(已知),且∠1=∠CGD (对顶角相等),∴∠2=∠CGD (等量代换),∴CE ∥BF (同位角相等,两直线平行),∴∠C=∠BFD (两直线平行,同位角相等),又∵∠B=∠C (已知),∴∠BFD=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C ,(两直线平行,同位角相等),(内错角相等,两直线平行).五、(本题共2小题,每小题10分,满分20分)19.小丽想用一块面积为400平方厘米的正方形纸片,沿着边的方向裁出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.不知能否裁出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?请说明理由.【考点】算术平方根;估算无理数的大小.【分析】设面积为300平方厘米的长方形的长宽分为3x,2x,则3x•2x=300,x2=50,解得x=5,而面积为400平方厘米的正方形的边长为20,由于15>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.【解答】解:不同意小明的说法.理由如下:设面积为300平方厘米的长方形的长宽分为3x,2x,则3x•2x=300,x2=50,∴x=5,∴面积为300平方厘米的长方形的长宽分为15cm,10cm,∵面积为400平方厘米的正方形的边长为20,∴20<15,∴用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.20.如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?【考点】平行线的判定与性质.【分析】根据∠A=∠F得AC∥DF,根据平行线的性质,得∠ABM=∠D,结合∠C=∠D,得∠ABM=∠C,根据平行线的判定,则BD∥CE,再根据平行线的性质即可求解.【解答】解:∠BMN与∠CNM互补.理由如下:∵∠A=∠F,∴AC∥DF.∴∠ABM=∠D.又∠C=∠D,∴∠ABM=∠C.∴BD∥CE.∴∠BMN与∠CNM互补.六、(本题12分)21.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC 变化位置,并写出A′、B′、C′的坐标..(3)求出S△ABC【考点】作图-平移变换.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)△A′B′C′如图所示,A′(1,1),B′(6,4),C′(3,5);=5×4﹣×5×3﹣×1×3﹣×2×4,(3)S△ABC=20﹣7.5﹣1.5﹣4,=20﹣13,=7.七、(本题12分)22.解答下列三个问题:(1)已知一个数的平方根是3a+1和a+11,求这个数的立方根;(2)实数a,b在数轴上的位置如图所示,试化简:|a+b|+;(3)如何用两个面积为1的拼成一个面积为2的正方形,画出图形并求出面积为1的正方形的对角线的长.【考点】作图—复杂作图;平方根;实数与数轴.【分析】(1)直接利用平方根的定义得出a的值,进而结合立方根的定义得出答案;(2)直接利用数轴得出a+b的符号,进而化简求出答案;(3)直接利用正方形的性质得出其边长进而得出答案.【解答】解:(1)∵一个数的平方根是3a+1和a+11,∴3a+1+a+11=0,解得:a=﹣3,则3a+1=﹣8,故这个数为:(﹣8)2=64,则这个数的立方根为:4;(2)如图所示:a+b<0,则原式=﹣a﹣b﹣(a+b)=﹣2a﹣2b;(3)如图1所示:面积为1的正方形的对角线的长为:,.八、(本题14分)23.我们知道同一平面内的两条直线有相交和平行两种位置关系.(1)观察与思考:如图1,若AB∥CD,点P在AB、CD内部,∠BPD、∠B、∠D之间的数量关系为∠BPD=∠B+∠D,不必说明理由;(2)猜想与证明:如图2,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,利用(1)中的结论(可以直接套用)求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(3)拓展与应用:如图3,设BF交AC于点M,AE交DF于点N,已知∠AMB=140°,∠ANF=105°.利用(2)中的结论直接写出∠B+∠E+∠F的度数为75度,∠A比∠F大65度.【考点】平行线的性质.【分析】(1)过点P作PE∥AB,根据两直线平行,内错角相等可得∠B=∠1,∠D=∠2,再根据∠BPD=∠1+∠2即可得解;(2)连接QP并延长,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(3)依据(2)中的结论、三角形的内角和及三角形的外角和即可求得.【解答】解:(1)过点P作PE∥AB,∵AB∥CD,∴AB∥EP∥CD,∴∠B=∠1,∠D=∠2,∴∠BPD=∠B+∠D;(2)如图,连接QP并延长,结论:∠BPD=∠BQD+∠B+∠D.∠BPD=(∠BQP+∠B)+(∠DQP+∠D)=∠BQD+∠B+∠D.(3)∵∠ANF=105°,∴∠ENF=∠B+∠E+∠F=180°﹣105°=75°,∵∠A=∠AMB﹣∠B﹣∠E,∠F=180°﹣∠ANF﹣∠B﹣∠E,∴∠A﹣∠F=∠AMB+∠ANF﹣180°=65°.故答案为:∠BPD=∠B+∠D;75,65.xx年11月29日。
2019-2020年七年级下学期第二次月考数学试卷(II)一.选择题(共8小题,每小题3分,共24分)1.下列运算正确的…………………………………………………………………………………………………………………()A.a3﹣a2=a B.a2•a3=a6 C.(a3)2=a6 D.(3a)3=9a3 2.下列等式由左边至右边的变形中,属于因式分解的是……………………………………………………()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3) D.(x+2)(x﹣2)=x2﹣4a、b平行的3.如图,直线a、b被直线cA.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1+∠4=180°4.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为……………………………………()A.4 B.﹣4 C. D.﹣5.方程3x+y=7的正整数解的个数是……………………………………………………………………………………()A.1个 B.2个 C.3个 D.4个6.如果a=(﹣0.1)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,那么a,b,c的大小关系为……………()A.a>b>c B.c>a>b C.c>b>a D.a>c>b7.若16﹣x n=(2+x)(2﹣x)(4+x2),则n的值为……………………………………………………………………()A.2 B.3 C.4 D.68.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写………………………………………………………………………………………………………………………………()A.3xy B.﹣3xy C.﹣1 D.1二.填空题(共8小题,每小题3分,共24分)9.因式分解:a2﹣a= .10.杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为.11.已知5x=6,5y=3,则5x+2y= .12.已知(x+a)(x+b)=x2+5x+ab,则a+b= .13.若x﹣y=2,xy=4,则x2+y2的值为.14.已知长方形的周长为6,面积为2,若长方形的长为a,宽为b,则a2b+ab2= .15.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.16.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三.解答题(共11小题,72分)17.(本题8分)化简下列各题:①(x﹣2y﹣3)﹣1•(x2y﹣3)2 ②.18.(本题8分)将下列各式分解因式:①﹣3a3+12a ②a2(x﹣y)﹣4a(y﹣x)+4(x﹣y)19.(本题8分)解下列方程组①②.20.(本题6分)因式分解及简便方法计算:3.14×5.52﹣3.14×4.52.21.(本题6分)已知3m=2,3n=4.(1)求3m+n﹣1的值;(2)求3×9m×27n的值.22.(本题6分)先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.23.(本题6分)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.(1)若∠ABC=60°,则∠ADC= °,∠AFD= °;(2)求证:BE∥DF.24.(本题6分)对于任何实数,我们规定符号的意义是:=ad﹣bc.(1)按照这个规定请你计算:的值.(2)按照这个规定请你计算:当x2﹣3x+1=0时,的值.25.(本题8分)某景点的门票价格如表:购票人数/人1~50 51~100 100以上每人门票价/元12 10 8 某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?26.(本题10分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.图1图2(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形.①若用不同的方法计算这个边长为a+b+c的正方形面积,就可以得到一个等式,这个等式可以为.(只要写出一个即可)请利用①中的等式解答下列问题:②若a,b,c三个数满足a2+b2+c2=29,ab+bc+ca=26,则(a+b+c)2= .③因式分解:a2+4b2+9c2+4ab+12bc+6ca.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=6,ab=8,请求出阴影部分的面积.参考答案与试题解析一.选择题(共8小题)1.(xx•阜宁县一模)下列运算正确的()A.a3﹣a2=a B.a2•a3=a6C.(a3)2=a6D.(3a)3=9a3【解答】解:A、a3与a2不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、(a3)2=a6,计算正确,故本选项正确;D、(3a)3=27a3,原式计算错误,故本选项错误;故选C.2.(xx•江都市模拟)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.3.(xx•开县二模)如图,直线a、b被直线c所截,下列条件不能保证a、b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠4 D.∠1+∠4=180°【解答】解:A、由∠1=∠2,得到a∥b,所以A选项正确;B、由∠2=∠3,得到a∥b,所以B选项正确;C、由∠3=∠4,无法判断a与b的关系所以C选项错误;D、由∠1=∠3,∠3+∠4=180°,得到a∥b,所以D选项正确.故选C.4.(xx春•滑县期末)已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C. D.﹣【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.5.(xx春•杭锦后旗校级期末)方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个【解答】解:由已知得y=7﹣3x,要使x,y都是正整数,∴x=1,2时,相应的y=4,1.∴正整数解为.故选B.6.(xx春•吴江市期末)如果a=(﹣0.1)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,那么a,b,c 的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.a>c>b【解答】解:a=(﹣0.1)0=1;b=(﹣0.1)﹣1=﹣=﹣10;c=(﹣)﹣2==;∴a,b,c的大小关系为a>c>b.故选D.7.(xx秋•鄂州校级月考)若16﹣x n=(2+x)(2﹣x)(4+x2),则n的值为()A.2 B.3 C.4 D.6【解答】解:(2+x)(2﹣x)(4+x2),=(4﹣x2)(4+x2),=16﹣x4=16﹣x n,所以n=4.故选C.8.(xx秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1【解答】解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选A.二.填空题(共8小题)9.(xx•奉贤区二模)因式分解:a2﹣a= a(a﹣1).【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).10.(xx•徐州)杨絮纤维的直径约为0.000 010 5m,该直径用科学记数法表示为 1.05×10﹣5.【解答】解:0.000 0105=1.05×10﹣5 ,故答案为:1.05×10﹣5.11.(xx春•西安校级月考)已知5x=6,5y=3,则5x+2y= 54 .【解答】解:5x+2y=5x5y5y=6×3×3=54.故答案填54.12.(xx春•昌邑市期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= 5 .【解答】解:∵(x+a)(x+b)=x2+5x+ab,∴x2+(a+b)x+ab=x2+5x+ab,∴a+b=5,故答案为5.13.(xx春•宝丰县月考)若x﹣y=2,xy=4,则x2+y2的值为12 .【解答】解:把x﹣y=2两边平方得:(x﹣y)2=x2﹣2xy+y2=4,把xy=4代入得:x2+y2=12,故答案为:1214.(2011秋•川汇区期末)已知长方形的周长为6,面积为2,若长方形的长为a,宽为b,则a2b+ab2= 6 .【解答】解:根据题意得:a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故答案为:6.15.(xx•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8 .【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.16.(xx•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.【解答】解:两边同时除以5得,,和方程组的形式一样,所以,解得.故答案为:.三.解答题(共11小题)17.(xx春•长沙校级期末)化简(x﹣2y﹣3)﹣1•(x2y﹣3)2【解答】解:原式=x﹣2•﹣1y﹣3•﹣1•x2•2y﹣3•2=x6y﹣3.18.(xx秋•霞山区校级月考)化简.【解答】解:原式=﹣2x3y+x2y2﹣2xy.19.