中南大学2011年上学期微积分IIA考试试卷
- 格式:pdf
- 大小:96.28 KB
- 文档页数:2
北 京 交 通 大 学2011-2012学年第二学期《微积分》期中考试试卷考试方式: 闭卷 任课教师:学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共七道大题,如有不对,请与监考老师调换试卷! 一、单项选择题(每小题3分,共15分)1. 设函数()21,0,0,y x f x y ⎧<<=⎨⎩其它,则(),f x y 在()0,0点 B 。
(A )连续,且可偏导。
(B )沿任何方向的方向导数都存在。
(C )可微,且()0,00.df =(D )(),x f x y 和(),y f x y 在()0,0点连续。
2. 设有三元方程ln 1.xyxy z y e -+=由多元隐函数存在定理,在()0,1,1的某邻域内,该方程 A 。
(A )可以确定两个具有连续偏导数的隐函数(),x x y z =和(),y y x z =。
(B )可以确定两个具有连续偏导数的隐函数(),x x y z =和(),.z z x y = (C) 可以确定两个具有连续偏导数的隐函数(),y y x z =和(),z z x y =。
(D )只能确定一个具有连续偏导数的隐函数(),.z z x y = 3.设函数()f u 具有二阶连续导数,且()()'0,00,f u f>=则函数()()ln z f x f y =在点()0,0处取得极大值的一个充分条件是 D 。
(A )()()"01,00.f f << (B )()()"01,00.f f >> (C )()()"01,00.f f <> (D )()()"01,00.f f ><4.单位圆域221x y +≤被直线y x =±划分为四个区域()1,2,3,4,k D k =1D 是完全位于y 轴右侧的那个区域,按逆时针依次排列为1234,,,D D D D ,记cos kk D I x ydxdy =⎰⎰,则{}14max k k I ≤≤等于 A 。
湖北汽车工业学院微积分(一)(下)考试卷( 2011-2012-2)一、(本题满分21分,每小题3分)填空题: 1.='⎰]sin [20x tdt 2sin 2x x .2.过点)3,2,1(-且与平面0144=-++z y x 平行的平面方程为 044=+++z y x .3.设yx z =,则 =dz xdy x dx yxy y ln 1+- .4.⎰⎰+-=Ddxdy y x I )432(,其中D }4),{(22≤+=y x y x ,则=I π16 .5.微分方程)1)(1(22y x y --='的通解为C x y +-=2)1(arcsin .6.平面曲线2x y =与x y =所围成的平面图形绕x 轴旋转一周所得旋转体体积为15/2π . 7.设数项级数∑∞=1n nu收敛且和为s ,则级数∑∞=++11)(n n nu u的和为12u s - .二、(本题满分21分,每小题3分)选择填空题(请将所选答案填入题号前的方括号内): 【B 】1. 设)(x f 在),(+∞-∞内连续,)(x F 是)(x f 在),(+∞-∞内的一个原函数,0≠c ,则dx c x f ba⎰+)(等于)(A )()(c a F c b F ---. )(B )()(c a F c b F +-+.)(C )()(c b F c a F ---. )(D )()(c b F c a F +-+.【C 】2.设)2,1,3(--=a ,)1,2,1(-=b ,则b a ⨯ 等于)(A 3. )(B 7. )(C )7,1,5(. )(D )7,1,5(-. 【A 】3.下列级数中条件收敛的是)(A ∑∞=+-111)1(n nn . )(B ∑∞=+-1211)1(n nn . )(C ∑∞=--11)107()1(n n n . )(D∑∞=-151)1(n nn . 【A 】4. 下列微分方程中是齐次方程的是)(A dx y x ydx xdy 22-+=. )(B x y y x y sin 2=+'. )(C y y x y ln sin ='. )(D x x y y sec tan =-'.【D 】5. 设)(x f 在]1,0[上连续且满足1)()(1-=⎰dt t f x x f ,则⎰1)(dx x f 等于)(A 1 . )(B 2. )(C 1-. )(D 2-.