(xx秋•船山区校级期末)分解因式:(1)﹣3a3+12a(2)a2(x﹣y)﹣4a(y﹣x)+4(x﹣y)【解答】解:(1)﹣3a3+12a=﹣3a(a2﹣4)=﹣3a(a+2)(a﹣2);(2)a2(x﹣y)﹣4a(y﹣x)+4(x﹣y)=(x﹣y)(a2+4a+4)=(x﹣y)(a+2)2.20.(xx春•汉阳区期末)解下列方程组(1)(2).【解答】解:(1),①+②得:5x=5,即x=1,把x=1代入②得:y=1,则方程组的解为;(2),①×3+②×2得:19x=114,即x=6,把x=6代入①得:y=﹣,则方程组的解为.21.(xx春•重庆校级期中)因式分解及简便方法计算:(1)3x3y﹣6x2y2+3xy3(2)3.14×5.52﹣3.14×4.52.【解答】解:(1)原式=3xy(x2﹣2xy+y2)=3xy(x﹣y)2;(2)原式=3.14(5.52﹣4.52),=3.14×(5.5+4.5)(5.5﹣4.5),=31.4.22.(xx春•江都区校级月考)已知3m=2,3n=4.(1)求3m+n﹣1的值;(2)求3×9m×27n的值.【解答】解:(1)3m+n﹣1=3m•3n÷3=2×4÷3=;(2)3×9m×27n=3×32m×33n=3×22×43=768.23.(xx春•昆山市期中)先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a ﹣b),其中a=,b=﹣3.【解答】解:原式=a2﹣4ab+4b2+a2﹣b2﹣2a2+8ab﹣6b2=4ab﹣3b2,当a=,b=﹣3时,原式=﹣6﹣27=﹣33.24.(xx春•泗阳县期末)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC交AB于F.(1)若∠ABC=60°,则∠ADC= 120 °,∠AFD= 30 °;(2)求证:BE∥DF.【解答】解:(1)∵∠A=∠C=90°,∠ABC=60°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=120°,∵DF平分∠ADC交AB于F,∴∠FDA=ADC=60°,∴∠AFD=90°﹣∠ADF=30°;故答案为120,30;(2)BE∥DF.理由如下:∵BE平分∠ABC交CD于E,∴∠ABE=∠ABC=×60°=30°,∵∠AFD=30°;∴∠ABE=∠AFD,∴BE∥DF.25.(xx•凤山县校级模拟)对于任何实数,我们规定符号的意义是:=ad﹣bc.(1)按照这个规定请你计算:的值.(2)按照这个规定请你计算:当x2﹣3x+1=0时,的值.【解答】解:(1)=5×8﹣6×7=﹣2.(2)=(x+1)(x﹣1)﹣3x(x﹣2),=x2﹣1﹣3x2+6x,=﹣2x2+6x﹣1.又∵x2﹣3x+1=0,∴x2﹣3x=﹣1,原式=﹣2(x2﹣3x)﹣1=﹣2×(﹣1)﹣1=1.26.(xx•佛山)某景点的门票价格如表:购票人数/人1~50 51~100 100以上每人门票价/元12 10 8某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解答】解:(1)设七年级(1)班有x人、七年级(2)班有y人,由题意,得,解得:.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.27.(xx春•盐都区期中)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形.①若用不同的方法计算这个边长为a+b+c的正方形面积,就可以得到一个等式,这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(只要写出一个即可)请利用①中的等式解答下列问题:②若a,b,c三个数满足a2+b2+c2=29,ab+bc+ca=26,则(a+b+c)2= 81 .③因式分解:a2+4b2+9c2+4ab+12bc+6ca= (a+2b+3c)2.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=6,ab=8,请求出阴影部分的面积.【解答】解:(1)①这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;②∵a2+b2+c2=29,ab+bc+ca=26,∴(a+b+c)2=a2+b2+c2+2(ab+bc+ac)=81;③a2+4b2+9c2+4ab+12bc+6ca=(a+2b)2+6c(a+2b)+9c2=(a+2b+3c)2.(2)∵a+b=6,ab=8,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×62﹣×8=6精品文档30479 770F 眏j22442 57AA 垪20209 4EF1 仱X26991 696F 楯20656 50B0 傰2q-A#136645 8F25 輥37985 9461 鑡实用文档。
河南省洛阳市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B.2C.2D.312.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm3.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m4.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a35.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A .235B .5C .6D .2546.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a+4)cmD .(a+8)cm7.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的8.下列运算结果正确的是( ) A .3a 2-a 2 = 2B .a 2·a 3= a 6C .(-a 2)3 = -a 6D .a 2÷a 2 = a9.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元10.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF11.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°12.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O 方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.14.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=kx的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.15.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.16.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.17.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003米,点A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)18.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y (台)与售价x (元/台)之间的函数关系式及售价x 的取值范围; 售价(元/台) 月销售量(台) 400 200 250 x(2)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少?20.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)21.(6分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.22.(8分)在平面直角坐标系xOy 中,二次函数y =ax 2+bx+c (a≠0)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B . ①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)的曲线部分在平移过程中所扫过的面积.23.(8分)如图,在等腰△ABC 中,AB=BC ,以AB 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥BC 交AB 延长线于点E ,垂足为点F .(1)证明:DE 是⊙O 的切线;(2)若BE=4,∠E=30°,求由»BD、线段BE 和线段DE 所围成图形(阴影部分)的面积, (3)若⊙O 的半径r=5,5,求线段EF 的长.24.(10分)解不等式组:3(2)421152xx x x ≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.25.(10分)如图,反比例y=4x的图象与一次函数y=kx ﹣3的图象在第一象限内交于A (4,a ). (1)求一次函数的解析式;(2)若直线x=n (0<n <4)与反比例函数和一次函数的图象分别交于点B ,C ,连接AB ,若△ABC 是等腰直角三角形,求n 的值.26.(12分)计算:01113(π3)3tan30()2----+-o.27.(12分)已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题:(1)请用t 分别表示A 、B 的路程s A 、s B ; (2)在A 出发后几小时,两人相距15km ?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】作点A 关于MN 的对称点A′,连接A′B ,交MN 于点P ,则PA+PB 最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴2∴2故选:C.2.A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=12BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.3.A【解析】【分析】先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为22x 7mx 3m 370+++=, △()()22249m 43m 3737m 4=-+=-, ∵0m 2<<, ∴2m 40-<, ∴△0<,∴方程没有实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 4.C 【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则. 详解:A 、(b 2)3=b 6,故此选项错误; B 、x 3÷x 3=1,故此选项错误; C 、5y 3•3y 2=15y 5,正确;D 、a+a 2,无法计算,故此选项错误. 故选C .点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键. 5.B 【解析】 【分析】易证△CFE ∽△BEA ,可得CF CEBE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题. 【详解】若点E 在BC 上时,如图∵∠EFC+∠AEB =90°,∠FEC+∠EFC =90°,∴∠CFE =∠AEB , ∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CEBE AB =,BE =CE =x ﹣52,即525522x y x -=-,∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72,∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键. 6.B 【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案. 【详解】∵原正方形的周长为acm ,∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a+8(cm ),因此需要增加的长度为a+8﹣a=8cm , 故选B .【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式. 7.C【解析】 试题解析:23224x xx x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳. 故选C . 8.C 【解析】选项A , 3a 2-a 2 = 2 a 2;选项B , a 2·a 3= a 5;选项C , (-a 2)3 = -a 6;选项D ,a 2÷a 2 = 1.正确的只有选项C ,故选C. 9.A 【解析】 【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可. 【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元. 故选A . 【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组. 10.B 【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得. 【详解】A 、如图,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.11.D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.231.【解析】【分析】据题意求得A0A1=4,A0A1=23A0A3=1,A0A4=23A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=23,A0A3=1,A 0A4=23,A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为23,1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.14.﹣1【解析】【详解】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭VV,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.15.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴AB=()()2234x x +=5x ,∵AB=20m ,∴5x=20,解得:x=4, 故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 16.6【解析】设这个扇形的半径为r ,根据题意可得: 2606360r ππ=,解得:6r =. 故答案为6.17.100(3【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt △ACD 中利用正切定义可计算出AD=100,在Rt △BCD 中利用等腰直角三角形的性质得3,然后计算AD+BD 即可.详解:如图,∵无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt △ACD 中,∵tanA=CD AD, ∴=100, 在Rt △BCD 中,,∴(.答:A 、B 两点间的距离为100(故答案为100(.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形. 18.1.【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】 解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a=. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】【分析】(1)根据题中条件可得390,1-5x ,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w. 【详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.20.1.4米.【解析】【分析】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【详解】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM ,∴四边形BEMC 为平行四边形,∴BC=EM ,CM=BE .在Rt △MEF 中,EF=AD ﹣AE ﹣DF=0.5,FM=CF+CM=1.3,∴EM=22EF FM +≈1.4,∴B 与C 之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC 的长度是解题的关键.21. (1)证明见解析;(2)2m =或4m =.【解析】【分析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯-V 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.22.(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】【分析】(1)待定系数法即可解题,(2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G (7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得440bk b=⎧⎨-+=⎩,解得,14kb=⎧⎨=⎩,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣12×2×4﹣12×5×5﹣12×2×4﹣12×5×5=63﹣8﹣25=1答:图象A,B两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.23.(1)见解析(2)833π(3)83【解析】分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=12ODOE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.(3)先证Rt△DFB∽Rt△DCB得BF BDBD BC=,据此求得BF的长,再证△EFB∽△EDO得EB BFEO OD=,据此求得EB的长,继而由勾股定理可得答案.详解:(1)如图,连接BD、OD,∵AB是⊙O的直径,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴142xx=+,解得:x=4,∴3S△ODE=12×4×33S扇形ODB=2 60?·48 3603ππ=,则S阴影=S△ODE-S扇形ODB3-83π;(3)在Rt△ABD中,BD=ABsinA=10×55∵DE⊥BC,∴Rt△DFB∽Rt△DCB,∴BF BDBD BC=2525=∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴EB BFEO OD=,即255EBEB=+,∴EB=103,∴EF=228 = 3EB BF-.点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.24.不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.【解析】试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.试题解析:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集.点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.(1)y=x﹣3(2)1【解析】【分析】(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;(2)易求点B、C的坐标分别为(n,4n),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程4n-1=1-(n-3),解方程即可.【详解】解:(1)∵反比例y=4x的图象过点A(4,a),∴a=44=1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)由题意可知,点B、C的坐标分别为(n,4n),(n,n﹣3).设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,当x=0时,y=﹣3;当y=0时,x=3,∴OD=OE,∴∠OED=45°.∵直线x=n平行于y轴,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一种情况,过点A作AF⊥BC于F,则BF=FC,F(n,1),∴4n﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.26.234.【解析】【分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【详解】解:原式1132-+-=4 .故答案为4 .【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.27.(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解析】【分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设s A 与t 的函数关系式为s A =kt+b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t|=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.。
洛阳市2019-2020学年初一下期末监测数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.多项式12abc ﹣6bc 2各项的公因式为( )A .2abcB .3bc 2C .4bD .6bc【答案】D【解析】多项式2126abc bc 各项的公因式为6bc ,故选D.2.计算(a 2)3÷(-a 2)2的结果是( )A .-a 2B .a 2C .-aD .a【答案】B【解析】【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则计算得出答案.【详解】解:(a 2)3÷(-a 2)2=a 6÷a 4=a 2故选B .【点睛】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.点M (m +3,m +1)在x 轴上,则点M 坐标为( )A .(0,﹣4)B .(2,0)C .(﹣2,0)D .(0,﹣2) 【答案】B【解析】【分析】直接利用x 轴上点的坐标特点得出m 的值,进而得出答案.【详解】∵点M (m+3,m+1)在x 轴上,∴m+1=0,解得:m=-1,故m+3=2,则点M 坐标为:(2,0).故选B.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.4.下列各数中最小的是()A.0 B.﹣3 C.﹣3D.1【答案】B【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小可判断.【详解】在A、B、C、D四个选项中只有B、C为负数,根据有理数的大小比较法则:正数都大于0,负数都小于0,两个负数绝对值大的反而小可得,最小的数应从B、C中选择,又因为|﹣3|>|﹣3|,所以﹣3<﹣3,故答案选B.考点:有理数的大小比.5.如图,在△ABC中,∠ACB=90°,以点A为圆心,以AC长为半径画弧交AB于点D,连接CD,若CD =BD,则下列结论一定正确的是()A.AD=CD B.AC=CD C.∠A=2∠BCD D.∠B=∠ACD【答案】D【解析】【分析】根据等腰三角形的性质和三角形内角和定理进行计算即可得到答案.【详解】由题意得,AC=AD,∴∠ACD=∠AD C,∵CD=BD,∴∠DCB=∠B,∵∠ADC=∠DCB+∠B,∴∠ACD=2∠B,∴∠B=∠ACD,故选:D.【点睛】本题考查等腰三角形的性质和三角形内角和定理,解题的关键是熟练掌握等腰三角形的性质和三角形内角和定理.6.下列调查中,适合抽样调查的是()A.了解某班学生的身高情况B.检测十堰城区的空气质量C.选出某校短跑最快的学生参加全市比赛D.全国人口普查【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、了解某班学生的身高情况适合全面调查;B、检测十堰城区的空气质量适合抽样调查;C、选出某校短跑最快的学生参加全市比赛适合全面调查;D、全国人口普查是全面调查;故选B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.下列问题适合做抽样调查的是()A.为了了解七(1)班男同学对篮球运动的喜欢情况B.审核某书稿上的错别字C.调查全国中小学生课外阅读情况D.飞机起飞前对零部件安全性的检查【答案】C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和全面调查的结果比较近似.【详解】A、为了了解七(1)班男同学对篮球运动的喜欢情况,选择全面调查,故本选项错误;B、为了审核书稿中的错别字,选择全面调查,故本选项错误;C、调查全国中小学生课外阅读情况,选择抽样调查,故本选项正确;D、飞机起飞前对零部件安全性的检查,必须全面调查,故本选项错误;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.,,N的坐标为(2)0,,8.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(20)则在第二象限内的点是( )A.A点B.B点C.C点D.D【答案】D【解析】【分析】根据点的坐标特征,可得答案.【详解】MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内.故选A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.二元一次方程2x+3y=10的正整数解有()A.0个B.1个C.3个D.无数多个【答案】B【解析】【分析】将x看做已知数求出y,即可确定出方程的正整数解.【详解】2x+3y=10,解得:y=,当x=2时,y=2,则方程的正整数解有1个.故选B【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个【答案】A【解析】【分析】根据定义及定理分别判断各命题,即可得出答案.【详解】解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选:A .【点睛】本题考查对顶角及邻补角的知识,难度不大,注意熟练掌握各定义定理.二、填空题11.()201720160.254⨯-= ____.【答案】4-【解析】首先把2017-4()化为2016-4-4⨯()(),再根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘计算得:原式=20160.25 ×2016-4-4⨯()()=20160.254-4=-4⨯⨯()() ,故答案为:-4.12.若实数x y ,满足2(23)940x y -++=,则xy 的立方根为__________. 【答案】32-【解析】 【分析】根据非负数的性质可得:2x-3=0,9+4y=0,解方程求出x 、y 的值后代入xy 进行计算后即可求得xy 的立方根.【详解】由题意得:2x-3=0,9+4y=0,解得:x=32,y=94-, ∴xy=278-, ∴xy 的立方根是32-, 故答案为:32-. 【点睛】本题考查了非负数的性质、立方根等知识,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.13.在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为__________; 【答案】16π 【解析】分析:根据“所求概率=圆形阴影区域的面积和正方形纸片的面积之比”结合题中所给数据进行计算即可. 详解:由题意可得:P (针头扎在阴影区域)=221416ππ⨯=.故答案为:16π. 点睛:知道“针头扎在阴影区域内的概率=圆形阴影区域的面积和正方形纸片的面积之比”是解答本题的关键.14.把方程25x y +=变形,用含x 的代数式表示y ,则y=______________.【答案】5-2x【解析】【分析】把2x 移项到方程的另一边即可.【详解】∵25x y +=∴y=5-2x故答案为: 5-2x【点睛】本题考查的是用代入法解二元一次方程组,解答的关键是利用等式的性质进行变形.15.如图,三角形ABC 的周长为22cm ,现将三角形ABC 沿AB 方向平移2cm 至三角形A′B′C′的位置,连接CC′,则四边形AB′C′C 的周长是__________.【答案】26cm【解析】【分析】根据平移的性质,经过平移,对应点所连的线段相等,对应线段相等,找出对应线段和对应点所连的线段,结合四边形的周长公式求解即可.【详解】根据题意,得A 的对应点为A′,B 的对应点为B′,C 的对应点为C′,所以BC =B′C′,BB′=CC′,∴四边形AB′C′C 的周长=CA+AB+BB′+B′C′+C′C =△ABC 的周长+2BB′=22+4=26cm .