【C 】6. 设x y y x D ≤≤≤+≤0,41:22,则二重积分=⎰⎰σd xyDarctan)(A2163π . )(B 2323π. )(C 2643π. )(D 21283π. 【C 】7. 函数x x f /1)(=的在1=x 点处的幂级数展开式为)(A ∑∞=--0)1()1()(n nnx x f =, 11<<-x . )(B ∑∞=-0)1()(n n x x f =, 20<<x .)(C ∑∞=--0)1()1()(n nnx x f =,20<<x . )(D ∑∞=--1)1()1()(n n n x x f =,20<<x .三、计算下列各题(共3284=⨯分)1. 设函数),(y x z z =由方程z y x z y x ++=++222确定,证明:y x yzx z x z z y -=∂∂-+∂∂-)()(. [证] 方程z y x z y x ++=++222两边对x 求导得xzx z zx ∂∂+=∂∂+122, 解得zx x z 2112--=∂∂,由字符轮换性知z y y z 2112--=∂∂,于是 y x zy x z z x z y y z x z x z z y -=---+---=∂∂-+∂∂-2112)(2112)()()(. 2 .计算dx xx ⎰--11241. [解] 原式dx xx ⎰-=102412. dt ttt t x ⎰⋅=204cos cos sin 2sin πdt t ⎰=204sin 2π83221432ππ=⋅⋅⋅= 3.判别正项级数nx nn n21sin 2∑∞=的敛散性 . [解] nn n n nx n u 2sin 22≤=, 设n n n v 2=,121221lim lim 11<=⋅+=+∞→+∞→n n v v n n n nn n ,于是级数∑∞=12n n n 收敛.从而原级数∑∞=12sin 2n n nx n 收敛.4.某工厂生产甲种产品x 件乙种产品y 件的总利润函数为22222040),(y xy x y x y x L ---+=设备的最大产出力为15=+y x ,求x 与y 为何值时利润最大? 解:作 )15(222040),(22-++---+=y x y xy x y x y x F λ …令 ⎪⎩⎪⎨⎧=-+==+--==+--=015),,(02220),,(02440),,(y x y x F y x y x F y x y x F x x λλλλλλ得 10=x ,5=y .于是当这两种产品分别生产10件与5件的时候利润最大 . 四.(8分)交换二次积分⎰⎰=101y xy dx e dy I 的次序并计算.【解】dx e dx I x xy⎰⎰=2010 dx xe x y y xy ⎰===1002| ⎰=-=10.21)(dx x xe x五、(8分)求微分方程2212)1(xx xy y x -=+'+的通解.解:方程变形为:2221)1(12xx xx xy y -+=++' 通解为: ])([)()(C dx e x Q e y dxx p dx x p +⎰⎰=⎰- ]1)1([12221222C dx exx x edxx xdxx x+⎰⋅-+⎰=++-⎰]1)1([1)1(221)1(2222C dx exx x ex x d x x d +⎰⋅-+⎰=++++-⎰]1[11]1)1([22)1ln(22)1ln(22C dx xxx C dx e x x x e xx+-+=+⋅-+=⎰⎰++- 11]12)1([1122222+--=+---+=⎰x x C C xx d x 法二:221])1[(x x y x -='+ 通解为 C x y x +--=+221)1(六、(10分)求幂级数n n x n )11(1-∑∞=的收敛域与和函数,并求级数nn n n 211⋅-∑∞=的和.解:收敛域为)1,1(- )(1)1-(1)(1111x S x x n x x x n x S n n nn n n --=-==∑∑∑∞=∞=∞=n x x S n n ∑∞==11)(, x x n x x S n n n n -=='='-∞=∞=∑∑11)()(1111)1ln()(1x x S --=, 于是 )1ln(1)(x xxx S -+-=. 