故答案为26cm .【点睛】本题考查平移的性质,关键是根据经过平移,对应点所连的线段平行且相等,对应线段平行且相等解答. 16.写出命题“内错角相等”的逆命题_____.【答案】如果两个角相等,那么这两个角是内错角【解析】将原命题的条件与结论互换就得到其逆命题,故其逆命题为:如果两个角相等,那么这两个角是内错角. 故答案是:如果两个角相等,那么这两个角是内错角.17.如图,已知AB ∥CD ,BE 平分∠ABC ,∠CDE=150°,则∠C=______°.【答案】1【解析】【分析】∠CDE=150°,得到∠CDB=180-∠CDE=30°;AB ∥CD ,得到∠ABD=∠CDB=30°;所以∠ABC=60°,得到∠C=180°-60°=1°.【详解】解:∵∠CDE=150°,∴∠CDB=180-∠CDE=30°,又∵AB ∥CD ,∴∠ABD=∠CDB=30°;∵BE 平分∠ABC ,∴∠ABC=60°,∴∠C=180°-60°=1°.故答案为:1.【点睛】本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键三、解答题18.如图所示,点C 在线段BE 上,AB CD ∥,B D ∠=∠,则DAE ∠与E ∠相等吗?阅读下面的解答过程,并填空.解:DAE E =∠∠∵AB CD ∥(已知)∴B ∠=______(______)∵B D ∠=∠(已知)∴D ∠=______(等量代换)∴____________(______)∴DAE E =∠∠(______)【答案】见解析【解析】【分析】由AB CD ∥得到∠B =∠DCE ,再加上B D ∠=∠即可得到∠D =∠DCE ,从而证明AD //BE,再由平行线的性质得到结论.【详解】DAE E =∠∠∵AB CD ∥(已知)∴B ∠=_∠DCE_____(_两直线平行,同位角相等_____)∵B D ∠=∠(已知)∴D ∠=_∠DCE _(等量代换)∴__AD //BE____(_内错角相等,两直线平行_____)∴DAE E =∠∠(_两直线平行,内错角相等_)【点睛】考查了平行线的性质和判定,关键是找准两条直线被第三条直线所截而形成的同位角、内错角. 19.乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:()()()2244516ab ab a b ab ⎡⎤=+--+÷⎣⎦,其中110,5a b ==-. 【答案】4ab -;8【解析】【分析】先计算中括号内的乘法再合并同类项,再计算除法,再将a 与b 的值代入结果中计算即可.【详解】解:22(4)(4)516()ab ab a b ab ⎡⎤+--+÷⎣⎦, =(222216516()a b a b ab ⎡⎤--+÷⎦⎣, =()224()a b ab -÷,=4ab -, 当110,5a b ==-时,原式=14105⎛⎫-⨯⨯- ⎪⎝⎭=8.【点睛】此题考查整式的化简求值,根据整式的计算法则正确计算是解题的关键.20.如图,BD⊥AC 于点D ,EF⊥AC 于点F ,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC 的度数;(2)求证:DM∥BC.【答案】(1)125°;(2)证明见解析【解析】试题分析:(1)由BD ⊥AC ,EF ⊥AC ,得到BD ∥EF ,根据平行线的性质得到∠EFG=∠1=35°,再根据角的和差关系可求∠GFC 的度数;(2)根据平行线的性质得到∠2=∠CBD ,等量代换得到∠1=∠CBD ,根据平行线的判定定理得到GF ∥BC ,证得MD ∥GF ,根据平行线的性质即可得到结论.试题解析:解:(1)∵BD ⊥AC ,EF ⊥AC ,∴BD ∥EF ,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;(2)∵BD ∥EF ,∴∠2=∠CBD ,∴∠1=∠CBD ,∴GF ∥BC .∵∠AMD=∠AGF ,∴MD ∥GF ,∴DM ∥BC . 点睛:本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.21.已知,如图,,CDG B AD BC ∠=∠⊥于点D ,12∠=∠,EF 分别交,AB BC 于点,E F ,试判断EF 与BC 的位置关系,并说明理由.【答案】EF BC ⊥,证明见解析.【解析】【分析】根据平行线的判定与性质即可证明.【详解】EF BC ⊥证明:∵CDG B ∠=∠,∴//DG AB∴1DAB ∠=∠,∵12∠=∠,∴2DAB ∠=∠∴//EF AD∴,BFE BDA AD BC ∠=∠⊥,∴90BDA ∠=∴90BFE ∠=,∴EF BC ⊥【点睛】本题综合考查了平行线的判定和性质,灵活应用该判定和性质进行角之间的转换是解题的关键. 22.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B 类的人数有 人;(2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A ,B ,C 这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【答案】(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C 类别人数及其百分比可得总人数,总人数乘以B 类别百分比即可得;(2)根据百分比之和为1求得A 类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A 、B 、C 三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B 类别的人数为800×30%=240(人),故答案为800,240;(2)∵A 类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图23.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘.教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列问题:(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为;(2)图中的A点表示的意义是什么?A点表示的意义是;在以下哪个时间段内遗忘的速度最快?填序号;①0—2h;②2—4h;③4—6h;④6—8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当天课堂上所记的课堂笔记进行复习,据调查这样一天后记忆量能保持98%,如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?【答案】(1)50%,30%;(2)2h大约记忆量保持了40%,①;(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一),暑假的两条学习计划:①每天上午、下午、晚上各复习10分钟;②坚持每天复习,劳逸结合【解析】【分析】(1)根据图象直接可得到答案;(2)根据横纵坐标的含义回答点A的意义,根据图象可得遗忘最快的时间段是0—2h;(3)根据图象一天不复习,记忆由原来的100%下降到30%左右,由此得记忆量为98%时一天不复习记忆量只能保持不到30%,提出合理计划即可.【详解】解:(1)由图可得,1h后,记忆保持量约为50%(50%±3%均算正确);8h后,记忆保持量约为30%(30%±3%均算正确),故答案为:50%,30%;(2)点A表示2h大约记忆量保持了40%;0—2h内记忆保持量下降60%,故0—2h内遗忘的速度最快,故答案为:2h大约记忆量保持了40%,①;(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一);暑假的两条学习计划:①每天上午、下午、晚上各复习10分钟;②坚持每天复习,劳逸结合.【点睛】此题考查函数图象,正确理解函数图象横纵坐标代表的函数,观察图象得到相关的信息是解题的关键. 24.已知直线CD⊥AB于点O,∠EOF=90°,射线OP平分∠COF.(1)如图1,∠EOF在直线CD的右侧:①若∠COE=30°,求∠BOF和∠POE的度数;②请判断∠POE与∠BOP之间存在怎样的数量关系?并说明理由.(2)如图2,∠EOF在直线CD的左侧,且点E在点F的下方:①请直接写出∠POE与∠BOP之间的数量关系;②请直接写出∠POE与∠DOP之间的数量关系.【答案】(1)①∠BOF= 30°,∠POE=30°,②∠POE=∠BOP(2)①∠POE=∠BOP②∠POE+∠DOP=270°【解析】【分析】(1)①根据余角的性质得到∠BOF=∠COE=30°,求得∠COF=90°+30°=120°,根据角平分线的定义即可得到结论;②根据垂线的性质和角平分线的定义即可得到结论;(2)①根据角平分线的定义得到∠COP=∠POF,求得∠POE=90°+∠POF,∠BOP=90°+∠COP,于是得到∠POE=∠BOP;②根据周角的定义即可得到结论.【详解】(1)①∵CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE=30°,∴∠COF=90°+30°=120°,∵OP平分∠COF,∴∠COP=12∠COF=60°,∴∠POE=∠COP﹣∠COE=30°;②CD⊥AB,∴∠COB=90°,∵∠EOF=90°,∴∠COE+∠BOE=∠BOE+∠BOF=90°,∴∠BOF=∠COE,∵OP平分∠COF,∴∠COP=∠POF,∴∠POE=∠COP﹣∠COE,∠BOP=∠POF﹣∠BOF,∴∠POE=∠BOP;(2)①∵∠EOF=∠BOC=90°,∵PO平分∠COF,∴∠COP=∠POF,∴∠POE=90°+∠POF,∠BOP=90°+∠COP,∴∠POE=∠BOP;②∵∠POE=∠BOP,∠DOP+∠BOP=270°,∴∠POE+∠DOP=270°.【点睛】本题考查了垂线,角平分线定义,角的和差,正确的识别图形是解题的关键.25.对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,-5,0,-2,+4,-1,-1,+1.(1)这8名男生有百分之几达到标准?(2)这8名男生共做了多少个引体向上?【答案】(1)50%;(2)80个;【解析】【分析】负数的没有达标.【详解】(1)负数的没有达标,故48=50%;(2)∵ 2-5+0-2+4-1-1+1=0 ∴8 10=80个.【点睛】正确理解题意是解题的关键.。
2019-2020学年河南省洛阳市七年级(下)期中数学试卷(二)一、单选题(每题3分,共36分)1.(3分)在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线( )A .互相垂直B .互相平行C .相交D .相等2.(3分)估计101+的值是( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间3.(3分)如图,已知直线//a b ,则123(∠+∠-∠= )A .180︒B .150︒C .135︒D .90︒4.(3分)如图,直线AB ,CD 相交于点O ,2115∠-∠=︒,3130∠=︒.则2∠的度数是( )A .37.5︒B .75︒C .50︒D .65︒5.(3分)若216x =,那么5x -的算术平方根是( )A .1±B .4±C .1或9D .1或36.(3分)点(3,3)A -所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限7.(3分)如图,在平面直角坐标系中,ABC ∆位于第一象限,点A 的坐标是(4,3),把ABC∆向左平移6个单位长度,得到△111A B C ,则点1B 的坐标是( )A .(2,3)-B .(3,1)-C .(3,1)-D .(5,2)-8.(3分)若点(,)P x y 在第四象限,且||2x =,||3y =,则(x y += )A .1-B .1C .5D .5-9.(3分)在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±C 7D .7±10.(3分)下列方程中,属于二元一次方程的是( )A .3a b =B .23x z y -=C .2217x -=D .327x -=11.(3分)如果关于x 的不等式(1)1a x a +>+的解集为1x <,那么a 的取值范围是( )A .0a >B .0a <C .1a >-D .1a <-12.(3分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩ 二、填空题(每小题5分,共40分)13.(5分)已知|59|x y -+与2(31)x y +-互为相反数,则x y += .14.(5分)一个数的立方等于64,则这个数是 .15.(5分)将一个矩形纸片折叠成如图所示的图形,若26ABC ∠=︒,则ACD ∠= ︒.16.(5分)已知实数a ,b ,c 在数轴上的位置如图,且a ,b 互为相反数,化简:2||||a a b c ++-= .17.(5分)将点P (3,4)-先向下平移3个单位,再向左平移2个单位后得到点Q ,则点Q的坐标是 .18.(5分)点A 在y 轴左侧,在x 轴的上侧,距离每个坐标轴都是4个单位长度,则点A 的坐标为 .19.(5分)如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程63mx y +=的一个解,则m 的值为 . 20.(5分)不等式132x x +>的负整数解共有 个. 三、解答题(21题12分,22题12分,23题10分,24题14分,25题12分,26题14分) 21.(12分)计算题:(1)2017231(3)6432|---+;(2)解方程组:2(4)3(1)31123x y x y ---=-⎧⎪+⎨-=⎪⎩. 22.(12分)解不等式组523(1)21162x x x x +-⎧⎪-⎨->⎪⎩,并写出该不等式组的所有整数解. 23.(10分)如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠. 下面是部分推理过程,请你将其补充完整:AD BC ⊥于D ,(EG BC ⊥ ),ADC EGC ∴∠=∠= ( ),//(EG AD ∴ ),E ∴∠= ( ),1∠= ( ),又1E ∠=∠(已知),23(∴∠=∠ ),AD ∴平分BAC ∠ ( ).24.(14分)如图,先将三角形ABC 向左平移3个单位长度,再向下平移4个单位长度,得到三角形111A B C .(1)画出经过两次平移后的图形,并写出1A ,1B ,1C 的坐标;(2)已知三角形ABC 内部一点P 的坐标为(,)a b ,若点P 随三角形ABC 一起平移,请写出平移后点P 的对应点1P 的坐标;(3)求三角形ABC 的面积.25.(12分)列方程(组)解应用题打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元.打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花费多少钱?26.(14分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)求1辆大货车和1辆小货车一次可以分别运货多少吨?(2)现有31吨货物需要运输,货运公司拟安排大小货车共10辆把全部货物一次运完.求至少需要安排几辆大货车?2019-2020学年河南省洛阳市七年级(下)期中数学试卷(二)参考答案与试题解析一、单选题(每题3分,共36分)1.(3分)在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线() A.互相垂直B.互相平行C.相交D.相等【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:如果两条直线都和第三条直线垂直,那么这两条直线互相平行,故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.2.(3分)估计101+的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:239=,=,2416<<,∴3104+在4到5之间.∴101故选:C.【点评】此题主要考查了估算无理数的能力,要求学生正确理解无理数的性质,进行估算,“夹逼法”是估算的一般方法,也是常用方法.3.(3分)如图,已知直线//∠+∠-∠=)a b,则123(A.180︒B.150︒C.135︒D.90︒【分析】首先根据平行线的性质得到24180∠+∠=︒,再根据三角形外角的性质即可得到结论.【解答】解:如图,a b,//∴∠+∠=︒,24180∠=∠,45∴∠+∠=︒,25180∠=∠+∠,135∴∠+∠-∠=︒,123180故选:A.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等,此题难度不大.4.(3分)如图,直线AB,CD相交于点O,2115∠的度数是(∠=︒.则2∠-∠=︒,3130)A.37.5︒B.75︒C.50︒D.65︒【分析】根据邻补角互补可得1∠的关系可得答案.∠和2∠的度数,再根据1【解答】解:3130∠=︒,118013050∴∠=︒-︒=︒,∠-∠=︒,2115∴∠=︒+︒=︒,2501565故选:D.【点评】此题主要考查了邻补角,关键是掌握邻补角互补.5.(3分)若216x=,那么5x-的算术平方根是()A .1±B .4±C .1或9D .1或3【分析】首先根据平方根的定义可以求得x ,然后利用算术平方根的定义即可求出结果.【解答】解:若216x =,则4x =±,那么51x -=或9,所以5x -的算术平方根是1或3.故选:D .【点评】此题主要考查了算术平方根的性质,解题关键是了解算术平方根必须是正数,注意平方根和算术平方根的区别.6.(3分)点(3,3)A -所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A 所在的象限.【解答】解:因为点(3,3)A -的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A 在第二象限.故选:B .【点评】此题主要考查了点的坐标,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.7.(3分)如图,在平面直角坐标系中,ABC ∆位于第一象限,点A 的坐标是(4,3),把ABC∆向左平移6个单位长度,得到△111A B C ,则点1B 的坐标是( )A .(2,3)-B .(3,1)-C .(3,1)-D .(5,2)-【分析】根据点的平移的规律:向左平移a 个单位,坐标(P x ,)(y P x a ⇒-,)y ,据此求解可得.【解答】解:点B 的坐标为(3,1),∴向左平移6个单位后,点1B 的坐标(3,1)-,故选:C .【点评】本题主要考查坐标与图形的变化-平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.8.(3分)若点(,)P x y 在第四象限,且||2x =,||3y =,则(x y += )A .1-B .1C .5D .5-【分析】根据点的坐标特征求解即可.【解答】解:由题意,得2x =,3y =-,2(3)1x y +=+-=-,故选:A .【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.9.(3分)在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【分析】先根据题意知x 、y 满足379x y x y -=⎧⎨+=⎩①②,解之求出x 、y 的值,再代入6572x y m +=+可得72m +的值,最后利用算术平方根的定义计算可得.【解答】解:由题意知x 、y 满足379x y x y -=⎧⎨+=⎩①②, ①+②,得:416x =,解得4x =,将4x =代入②,得:49y +=,解得5y =,将4x =、5y =代入6572x y m +=+,得:7249m +=,72m ∴+即49的算术平方根为7,故选:A .【点评】本题主要考查二元一次方程组的解,解题的关键是根据二元一次方程组的解的概念得出x 、y 的方程组,并熟练解二元一次方程组.10.(3分)下列方程中,属于二元一次方程的是( )A .3a b =B .23x z y -=C .2217x -=D .327x -=【分析】根据二元一次方程的定义判断即可.【解答】解:A 、符合二元一次方程定义,是二元一次方程;B 、含有3个未知数,不是二元一次方程;C 、最高项的次数为2,不是二元一次方程;D 、含有一个未知数,不是二元一次方程.故选:A .【点评】此题考查二元一次方程定义,关键是根据二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.11.(3分)如果关于x 的不等式(1)1a x a +>+的解集为1x <,那么a 的取值范围是( )A .0a >B .0a <C .1a >-D .1a <-【分析】本题可对1a >-,与1a <-的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当1a >-时,原不等式变形为:1x >;(2)当1a <-时,原不等式变形为:1x <.故选:D .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除1a +时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.12.(3分)学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩【分析】本题中的两个等量关系:49座客车数量37+座客车数量10=,两种客车载客量之和466=.【解答】解:设49座客车x 辆,37座客车y 辆,根据题意可列出方程组104937466x y x y +=⎧⎨+=⎩.故选:A .【点评】考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组. 二、填空题(每小题5分,共40分)13.(5分)已知|59|x y -+与2(31)x y +-互为相反数,则x y += 3 .【分析】利用相反数的性质列出方程组,求出方程组的解得到x 与y 的值,代入原式计算即可求出值.【解答】解:|59|x y -+与2(31)x y +-互为相反数,2|59|(31)0x y x y ∴-+++-=, ∴590310x y x y -+=⎧⎨+-=⎩①②,①+②得:88x =-, 解得:1x =-,把1x =-代入①得:4y =, 则143x y +=-+=, 故答案为:3【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(5分)一个数的立方等于64,则这个数是 4 . 【分析】根据立方根的定义即可求出答案. 【解答】解:3464=,∴这个数是4,故答案为:4【点评】本题考查立方根,解题的关键是熟练运用立方根的定义,本题属于基础题型.15.(5分)将一个矩形纸片折叠成如图所示的图形,若26∠=128︒.ABC∠=︒,则ACD【分析】直接利用翻折变换的性质以及平行线的性质分析得出答案.【解答】解:延长DC,由题意可得:26∠=∠=∠=︒,ABC BCE BCA则1802626128∠=︒-︒-︒=︒.ACD故答案为:128.【点评】此题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.16.(5分)已知实数a,b,c在数轴上的位置如图,且a,b互为相反数,化简:2-+.++-=a ca ab c||||【分析】根据相反数和为零,再结合二次根式的性质和绝对值的性质进行计算即可.【解答】解:2++-||||a ab c=-+-,0||a c=---,a c()=-+,a c-+.故答案为:a c【点评】2||=.a a17.(5分)将点P(3,4)-先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q 的坐标是(5,1)-.【分析】让P的横坐标减2,纵坐标减3即可得到点Q的坐标.【解答】解:根据题意,点Q的横坐标为:325--=-;纵坐标为431-=-;∴点Q的坐标是(5,1)-.故答案为:(5,1)-.【点评】用到的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.18.(5分)点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为(4,4)-.【分析】根据题中所给的点的位置,可以确定点的纵横坐标的符号,结合其到坐标轴的距离得到它的坐标.【解答】解:根据题意,点A在y轴左侧,在y轴的上侧,则点A横坐标为负,纵坐标为正;又由距离每个坐标轴都是4个单位长度,则点A的坐标为(4,4)-.故答案为(4,4)-.【点评】本题考查点的坐标的确定与意义,点到x轴的距离是其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值.19.(5分)如果62xy=⎧⎨=-⎩是关于x、y的二元一次方程63mx y+=的一个解,则m的值为2-.【分析】根据方程的解的概念将x、y的值代入方程得到关于m的方程,解之可得.【解答】解:将62xy=⎧⎨=-⎩代入方程63mx y+=,得:666m+=-,解得:2m=-,故答案为:2-.【点评】本题主要考查二元一次方程的解,解题的关键是掌握使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.20.(5分)不等式132x x+>的负整数解共有5个.【分析】通过解不等式找出x的取值范围,数出其中的负整数解的个数即可得出结论.【解答】解:去分母,得:26x x+>,移项、合并同类项,得:6x >-.∴不等式132x x +>的负整数解是5-,4-,3-,2-,1-, 即不等式132x x +>的负整数解共有5个. 故答案为:5.【点评】本题考查了一元一次不等式的整数解,通过解不等式,找出不等式的解集是解题的关键.三、解答题(21题12分,22题12分,23题10分,24题14分,25题12分,26题14分) 21.(12分)计算题:(1)201712|-; (2)解方程组:2(4)3(1)31123x y x y ---=-⎧⎪+⎨-=⎪⎩.【分析】(1)将式子从左向右依次运算,再去括号合并同类项即可;(2)将方程组化简后得到232328x y x y -=⎧⎨-=⎩③④,再由③2⨯-④3⨯,求得4x =,再求2y =即可.【解答】解:(1)原式13(4)(24422=----+-=-++-= (2)()()243131123x y x y ⎧---=-⎪⎨+-=⎪⎩①②,原方程可化简,得 232328x y x y -=⎧⎨-=⎩③④, ③2⨯-④3⨯,得 4x =,将4x =代入③,得 2y =,∴原方程组的解为42x y =⎧⎨=⎩.【点评】本题考查实数的运算与二元一次方程组的解;熟练掌握立方根、平方根、绝对值、指数幂的运算方法,掌握加减消元法解二元一次方程组的方法,是准确解题的关键.22.(12分)解不等式组523(1)21162 x xxx+-⎧⎪-⎨->⎪⎩,并写出该不等式组的所有整数解.【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解.【解答】解:由523(1)x x+-,得 2.5x-,由21162xx-->,得2x<,2.52x∴-<,x为整数,2x∴=-或1-或0或1.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法.23.(10分)如图,已知:AD BC⊥于D,EG BC⊥于G,1E∠=∠.求证:AD平分BAC∠.下面是部分推理过程,请你将其补充完整:AD BC⊥于D,(EG BC⊥已知),ADC EGC∴∠=∠=(),//(EG AD∴),E∴∠=(),1∠=(),又1E∠=∠(已知),23(∴∠=∠),AD∴平分BAC∠().【分析】利用垂直的定义、平行线的判定和性质及等量代换等知识点求解可得.【解答】解:AD BC⊥于D,EG BC⊥(已知),90ADC EGC∴∠=∠=︒(垂直的定义),//EG AD ∴(同位角相等,两直线平行), 3E ∴∠=∠(两直线平行,同位角相等), 12∠=∠(两直线平行,内错角相等), 又1E ∠=∠(已知), 23∴∠=∠(等量代换), AD ∴平分BAC ∠(角平分线的定义). 故答案为:已知;90︒;垂直的定义;同位角相等,两直线平行;3∠;两直线平行,同位角相等;2∠;两直线平行,内错角相等;等量代换;角平分线的定义.【点评】本题主要考查平行线的判定和性质,解题的关键是掌握垂直的定义、平行线的判定和性质及等量代换等知识点.24.(14分)如图,先将三角形ABC 向左平移3个单位长度,再向下平移4个单位长度,得到三角形111A B C .(1)画出经过两次平移后的图形,并写出1A ,1B ,1C 的坐标;(2)已知三角形ABC 内部一点P 的坐标为(,)a b ,若点P 随三角形ABC 一起平移,请写出平移后点P 的对应点1P 的坐标; (3)求三角形ABC 的面积.【分析】(1)利用点平移的规律写出1A ,1B ,1C 的坐标,然后描点可得△111A B C ; (2)利用点平移的规律,平移后的对应点的横坐标减3,纵坐标减4,于是可得1(3,4)P a b --; (3)根据三角形面积公式,利用一个矩形的面积分别减去三个三角形的面积可求出三角形ABC 的面积.【解答】解:(1)如图,△111A B C 为所作,点1A ,1B ,1C 的坐标分别为(4,3)--,(2,2)-,(1,1)-;(2)平移后点P 的对应点1P 的坐标为(3,4)a b --;(3)ABC ∆的面积11145613343 6.5222=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查了作图-平移变换:确定平移后图形的基本要素(平移方向、平移距离).作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 25.