2ln 1)21(-=S ,2ln 1)21(211-==⋅-∑∞=S n n nn .湖北汽车工业学院 微积分A2考试试卷(2013~2014~2 A 卷)一、(本题满分21分,每小题3分)单项选择题(请将所选答案填入答题卡的指定位置):【 B 】1. 设)4,1,1(-=a ,),0,2(λ=b ,且b a ⊥,则=λ)(A 2-. )(B21. )(C 2. )(D 21-. 【 B 】2.极限=+-→→22101limy x xyy x)(A 0. )(B 1. )(C 1-.)(D21. 【 C 】3.设⎰⎰+=xyx dx e dt t f y x F 112)(),(,则xF ∂∂为)(A )(xy f . )(B 22)(x xe xy yf +. )(C )(xy yf . )(D 22)(x xe xy f +.【 D 】4.二次积分dy y x f dx x x ⎰⎰-2010),(=)(Aρρθρθρθπd f d ⎰⎰120)sin ,cos (. )(Bρρθρθρθθπd f d ⎰⎰cos 020)sin ,cos (.)(Cρρθρθρθπd f d ⎰⎰120)sin ,cos (. )(Dρρθρθρθθπd f d ⎰⎰cos 020)sin ,cos (.【 B 】5.已知2)(,3)2(20==⎰dx x f f ,则⎰'2)(dx x f x =)(A 10. )(B 4. )(C 6. )(D 1. 【 C 】6.若级数)0(1≠∑∞=n n nu u收敛,则级数∑∞=11n nu)(A 绝对收敛. )(B 条件收敛. )(C 发散. )(D 无法确定.【 D 】7.函数xx f -=31)(,则)(x f 的麦克劳林展开式为: )(A ∑∞==03)(n n nx x f ,(1<x ).)(B ∑∞==13)(n n nx x f ,(3<x ).)(C ∑∞=+=013)(n n n x x f ,(1<x ). )(D ∑∞=+=013)(n n nx x f ,(3<x ).二、(本题满分21分,每小题3分)填空题:1.过点)3,2,1(M 且与平面05532=++-z y x 平行的平面方程为11532=+-z y x .或0)3(5)2(3)1(2=-+---z y x2.设}42),{(22≤+≤=y x y x D ,则⎰⎰Ddxdy =π2.3.交换二重积分⎰⎰=201),(x dy y x f dx I 的次序,则I =⎰⎰11),(ydx y x f dy .4.⎰∞+141dx x=3/1.5.已知yx e z +=2,则dz =)2(2dy dx e y x ++.6.=+⎰-223)sin 1(dx x 4.7.微分方程yx dx dy 232=的通解是C x y +=32.三、(本题满分8分)设函数),(y x z z =由方程0e =-xyz z所确定,求x z ∂∂与yz∂∂. [解] 令xyz z y x F z-=e ),,(,则yz F x -=', xz F y -=', xy F zz -='e .从而有xy yz F F x z z z x -=''-=∂∂e ,xyxzF F y z zz y -=''-=∂∂e . 四、(本题满分8分)曲线2xy =与直线0,3==y x 围成一个平面图形,①求此平面图形的面积;②求图形绕x 轴旋转一周所生成的旋转体的体积. [解] 90331)1(332===⎰x dx x A )(2 dx x dV 22)(π=,于是 πππ524351035304===⎰x dx x V .五、(本题满分8分) 判定级数∑∞=-13)1(n nnn是否收敛,若收敛,指出是绝对收敛还是条件收敛. [解] 令n n nn n n u 33)1(=-=, 由于131331lim lim11<=+=+∞→+∞→nn n n n n n n u u , 所以正项级数∑∞=13n n n 收敛,从而∑∞=-13)1(n n n n 绝对收敛.六、(本题满分8分)求微分方程xxx y y sin =+'满足初始条件0==πx y 的特解. [解] 此方程为一阶线性微分方程,其中 x x P 1)(=,xx x Q sin )(= 其通解为])([)()(C dx e x Q e x dx x P dx x P +⎰⎰=⎰-]sin [11C dx e xx e dx x dxx +⎰⎰=⎰-)sin (1C xdx x x x +⋅=⎰)sin (1⎰+=C xdx x )cos (1C x x+-=由初值条件0==πx y 可得1-=C ,故特解为)1(cos 1)1cos (1+-=--=x xx x y .七、(本题满分8分)计算二重积分⎰⎰-Dydxdy e ,其中D 为直线x y y x =1=0=,,所围的区域. [解](X 型)⎰⎰⎰⎰--=1102xyDy dy e dx dxdy e ⎰⎰----=-=1111)()(dx e e dy e x xy110121----=--=e e ex.(Y 型)⎰⎰⎰⎰--=yyDy dx dy e dxdy e12)(111⎰⎰-----==dy e yedy ye y yy101121)(----=+-=e ee y.八、(本题满分8分)求函数324),(223+-+-=y xy x x y x f 的极值.[解] 令⎩⎨⎧=-='=+-=',022,02832y x f y x x f yx 得唯一)2,2(,)0,0(,又86-=''x f xx,2=''xy f ,2-=''yy f ,于是 在点)0,0(处,2,2,8-==-=C B A ,则0122)2)(8(22>=---=-B AC 且08<-=A ,所以函数),(y x f 在)0,0(处有极大值3)0,0(=f . 在点)2,2(处,2,2,4-===C B A ,则0122)2(422<-=--⋅=-B AC ,所以)2,2(不是函数),(y x f 的极值点.九、(本题满分10分)求级数∑∞=--11)1(n nn nx 的收敛域与和函数. [解] 易求得1=R ,且当1=x 时级数∑∞=--111)1(n n n 收敛,当1-=x 时级数∑∞=-11n n发散. 因此∑∞=--11)1(n nn nx 的收敛域是]1,1(-. 在区间)1,1(-内,设=)(x S ∑∞=--11)1(n nn nx ,则 x x x n x n x x S n n n n n n n n n n n +=-=-='-='⎥⎦⎤⎢⎣⎡-='∑∑∑∑∞=-∞=--∞=-∞=-11)()1()()1()1()(111111111 所以 )1ln(11)(0x dx x x S x+=+=⎰,11≤<-x .湖北汽车工业学院 微积分考试试卷( 2014—2015—2)一、(本题满分21分,每小题3分)单项选择题(请将所选答案填入题号前的方括号内):[ A ] 1.⎰=xdt t x f 0cos )(,则=')0(f(A )1. (B )0. (C )1-. (D )2π. [ D ] 2.设y x z 2=,则=∂∂22xz(A )xy 2. (B )x . (C )x 2. (D )y 2.[ B ] 3.已知平面区域D 为222≤+y x ,则=+⎰⎰Dd y x σ)2(2 (A )π. (B )π4. (C )π3. (D )0.[ C ] 4.由曲线xe y =与直线1=x 及直线2=x 所围图形的面积为(A )e . (B )1-e . (C )e e -2. (D )2e .[ D ] 5.下列级数中收敛的是(A )∑∞=+1131n n . (B )∑∞=+121n nn. (C )∑∞=11cos n n n . (D )∑∞=+12n n n n.[ A ] 6.设),(y x z z =由方程022=--+z z xy y 所确定,则=∂∂yz (A )122++z x y . (B )12+z y. (C )122++-z x y . (D )12+-z y.[ C ] 7.微分方程0=-'y y 的通解为(A )c x y +=. (B ).xce y 2= (C )x ce y =. (D )xe y =.二、(本题满分21分,每小题3分)填空题(请将正确答案填入题后相应横线上) 1.=-+→→12lim1xy xy y x 0 .2.设向量}1,3,2{-=→a 与向量},1,0{k a -=→垂直,则=m -3 . 3.设xy y z sin =,则=dz dy xy xy xy dx xy y )cos (sin cos 2++. 4.设220(,)x I dx f x y dy =⎰⎰,则交换积分次序后=I 422(,)y I dy f x y dx =⎰⎰ .5.=+⎰-dx xx 1121 0 .6.