(12分)列方程(组)解应用题打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元.打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花费多少钱? 【分析】设打折前A 商品每件x 元,B 商品每件y 元,根据①买60件A 商品和30件B 商品用了1080元;②买50件A 商品和10件B 商品用了840元.可列出方程组求得A 、B 商品的单件,继而可得打折前买500件A 商品和500件B 商品所需总费用,比较即可得答案.【解答】解:设打折前A 商品每件x 元,B 商品每件y 元,根据题意,得: 603010805010840x y x y +=⎧⎨+=⎩, 解得:164x y =⎧⎨=⎩,5005009600500()9600400x y x y ∴+-=+-=(元).答:比不打折少花400元.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,熟练运用代入消元法或加减消元法解方程组.26.(14分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)求1辆大货车和1辆小货车一次可以分别运货多少吨?(2)现有31吨货物需要运输,货运公司拟安排大小货车共10辆把全部货物一次运完.求至少需要安排几辆大货车?【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据“3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)设安排m辆大货车,则小货车需要(10)m-辆,根据两种货车运送的货物总质量不低于31吨列一元一次不等式求解可得.【解答】解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:3418 2617x yx y+=⎧⎨+=⎩,解得:41.5xy=⎧⎨=⎩,答:1辆大货车和1辆小货车一次可以分别运货4吨、1.5吨.(2)设安排m辆大货车,则小货车需要(10)m-辆,根据题意,得:4 1.5(10)31m m+-,解得: 6.4m,所以至少需要安排7辆大货车.【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.。
2019-2020学年七年级第二学期期中数学试卷一、选择题1.下面四个等式的变形中正确的是()A.由2x+4=0得x+2=0B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣6 2.用代入法解方程组使得代入后化简比较容易的变形是()A.由(1),得x=B.由(1),得y=C.由(2),得x=D.由(2),得y=2x﹣53.以为解建立一个三元一次方程,不正确的是()A.3x﹣4y+2z=3B.x﹣y+z=﹣1C.x+y﹣z=﹣2D.﹣y﹣z=14.若m,n满足|2m+1|+(n﹣2)2=0,则mn的值等于()A.1B.﹣1C.﹣2D.25.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.6.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x7.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0.4元、0.5元C.0.3元、0.4元D.0.6元、0.7元8.小方、小红和小军三人玩飞镖游戏,各投四支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小红的得分是()A.30分B.32分C.33分D.34分9.现规定一种运算:a※b=ab+a﹣b,其中a、b为常数,若(2※3)+(m※1)=6,则不等式<m的解集是()A.x<﹣2B.x<﹣1C.x<0D.x>210.若不等式组有解,则实数a的取值范围是()A.a≥﹣2B.a<﹣2C.a≤﹣2D.a>﹣2二、填空题(每小题3分,共15分.)11.方程x﹣3=0的解是.12.请用不等式表示“x的2倍与3的和不大于1”:.13.如图(1),在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图(2).这个拼成的长方形的长为30,宽为20.则图(2)中Ⅱ部分的面积是.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.15.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是.三、解答题(本大题共8个小题,满分55分.要求写出必要的规范的解答步骤.)16.解方程组.17.定义新运算为:对于任意实数a、b都有a⊕b=(a﹣b)b﹣1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1﹣2)×2﹣1=﹣3.(1)求(﹣3)⊕4的值;(2)若x⊕2的值小于5,求x的取值范围,并在如图所示的数轴上表示出来.18.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.19.张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.20.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.21.(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)22.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(m3/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?23.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?参考答案一、选择题(各小题四个答案中,只有一个是正确的,将正确的答案代号字母填入题后括号内.每小题3分,共30分.)1.下面四个等式的变形中正确的是()A.由2x+4=0得x+2=0B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣6【分析】根据等式的性质逐个进行判断即可.解:A、由2x+4=0方程两边都除以2即可得出x+2=0,原变形正确,故本选项符合题意;B、由x+7=5﹣3x可得4x=﹣2,原变形错误,故本选项不符合题意;C、由x=4可得x=,原变形错误,故本选项不符合题意;D、由﹣4(x﹣1)=﹣2可得4x=6,原变形错误,故本选项不符合题意;故选:A.2.用代入法解方程组使得代入后化简比较容易的变形是()A.由(1),得x=B.由(1),得y=C.由(2),得x=D.由(2),得y=2x﹣5【分析】用代入法解方程组的第一步:尽量用其中一个未知数表示系数较简便的另一个未知数.解:A、B、C、D四个答案都是正确的,但“化简比较容易的”只有D.故选:D.3.以为解建立一个三元一次方程,不正确的是()A.3x﹣4y+2z=3B.x﹣y+z=﹣1C.x+y﹣z=﹣2D.﹣y﹣z=1【分析】将方程的解分别代入四个选项,等式成立的即为方程的解.解:将代入x+y﹣z=﹣2,左边=3+1+1=5,右边=﹣2,左边≠右边,故选:C.4.若m,n满足|2m+1|+(n﹣2)2=0,则mn的值等于()A.1B.﹣1C.﹣2D.2【分析】根据非负数的性质列出一次方程,求解得到m、n的值,再代入代数式进行计算即可得解.解:根据题意,得2m+1=0,n﹣2=0,解得m=﹣,n=2,∴mn=(﹣)×2=﹣1.故选:B.5.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.【分析】先把m当作已知条件求出x+y的值,再根据x+y>0求出m的取值范围,并在数轴上表示出来即可.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.6.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.7.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2015年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元、0.6元B.0.4元、0.5元C.0.3元、0.4元D.0.6元、0.7元【分析】设第一阶梯电价每度x元,第二阶梯电价每度y元,分别根据9月份和10月份的电费收据,列出方程组,求出x和y值.解:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得,,解得.即:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.故选:A.8.小方、小红和小军三人玩飞镖游戏,各投四支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小红的得分是()A.30分B.32分C.33分D.34分【分析】设大圈内,小圈内得分分别为x,y分,根据等量关系列出方程组,再解方程组即可,根据小方、小军一次各得分数乘以各自的次数,计算出总分即可.解:设大圈内,小圈内得分分别为x,y分,依题意得:,解这个方程组得:,答:小方、小军一次各得5分、9分,则小红的得分是5+3×9=32分.故选:B.9.现规定一种运算:a※b=ab+a﹣b,其中a、b为常数,若(2※3)+(m※1)=6,则不等式<m的解集是()A.x<﹣2B.x<﹣1C.x<0D.x>2【分析】先根据新定义得到2×3+2﹣3+m×1+m﹣1=6,解得m=1,则不等式化为<1,然后通过去分母、移项可得到不等式的解集.解:∵(2※3)+(m※1)=6,∴2×3+2﹣3+m×1+m﹣1=6,∴m=1,∴<1,去分母得3x+2<2,移项得3x<0,系数化为1得x<0.故选:C.10.若不等式组有解,则实数a的取值范围是()A.a≥﹣2B.a<﹣2C.a≤﹣2D.a>﹣2【分析】先解不等式组,然后根据题意可得a≥﹣2,由此求得a的取值.解:,解不等式x+a≥0得,x≥﹣a,由不等式4﹣2x>x﹣2得,x<2,∵不等式组:不等式组有解,∴a>﹣2,故选:D.二、填空题(每小题3分,共15分.)11.方程x﹣3=0的解是x=3.【分析】方程移项即可求出解.解:移项得:x=3.故答案为:x=3.12.请用不等式表示“x的2倍与3的和不大于1”:2x+3≤1.【分析】首先表示x的2倍,再表示“与3的和”,然后根据不大于1列出不等式即可.解:x的2倍表示为2x,与3的和表示为2x+3,由题意得:2x+3≤1,故答案为:2x+3≤1.13.如图(1),在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图(2).这个拼成的长方形的长为30,宽为20.则图(2)中Ⅱ部分的面积是100.【分析】根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a﹣b=20,进而得出AB,BC的长,即可得出答案.解:根据题意得出:,解得:,故图(2)中Ⅱ部分的面积是:AB•BC=5×20=100,故答案为:100.14.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=﹣2.【分析】根据二元一次方程组的解的定义得到x=5满足方程2x﹣y=12,于是把x=5代入2x﹣y=12得到2×5﹣y=12,可解出y的值.解:把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2.∴★为﹣2.故答案为:﹣2.15.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是x>49.【分析】表示出第一次的输出结果,再由第三次输出结果可得出不等式,解不等式求出即可.解:第一次的结果为:2x﹣10,没有输出,则2x﹣10>88,解得:x>49.故x的取值范围是x>49.故答案为:x>49三、解答题(本大题共8个小题,满分55分.要求写出必要的规范的解答步骤.)16.解方程组.【分析】方程组利用代入消元法求出解即可.解:,把①代入②得:8﹣y+5y=16,解得:y=2,把y=2代入①得:x=2,则方程组的解为.17.定义新运算为:对于任意实数a、b都有a⊕b=(a﹣b)b﹣1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1﹣2)×2﹣1=﹣3.(1)求(﹣3)⊕4的值;(2)若x⊕2的值小于5,求x的取值范围,并在如图所示的数轴上表示出来.【分析】(1)根据新定义计算;(2)由新定义得到(x﹣2)×2﹣1<5,然后解一元一次不等式得到x的取值范围,再利用数轴表示解集.解:(1)根据题意:(﹣3)⊕4=(﹣3﹣4)×4﹣1=﹣7×4﹣1=﹣29;(2)∵a⊕b=(a﹣b)b﹣1,∴x⊕2=(x﹣2)×2﹣1=2x﹣4﹣1=2x﹣5,∴2x﹣5<5,解得:x<5,用数轴表示为:18.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【分析】首先根据方程组可得,再解不等式组,确定出整数解即可.解:①+②得:3x+y=3m+4,②﹣①得:x+5y=m+4,∵不等式组,∴,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.19.张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.【分析】此题的关键是设出未知数,求出未知数后就可依题意列出方程,进而求出上次所买书籍的价格.解:设李明上次购买书籍的原价和是x元,由题意得:0.8x+20=x﹣12,解得:x=160.答:李明上次购买书籍的原价和是160元.20.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)方程5x=m+1的解为:x=,∵关于x的一元一次方程5x=m+1是差解方程,∴m+1﹣5=,解得:m=.故m的值为.21.(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)【分析】选择乙同学的解题思路,①+②得出5x+5y=7k+4,求出x+y==2,即可求出答案.解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.22.宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(m3/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20m3,质量一共是10.5吨,求A、B 两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?【分析】(1)等量关系式为:0.8×A型商品件数+2×B型商品件数=20,0.5×A型商品件数+1×B型商品件数=10.5.(2)①付费=车辆总数×600;②付费=10.5×200;③按车付费之所以收费高,是因为一辆车不满.∴由于3辆车是满的,可按车付费,剩下的可按吨付费,三种方案进行比较.解:(1)设A型商品x件,B型商品y件.由题意可得.解之得.答:A型商品5件,B型商品8件.(2)①若按车收费:10.5÷3.5=3(辆),但车辆的容积6×3=18<20,所以3辆汽车不够,需要4辆车.4×600=2400(元).②若按吨收费:200×10.5=2100(元).③先用3辆车运送18m3,剩余1件B型产品,付费3×600=1800(元).再运送1件B型产品,付费200×1=200(元).共需付1800+200=2000(元).∵2400>2100>2000∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元.23.某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.。