过点)2,1,3(-且与平面052=+-+z y x 平行的平面方程为012=+-+z y x . 7.幂级数∑∞=⋅-12)1(n nn n n x 的收敛域为 (2,2]-.【温馨提示】请将下面解题过程直接写在各题相应空白处三、(本题满分8分)设)ln 1ln(y x z ++=,求),1(e xz∂∂,),1(e yz ∂∂.解 由y x x z ln 11++=∂∂,yy x y z 1ln 11⋅++=∂∂所以31ln 111),1(=++=∂∂e x z e故(1,)11111ln 3e z ye e e∂=⋅=∂++四、(本题满分8分)计算定积分dx x x ⎰+412解 令12+=x t ,则212-=t x ,tdt dx =原式=tdt t t ⋅⋅-⎰312121dt t )1(21312⎰-==103五、(本题满分8分)计算二重积分⎰⎰+=Ddxdy y x I )(,其中积分区域D 是由直线x y =及曲线2x y =所围成的区域.解 积分区域D 为:10≤≤x ,x y x ≤≤2画图 故⎰⎰+=xxdy y x dx I 2)(1⎰+=1022]21[(dx y xy xx⎰--=10432)2123(dx x x x 10543]1014121[x x x --==203六、(本题满分8分)求函数364),(22+-++=y x y x y x f 的极值. 解 由⎩⎨⎧=-==+=062042y f x f yx 得点)3,2(-,又2==xx f A ,0==xy f B ,2==yy f C ,故在点)3,2(-处,2=A ,0=B ,2=C 042<-=-AC B ,且0>A所以)3,2(-为极小值点,极小值为10)3,2(-=-f七、(本题满分8分)求幂级数∑∞=++01)2(n n x n 的收敛域及和函数. 解 由ρ123lim ||lim 1==++=∞→+∞→n n a a n nn n ,故1ρ1==r , 且幂级数在1±=x 处均发散,故收敛域为)1,1(-设=)(x s ∑∞=++01)2(n n xn =∑∞=+'02)(n n x)(02'=∑∞=+n n x)1(2'-=x x =22)1(2x x x --,1||<x八、(本题满分8分)判断级数∑∞=-1241n nn 的敛散性.解 由=+∞→nn n u u 1lim 1441)1(lim 212-⋅-++∞→n n n n n 141<= 故由正项级数的达朗贝尔判别法知级数收敛- 九、(本题满分10分)求微分方程xxx y y cos =+'的通解. 解 次微分方程为一阶线性微分方程 且x x p 1)(=,xxx Q cos )(= 则])([)()(C dx e x Q ey dx x p dxx p +=⎰⎰⎰-]cos [11C dx e x x e dxx dx x +=⎰⎰⎰-]cos [ln ln C dx e x x e xx +=⎰- ]cos [1C xdx x xx +⋅=⎰)(sin 1C x x+= -湖北汽车工业学院微 积 分 (一)(下) 考 试 卷( 2014-2015-2 )一、(本题满分21分,每小题3分)选择填空题(请将所选答案填入题号前的方括号内): 【B 】1. 平面曲线2x y =与2y x =所围成的平面图形的面积为)(A21. )(B 31. )(C 32. )(D 43.【C 】2.设)1,2,4(=a ,),2,2(k b -=,若a 与b 相互垂直,则k 等于)(A 0. )(B 2-. )(C 3. )(D 4.【A 】3.设0≠a 为常数,则级数∑∞=-02)1(n nn)(A 绝对收敛. )(B 条件收敛. )(C 发散. )(D 敛散性无法判断.【A 】4. 积分⎰-=222sin ππxdx I 等于)(A2π. )(B 4π. )(C 8π. )(D 16π. 【B 】5. 设函数)1(),(-+=y x xy y x f 在点)31,31(处)(A 取极大值 . )(B 取极小值. )(C 不取极值. )(D 在该点不可微.【D 】6. 设yx z =,则dz 等于)(A dy x xdx x dz yy+=ln . )(B ydy x xdx x dz yyln ln +=.)(C dy x dx yxdz y y +=-1. )(D xdy x dx yx dz y y ln 1+=-.【B 】7. 