2019-2020学年洛阳市五校联考七年级下学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1. 从数据−12,−6,1.2,π,−√2,0.010010001…中任取一个数,则该数为无理数的概率为( ) A. 16 B. 13 C. 12 D. 23 2. 在平面直角坐标系中,点(−2,−2m +3)在第三象限,则m 的取值范围是( )A. m <32B. m >32C. m <−32D. m >−32 3. 如图,△ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,P 为直线AB 上一动点,连接PC ,则线段PC 的最小值是( )A. 4B. 4.5C. 4.8D. 54. 如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD =76°,则∠BOM 等于( )A. 38°B. 104°C. 142°D. 144°5. 给出下列说法:①−6是36的平方根;②16的平方根是4;③;④是无理数;⑤一个无理数不是正数就是负数.其中,正确的说法有( ) A. ①③⑤ B. ②④ C. ①③ D. ①6. 下列说法正确的是( )A. 垂直于同一条直线的两直线互相垂直B. 经过一点有且只有一条直线与已知直线平行C. 如果两条直线被第三条直线所截,那么同位角相等D. 从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7. 在√5,173,π,−√49,−3.14,√273中,有理数个数有( )A. 1个B. 2个C. 3个D. 4个8.如图,已知点B、C、E、F在同一直线上,且△ABC≌△DEF,则以下错误的是()A. AB=DFB. AB//DEC. ∠A=∠DD. BE=CF9.下列关于相似的命题中,①等边三角形都相似;②直角三角形都相似;③等腰直角三角形都相似;④矩形都相似,其中真命题有()A. ①②B. ①③C. ①③④D. ①②③④10.在直角坐标系中,O为坐标原点,已知点A(1,2),在坐标轴上确定点P,使得△AOP为等腰三角形,则符合条件的点P的个数共有()A. 5个B. 6个C. 7个D. 8个二、填空题(本大题共5小题,共15.0分)11.若a的算术平方根是3,b是16的算术平方根,则a+b=.12.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和______ 等.13.如图,一次函数y=2x+2与x轴、y轴分别交于A、B两点,以AB(k≠0)经过点为一边在第二象限作正方形ABCD,反比例函数y=kxD.将正方形沿x轴正方向平移a个单位后,点C恰好落在反比例函数上,则a的值是______.14.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在D′、C′的位置处,若∠1=56°,则∠DEF的度数是______.15. 如图,正三角形ABO 的边长为2,O 为坐标原点,点A 在x 轴上,点B 在第二象限,△ABO 沿x 轴正方向做无滑动的翻滚,经一次翻滚后得△A 1B 1O ,则翻滚三次后点B 的对应点的坐标是______,翻滚90次后AB 的中点M 经过的路径长为______.三、计算题(本大题共1小题,共10.0分)16. 计算(1)2√12−6√13+3√48; (2)(−√5)2+(√3−√22)0−(12)−2.四、解答题(本大题共7小题,共65.0分)17. 解方程:(1)3(x −1)2−108=0;(2)x 3+1=1927.18.下面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图1,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:19.如图,∠B+∠BDE=180°,∠EDC=∠ECD.CD平分∠ACB吗?请说明理由.20.如图.在平面直坐标系xOy中,已知P(1,1).过点P分别向x轴和y轴作垂线,垂足分别为A,B.(1)点Q在直线AP上且与点P的距离为2,则点Q的坐标为______;(2)平移三角形ABP,若顶点P平移后的对应点为P′(4,3),画出平移后的三角形A′B′P′.21.如图,∠1+∠2=180°,∠B=∠DEF,∠BAC=55°,求∠DEC的度数.22.如图,已知△ABC的三个顶点及点O、点C1都在方格纸的格点上.(1)将△ABC平移后得到△A1B1C1,点C1是点C的对应点,请在图中补全△A1B1C1;(2)画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)上述△A1B1C1与△A2B2C2是否关于某点成中心对称?如果是,请写出该对称中心;如果不是,请说明理由.23.如图,已知AB//CD,试说明:∠CDE=∠B+∠E.(提示:过D作DF//BE交AB于点F)【答案与解析】1.答案:C解析:解:∵数据−12,−6,1.2,π,−√2,0.010010001…中,无理数是:π,−√2,0.010010001…,∴该数为无理数的概率为:36=12.故选:C.直接利用无理数的定义结合概率公式得出答案.此题主要考查了概率公式以及无理数的定义,正确掌握概率公式是解题关键.2.答案:B解析:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得−2m+3<0,求不等式的解即可.解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即−2m+3<0,解得m>32.故选B.3.答案:C解析:解:在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,∵当PC⊥AB时,PC的值最小,此时:12AB﹒PC=12AC﹒BC,∴PC=245.故选:C.当PC⊥AB时,PC的值最小,利用面积法求解即可.本题考查勾股定理、垂线段最短等知识,解题的关键是学会理由面积法求高,属于中考常考题型.4.答案:C解析:解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°.故选C.根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.5.答案:A解析:根据平方根的求法,立方根的求法,无理数的定义和分类进行解答即可.解:−6是36的平方根,∴①正确;16的平方根是±4,∴②错误;,∴③正确;=3是有理数,∴④错误;一个无理数不是正数就是负数,∴⑤正确;正确的有①③⑤.故选A.6.答案:D解析:解:A、同一平面内,垂直于同一条直线的两直线应是平行不是垂直,故该选项错误;B、根据平行线的性质可知经过直线外一点有且只有一条直线与已知直线平行,该选项错误;C、如果两条平行的直线被第三条直线所截,那么同位角才相等,故该选项错误;D、从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,这一说法是正确的,故选:D.根据平行线的判定以及平行线的性质以及点到直线的距离定义逐项分析即可.本题考查了平行线的性质和判定以及点到直线的距离定义,属于基础性题目.7.答案:D解析:解:∵−√49=−7,√273=3,∴在√5,173,π,−√49,−3.14,√273中,有理数个数有173,−√49,−3.14,√273,一共4个. 故选:D .直接利用有理数的定义分析得出答案.此题主要考查了实数,正确把握相关定义是解题关键.8.答案:A解析:试题分析:根据全等三角形对应边相等,对应角相等以及平行线的判定对各选项分析判断后利用排除法求解.A 、∵△ABC≌△DEF ,∴AB =DE ,而DE ≠DF ,∴AB =DF ,故本选项正确;B 、∵△ABC≌△DEF ,∴∠B =∠DEF ,∴AB//DE ,故本选项错误;C 、∵△ABC≌△DEF ,∴∠A =∠D ,故本选项错误;D 、∵△ABC≌△DEF ,∴BC =EF ,∴BC −EC =EF −EC ,即BE =CF ,故本选项错误.故选 A .9.答案:B解析:解:①等边三角形都相似,正确;②直角三角形不一定相似,错误;③等腰直角三角形都相似,正确;④矩形不一定相似,错误;故选:B.判断两个多边形是否相似,需要看对应角是否相等,对应边的比是否相等.矩形、三角形、都属于形状不唯一确定的图形,即对应角、对应边的比不一定相等,故不一定相似,而两个等边三角形和等腰直角三角形,对应角都是相等,对应边的比也都相等,故一定相似.本题考查相似多边形的识别.判定两个图形相似的依据是:对应边的比相等,对应角相等.两个条件必须同时具备.10.答案:D解析:解:①以A为圆心,以OA为半径作圆,此时交坐标轴于两个点(O除外);②以O为圆心,以OA为半径作圆,此时交坐标轴于四个点;③作线段AO的垂直平分线,此时交坐标轴于两个点;共2+4+2=8.故选:D.根据等腰三角形的判定得出可能OA为底,可能OA为腰两种情况,依此即可得出答案.本题考查了等腰三角形的判定的应用,注意:有两边相等的三角形是等腰三角形,注意要进行分类讨论.11.答案:13解析:本题考查算术平方根的概念。
2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.32.(3分)下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查3.(3分)下列计算正确的是()A .=±4B .C .D .4.(3分)如图,关于x的不等式x ≥的解集表示在数轴上,则a的值为()A.﹣1B.2C.1D.35.(3分)解方程组①,②,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法6.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB7.(3分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为()A.(1,﹣3)B.(﹣5,3)C.(1,﹣1)D.(﹣5,﹣1)8.(3分)如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm29.(3分)关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<1 10.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°二.填空题(每小题3分,共15分)11.(3分)一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是.12.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成组.13.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE 射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=.14.(3分)已知方程组的解是,则方程组的解是.15.(3分)在平面直角坐标系中,A(﹣2,0),B(﹣1,2),C(1,0),连接AB,点D 为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为.三.解答题(本大题共8小题,共75分)16.(8分)计算:(1)++|1﹣|+2;(2)++|1﹣|.17.(8分)解不等式组,把解集表示在数轴上,并求出不等式组的整数解.18.(8分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.19.(10分)如图,点A、B、C的坐标分别为(﹣1,1)(3,﹣3)(1.﹣2)三角形A1B1C1是由三角形ABC向上平移2个单位长度,再向右平移2个单位长度后得到的,其中点A1、B1、C1分别是点A、B、C的对应点.(1)画出三角形A1B1C1,并写出点A1、B1、C1的坐标:(2)连接AA1和CC1,若x轴上有一点P(x,0),使得三角形P A1C1的面积等于四边形ACC1A1的面积,求x的值.20.(10分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.21.(10分)对于不等式:a x>a y(a>0且a≠1),当a>1时,x>y;当0<a<1时,x<y,请根据以上信息,解答以下问题:(1)解关于x的不等式:25x﹣1>23x+1;(2)若关于x的不等式:a x﹣k<a5x﹣2(a>0且a≠1),在﹣2≤x≤﹣1上存在x的值使其成立,求k的取值范围.22.(11分)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.(1)如图1,点E在线段BC上,连接AE,∠AED=∠A+∠D.①求证AB∥CD;②过点A作AM∥ED交直线BC于点M,请猜想∠BAM与∠CDE的数量关系,并加以证明;(2)如图2,点E在BC的延长线上,∠AED=∠A﹣∠D.若M平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.23.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.2019-2020学年河南省洛阳五十六中七年级(下)第二次月考数学试卷(6月份)参考答案与试题解析一.选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.3【分析】直接利用点的坐标性质得出答案【解答】解:点P(﹣2,﹣3)到x轴的距离是:3.故选:D.【点评】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.2.(3分)下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【解答】解:A、对某飞机上旅客随身携带易燃易爆危险物品情况的调查适合采用全面调查方式;B、对我国首艘国产“002型”航母各零部件质量情况的调查适合采用全面调查方式;C、对渝北区某中学初2019级1班数学期末成绩情况的调查适合采用全面调查方式;D、对全国公民知晓“社会主义核心价值观”内涵情况的调查适合采用抽样调查方式;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)下列计算正确的是()A.=±4B.C.D.【分析】根据二次根式的性质进行逐项分析解答即可.【解答】解:A项,16的算术平方根应为4,故本选项错误,B项,属于同类二次根式相减,应得,故本选项错误,C项,乘方运算后,求49的算术平方根,应为7,故本选项错误,D项,分子分母分别开方后,运算正确,故本选项正确.故选:D.【点评】本题主要考查二次根式的性质、二次根式的运算,关键在于熟悉二次根式的相关运算法则,认真正确的逐项计算.4.(3分)如图,关于x的不等式x≥的解集表示在数轴上,则a的值为()A.﹣1B.2C.1D.3【分析】直接利用已知不等式的解集得出关于a的等式进而得出答案.【解答】解:∵不等式x≥的解集表示在数轴上为:x≥﹣1,故=﹣1,解得:a=1.故选:C.【点评】此题主要考查了在数轴上表示不等式的解集,正确得出关于a的等式是解题关键.5.(3分)解方程组①,②,比较简便的方法是()A.都用代入法B.都用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【分析】根据解二元一次方程组时的基本方法:代入消元法即用其中一个未知数表示另一个未知数,再代入其中一个方程,转化为一元一次方程,进而求解;加减消元法即将其中一个未知数的系数化为相同时,用加减法即可达到消元的目的,转化为一元一次方程,针对具体的方程组,要善于观察,从而选择恰当的方法.【解答】解:①中的第一个方程为y=x﹣2,用代入法比较简便;②中的x的系数相等,用加减法比较简便;故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.(3分)下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C.求证:AB∥CD.证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB ∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点评】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC是解题的关键.7.(3分)在平面直角坐标系中有一点A(﹣2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为()A.(1,﹣3)B.(﹣5,3)C.(1,﹣1)D.(﹣5,﹣1)【分析】根据坐标平移规律即可求出答案.【解答】解:由题意可知:A的横坐标+3,纵坐标﹣2,即可求出平移后的坐标,∴平移后A的坐标为(1,﹣1)故选:C.【点评】本题考查坐标平移规律,解题的关键是根据题意进行坐标变换即可,本题属于基础题型.8.(3分)如图,在长方形ABCD中,放入六个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为()A.44cm2B.36cm2C.96cm2D.84cm2【分析】设小长方形的长为xcm,宽为ycm,观察图形,可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴14×(6+2×2)﹣6×8×2=44(cm2).故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)关于x的不等式组的解集中所有整数之和最大,则a的取值范围是()A.﹣3≤a≤0B.﹣1≤a<1C.﹣3<a≤1D.﹣3≤a<1【分析】先解不等式组,再根据解集中所有整数之和最大,列出不等式组,从而可确定a 的取值范围.【解答】解:关于x的不等式组的解集为<x≤4,∵解集中所有整数之和最大,∴﹣1≤<1,解得﹣3≤a<1.故选:D.【点评】此题考查一元一次不等式组的整数解.先把题目中除未知数外的字母当做常数看待解不等式组,然后再根据题目中对结果的限制的条件得到有关字母取值范围.10.(3分)如图1,∠DEF=20°,将长方形纸片ABCD沿直线EF折叠成图2,再沿折痕为BF折叠成图3,则图3中∠CFE的度数为()A.100°B.120°C.140°D.160°【分析】根据两直线平行,同旁内角互补可得∠CFE=180°﹣∠DEF,然后得出图2中∠CFE度数;再根据两直线平行,内错角相等可得∠BFE=∠DEF,然后求出图2中∠BFC,再根据翻折的性质可得∠CFE+∠BFE=∠BFC,然后代入数据计算即可得解.【解答】解:∵矩形对边AD∥BC,∴CF∥DE,∴图1中,∠CFE=180°﹣∠DEF=180°﹣20°=160°,∵矩形对边AD∥BC,∴∠BFE=∠DEF=20°,∴图2中,∠BFC=160°﹣20°=140°,由翻折的性质得,图3中∠CFE+∠BFE=∠BFC,∴图3中,∠CFE+20°=140°,∴图3中,∠CFE=120°,故选:B.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图,理清翻折前后重叠的角是解题的关键.二.填空题(每小题3分,共15分)11.(3分)一个正数的两个平方根分别为3﹣a和2a+1,则这个正数是49.【分析】根据正数的平方根互为相反数,两平方根相加等于0求出a值,再求出一个平方根,平方就可以得到这个正数.【解答】解:根据题意得3﹣a+2a+1=0,解得:a=﹣4,∴这个正数为(3﹣a)2=72=49,故答案为:49.【点评】本题主要考查了平方根的性质,注意利用正数的两个平方根互为相反数的性质求解.12.(3分)一个样本有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,41.在列频数分布表时,如果取组距为3,那么应分成4组.【分析】求得极差,除以组距即可求得组数.【解答】解:因为这组数据的极差为41﹣31=10,组距为3,所以可分组数为10÷3≈4,故答案为:4.【点评】此题考查了频数分布表,掌握组数的定义是本题的关键,即数据分成的组的个数称为组数.13.(3分)如图,一束光线从点C出发,经过平面镜AB反射后,沿与AF平行的线段DE 射出(此时∠1=∠2),若测得∠DCF=100°,则∠A=50°.【分析】由平行线的性质可得∠1=∠2=∠A,由外角的性质可求解.【解答】解:∵DE∥AF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠2=∠A,∵∠DCF=∠A+∠1=2∠A=100°,∴∠A=50°,故答案为:50°.【点评】本题考查了平行线的性质,掌握平行线的性质是本题的关键.14.(3分)已知方程组的解是,则方程组的解是.【分析】根据二元一次方程组的解确定变形后方程组的解即可.【解答】解:方程组转化为;∴由恒等式意义,得∴x=3,y=9∴方程组的解为故答案为【点评】本题考查了二元一次方程组的解,解题关键是整体和转化思想的运用.15.(3分)在平面直角坐标系中,A(﹣2,0),B(﹣1,2),C(1,0),连接AB,点D 为AB的中点,连接OB交CD于点E,则四边形DAOE的面积为.【分析】构建一次函数求出解得E坐标,根据S四边形DAOE=S△ADC﹣S△EOC,计算即可.或利用面积法解决问题.【解答】解:如图,∵A(﹣2,0),B(﹣1,2),D是AB中点,∴D(﹣,1),∵C(1,0),∴直线CD的解析式为y=﹣x+,直线OB的解析式为y=﹣2x,由,解得,∴E(﹣,),∴S四边形DAOE=S△ADC﹣S△EOC=×3×1﹣×1×=,故答案为.【点评】本题考查坐标与图象的性质、一次函数的应用等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标.三.解答题(本大题共8小题,共75分)16.(8分)计算:(1)++|1﹣|+2;(2)++|1﹣|.【分析】(1)本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)++|1﹣|+2=﹣2+3﹣1++1=+1;(2)++|1﹣|=3﹣2﹣1+=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、二次根式、三次根式等知识点的运算.17.(8分)解不等式组,把解集表示在数轴上,并求出不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,找出其公共解集内x的整数解即可.【解答】解:,由①得,x≥﹣,由②得,x<3,故此不等式组的解集为:﹣≤x<3,在数轴上表示为:此不等式组的整数解为:﹣1,0,1,2.【点评】本题考查的是解一元一次不等式组、在数轴上表示不等式组的解集及一元一次不等式组的整数解,熟知以上知识是解答此题的关键.18.(8分)若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.【分析】(1)根据题意列不含m、n的方程组求解即可;(2)将(1)求得的方程组的解代入原方程组中含m、n的方程中求得m、n的值即可.【解答】解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.【点评】本题考查了二元一次方程组的解,解决本题的关键是根据题意重新联立方程组.19.(10分)如图,点A、B、C的坐标分别为(﹣1,1)(3,﹣3)(1.﹣2)三角形A1B1C1是由三角形ABC向上平移2个单位长度,再向右平移2个单位长度后得到的,其中点A1、B1、C1分别是点A、B、C的对应点.(1)画出三角形A1B1C1,并写出点A1、B1、C1的坐标:(2)连接AA1和CC1,若x轴上有一点P(x,0),使得三角形P A1C1的面积等于四边形ACC1A1的面积,求x的值.【分析】(1)利用点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(2)先用一个矩形的面积分别减去4个三角形的面积得到四边形ACC1A1的面积,再利用三角形面积公式得到•3•||3﹣x|=10,然后解绝对值方程可得到x的值.【解答】解:(1)如图,△A1B1C1为所作,点A1、B1、C1的坐标分别为(1,3),(﹣1,﹣1),(3,0);(2)四边形ACC1A1的面积=4×5﹣×2×2﹣×2×3﹣×2×2﹣×2×3=10,•3•||3﹣x|=10,所以x=或﹣.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.(10分)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【解答】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“最想去景点B“的学生人数为280人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.21.(10分)对于不等式:a x>a y(a>0且a≠1),当a>1时,x>y;当0<a<1时,x<y,请根据以上信息,解答以下问题:(1)解关于x的不等式:25x﹣1>23x+1;(2)若关于x的不等式:a x﹣k<a5x﹣2(a>0且a≠1),在﹣2≤x≤﹣1上存在x的值使其成立,求k的取值范围.【分析】(1)转化为一元一次不等式,解不等式即可求解.(2)分两种情形,分别求解即可解决问题.【解答】解:(1)∵25x﹣1>23x+1,∴5x﹣1>3x+1,∴2x>2,解得x>1;(2)当a>1时,∴x﹣k<5x﹣2,∴x>,由题意:<﹣1,解得k>6.当0<a<1时,∴x﹣k>5x﹣2,∴x<,由题意:﹣2<,解得k<10.【点评】本题考查了解一元一次不等式,解题的关键是理解题意,灵活运用所学知识解决问题.22.(11分)已知点D在∠ABC内,E为射线BC上一点,连接DE,CD.(1)如图1,点E在线段BC上,连接AE,∠AED=∠A+∠D.①求证AB∥CD;②过点A作AM∥ED交直线BC于点M,请猜想∠BAM与∠CDE的数量关系,并加以证明;(2)如图2,点E在BC的延长线上,∠AED=∠A﹣∠D.若M平面内一动点,MA∥ED,请直接写出∠MAB与∠CDE的数量关系.【分析】(1)①过E作EF∥AB,则∠BAE=∠AEF,∠D=∠AED﹣∠BAE,∠DEF=∠AED﹣∠AEF,即可得到∠D=∠DEF,进而得出EF∥CD,即可得到AB∥CD;②如图1,根据平行线的性质即可得到结论;(2)如图2,过E作EF∥AB,则∠BAE=∠AEF,根据平行线的性质即可得到结论.【解答】解:(1)①如图1,过E作EF∥AB,则∠BAE=∠AEF,∵∠AED=∠BAE+∠D,∴∠D=∠AED﹣∠BAE,又∵∠DEF=∠AED﹣∠AEF,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;②如图1,∵AM∥DE,∴∠MAE=∠AED,∵∠AED=∠BAE+∠D,∠MAE=∠BAE+∠BAM,∴∠CDE=∠BAM;(2)如图2,过E作EF∥AB,则∠BAE=∠AEF,延长MA交BC于G,∵∠AED=∠BAE﹣∠D,∴∠D=∠BAE﹣∠AED,又∵∠DEF=∠AEF﹣∠AED,∴∠D=∠DEF,∴CD∥EF,∴AB∥CD,∵MA∥ED,∴∠DEC=∠MGB,∵AB∥CD,∴∠B=∠DCE,∴∠D=∠BAG,又∵∠BAG+∠MAB=180°,∴∠CDE+∠MAB=180°,当点M′在射线AG时,∠BAM′=∠CDE,故MAB与∠CDE的数量关系是相等或互补.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.(10分)已知某水果行租赁甲、乙两种货车同时装运香蕉和荔枝,调查了两种车满载时的装运能力,数据如表所示.甲车(辆)乙车(辆)荔枝共计(吨)香蕉共计(吨)1163241610(1)请分析表中数据,分别求出甲、乙货车每辆可以装运荔枝和香蕉各多少吨;(2)现计划将荔枝30吨,香蕉13吨运往外地,若租用甲、乙两种货车共10辆,求安排甲、乙两种货车有几种方案.【分析】(1)先设甲货车每辆可以装运荔枝x吨和香蕉y吨,则由第一组数据可知乙货车每辆可以装运荔枝(6﹣x)吨和香蕉(3﹣y)吨,根据第二组数据可得方程组,求得未知数的值,再将第三组和第四组数据分别进行检验即可;(2)根据两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨,分别列出不等式,然后组成不等式组进行求解.【解答】解:(1)设甲货车每辆可以装运荔枝x吨和香蕉y吨,则由第一组数据可知乙货车每辆可以装运荔枝(6﹣x)吨和香蕉(3﹣y)吨,根据第二组数据可得,,解得,答:甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝和香蕉各2吨.(2)设安排甲种货车x辆,则安排乙种货车(10﹣x)辆,依题意得:,解这个不等式组得,∴5≤x≤7,∵x是整数,∴x可取5、6、7,∴安排甲、乙两种货车有3种方案:①甲种货车5辆,乙种货车5辆;②甲种货车6辆,乙种货车4辆;③甲种货车7辆,乙种货车3辆.【点评】本题主要考查二元一次方程组以及一元一次不等式组在现实生活中的应用,运用数学模型进行解题,使问题变得简单.注意本题的不等关系为:两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨.21 / 21。