函数xx f -=21)(的马克劳林展开式的第三项为)(A 222x . )(B 322x . )(C 222x -. )(D 322x -.二、(本题满分21分,每小题3分)填空题:1.=+⎰-112)sin (dx x e x x32. 2.过点)1,2,3(且与平面0132=++-z y x 平行的平面方程为0232=-+-z y x . 3.设),(y x z z =是由方程ze z y x +=+22所确定的隐函数,则=dz )(12ydy xdx e z++ . 4.设⎰⎰+=Ddxdy y x f I )(22,其中D 是由曲线122=+y x ,直线x y =及y 轴所围成的第一象限的平面图形,则I 的极坐标系下的二次积分为:=I rdr r f d ⎰⎰1024)(ππθ.5.微分方程dx y dy x 221)1(-=+的满足条件1)0(=y 的特解为2arctan arcsin π+=x y .6.设数项级数∑∞=1n n u 的前n 项的和为1+=n ns n ,则级数的通项=n u )1(1+n n .7. 计算=⎰→2arctan limx tdt x x 21.三、 (8分)计算dx xx ⎰---11221. 解:22arcsin22212110112112112π==---=--⎰⎰⎰---x dx xx dx xdx xx .四、(8分) 设函数)ln 1ln(y x z ++=,求),1(e xz∂∂,),1(e yz ∂∂.解:y x x z ln 11++=∂∂,)ln 1(1y x y x z ++=∂∂, 31),1(=∂∂e xz ,eyz e 31),1(=∂∂. 五、(8分)求微分方程x e x x yy )1(1+=+-'的通解. 解:方程变形为:x e x y x y =+-+'2)1(1 即 x e x y ='+)1(,C e x y x +=+1,通解为:))(1(C e x y x++=..六、(8分)判别级数∑∞=-+++-131322)1()1(n n n n n 的敛散性,并指出是绝对收敛还是条件收敛.解:332)1()1(31+++-=-n n n u n n ,取21n v n =,∑∞=121n n收敛,. +∞<=+++=∞→∞→21332)1(lim lim 32n n n n v u n nn n ,. 于是原级数收敛,且为绝对收敛。
2010 ~2011学年秋季学期高等数学A 课程考试试题(A 卷)答案 2011/01(注意:本试卷共有八道大题,满分100分,考试时间100分钟)一、单项选择题(本题共有4道小题,每小题3分,满分12分),请将合适选项填在括号内.1.设函数()f x 在0x =处连续,下列命题错误的是【 D 】.(A )若0()lim x f x x →存在,则(0)0f = (B )若0()()lim x f x f x x→+-存在,则(0)0f =(C )若0()lim x f x x →存在,则(0)f '存在 (D )若0()()lim x f x f x x →--存在,则(0)f '存在.2. 设20()sin x f x tdt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的【 A 】.(A )高阶无穷小 (B )同阶但非等价无穷小 (C )等价无穷小 (D )低阶无穷小. 3. 设()x f 是[]a a ,-上的连续函数,则()()cos a af x f x xdx ---⎡⎤⎣⎦⎰=【 B 】.(A )1 (B )0 (C )-1 (D )无法计算.4. 下列选项正确的是【 C 】.(A) ⎰-1121dx x = 2 (B) ⎰-1121dx x = - 2(C) dx x ⎰-1121 不存在 (D) dx x ⎰-1121= 0 . 二、填空题(本题共有4道小题,每小题3分,满分12分),请将答案填在横线上. 1. 已知0sin lim3(2)x kxx x →=-+,则k 的值等于 -6 .2.已知cos x x 是()f x 的一个原函数,则cos ()d x f x x x ⋅=⎰____21cos ()2x C x+_______.3. 计算定积分10x =⎰______4π_____________.4. )(x f y =是偶函数,在曲线)(x f y =上点(1,2)处的切线方程为053=+-y x ,则曲线在点(-1,2)处的切线方程为___053=-+y x ________________. 三、计算下列各题(本题共有4道小题,每小题6分,满分24分).1.求极限 30sin lim x x xx→-. 解:33300sin 6lim lim x x x x x x x →→-= 16= 2.求参数方程231x t y t ⎧=+⎨=⎩(t 为参数)所确定的函数()y f x =的导数22,dy d y dx dx . 解:23322dy t t dx t == ; '223()3224t d y dx t t==3. 求不定积分ln d x x x⎰. 解:ln d ln d(ln )x x x x x =⎰⎰2(ln )2x C =+ 4. 已知0()()()d xF x x t f t t =-⎰,求()F x 的二阶导数.解: 0()()()d ()d ()d x x xF x x t f t t xf t t tf t t =-=-⎰⎰⎰()[()d ()d ]()d ()()()d x x x xF x x f t t tf t t f t t xf x xf x f t t ''=-=+-=⎰⎰⎰⎰()(()d )()xF x f t t f x '''==⎰四、(本题满分10分)求函数xn e n x x x y -⎪⎪⎭⎫ ⎝⎛++++=!!212 的极值 (其中n 为正奇数).解:x n xn e n x x x en x x x y ---⎪⎪⎭⎫ ⎝⎛++++-⎪⎪⎭⎫ ⎝⎛-++++='!!21)!1(!21212 xn e n x --=!, 驻点为0x =,由于n 为正奇数,当0x <时,0<nx ,故,0>'y 故y 单调上升 ;当0x >时,0>n x ,故,0<'y 故y 单调递减 ;因此0x =为函数的极大值点,且极大值为(0)1y =.五、(本题满分10分)设()f x 在[0,1]上连续,且()1f x <,证明02()d 1xx f t t -=⎰在[0,1]上只有一个解. 证明:(1)存在性()2()d 1xF x x f t t =--⎰(0)1,F =-1(1)1()1()0F f x dx f ξ=-=->⎰函数()f x 在[0,1]上连续,根据介值定理,则存在(0,1)ξ∈, 使得()0F ξ=.(2)唯一性()2()0F x f x '=->,函数()F x 在[0,1]上单调增加,从而()F x 在[0,1]有唯一的根.六、(本题满分10分)求经过三点123(1,1,1),(2,0,1),(1,1,0)P P P --的平面方程. 解:法一:12(1,1,0),PP =- 13(2,2,1)PP =--- 取1213110(1,1,4),221ijkn PP PP =⨯==-=----平面方程为(1)(1)4(1)0,x y z -+---=整理得420.x y z +-+=法二:所求平面的方程为1111100221x y z ----=--- 整理得420.x y z +-+=七、(本题满分10分) 设函数()f x 在[]0,1上可微,且满足()()-=⎰12012d 0,f x f x x 证明在()0,1内至少存在一点ξ,使'=-()()f f ξξξ.证明: 作辅助函数 )()(x xf x =ϕ,根据积分中值定理,由-=⎰120(1)2()d 0f x f x x 得到 -⋅=1(1)2()02f c f c即()()1f c f c =显然,)(x ϕ在[,1]c 上连续,在(,1)c 内可导,且()(1)c ϕϕ=,可见,)(x ϕ满足罗尔定理, 所以,在(),1(0,1)c ⊂内至少有一点ξ,使0)()()(=ξ'ξ+ξ=ξϕ'f f . 即 '=-()()f f ξξξ.八、(本题满分12分)求曲线22y x x =-与0,1,3y x x ===所围成的平面图形的面积S ,并求该图形绕y 轴旋转一周所得旋转体的体积.解:22221112(02)(2)3S x x dx x x dx =-+=-=⎰⎰. 32224(2)3S x x dx =-=⎰.所以1224233S S S =+=+=. 平面图形1S 绕y 轴旋转一周所得的体积为:21111(16V dy πππ-=+-=⎰.平面图形2S 绕y 轴旋转一周所得的体积为:232204333(16V dy πππ=⋅⋅-+=⎰. 旋转体的体积为121143966V V V πππ=+=+=. 或222111112()2(2)6V xf x dx x x x dx πππ==-=⎰⎰. 332222432()2(2)6V xf x dx x x x dx πππ==-=⎰⎰.旋转体的体积为121143966V V V πππ=+=+=.。
《微积分A 》期末试卷(A 卷)班级 学号 姓名 成绩一、求解下列各题(每小题7分,共35分) 1设,1arctan 122---=x x x x y 求.y '2 求不定积分.)ln cos 1sin (2dx x x xx⎰++ 3求极限.)(tanlim ln 110x x x ++→ 4 计算定积分,)(202322⎰-=a x a dxI 其中.0>a 5 求微分方程.142+='-''x y y 的通解. 二、完成下列各题(每小题7分,共28分)1 设当0→x 时,c bx ax e x---2是比2x 高阶的无穷小,求c b a ,,的值. 2求函数)4()(3-=x x x f 在),(+∞-∞内的单调区间和极值.3 设)(x y y =是由方程组⎪⎩⎪⎨⎧=--+=⎰01cos sin )cos(20t t y du t u x t所确定的隐函数,求.dx dy 4 求证:.sin sin42222⎰⎰ππππ=dx xxdx xx.三、(8分)设)(x y 在),0[+∞内单调递增且可导,又知对任意的,0>x 曲线)(x y y =,上点)1,0(到点),(y x 之间的弧长为,12-=y s 试导出函数)(x y y =所满足的微分方程及初始条件,并求)(x y 的表达式. 四、(8分)过点)0,1(-作曲线x y =的切线,记此切线与曲线x y =、x 轴所围成的图形为D ,(1) 求图形D 的面积;(2) 求D 绕x 轴旋转一周所得旋转体的体积.五、(7分)求证:方程010cos 042=++⎰⎰-xt xdt e dt t 有并且只有一个实根.六、(8分)一圆柱形桶内有500升含盐溶液,其浓度为每升溶液中含盐10克。
现用浓度为每升含盐20克的盐溶液以每分钟5升的速率由A 管注入桶内(假设瞬间即可均匀混合),同时桶内的混合溶液也以每分钟5升的速率从B 管流出。
中南大学微积分试题1.已知Iirn------------- - --- -- -- =OO,贝Uα= _______ ,b= ________rτθ(χ-f1)(χ-1)2∙已知理1≡S=2'则”一计算题:1.. —6x+8 1. Iim- ----------- ; λ→4x~-5x+42. Iim(Vx 23+%-JX2-X);x→+<oQ r Vx —1 OIim-J=——; XT1NX-IA../+2+...+〃n 4. Iim( ---------------------- ); isn+2 2N1 5. IimV --------------------- o NTRM1+2+...+n三.利用极限准则证明以下极限存在,并求极限。
11.z 111、 1.Iim/?(— ............+- ------------- +...+-Z ----------- ); “T8〃〜+乃〃+21 n+nπ2.设阳二10,2际,(〃=1,2,…)。
试证数列{5}的极限存在, 并求此极限。
四.求下列极限:1 1.2sinx-sin2x1.Iim ------------- τ ------- ; XfO X4. Iim[cos7n+1-cosV∏];Π→+<X>5. Iim sin(π∖∣n 2+1)o rt→+cc2Iim Sm""(一,〃为整数); Xf"sin/u3Iim eOSHarCC 。
女)(〃为奇数);x→0 X7.Iim(sinx)unv;8.Iim(sin—÷cos—18xx2.6函数的连续性一.研究下列函数的连续性,并指出间断点类型: 1/(x)=Sgnx;2.g(x)=尤-国;XX+1ZX-I Xλ214・y=Cos—o X二适当选取明使函数AX)=[心]<°连续。
a+X x≥0三.证明方程工3+〃/+4=0(〃>0)有且只有一个实根。
2011-2012学年第一学期一元微积分(A 上)试卷参考答案踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负教师 班号 专业班级 学号 姓名 成绩 题号 一 二 三 四 五 六 得分一、填空题(每题4分,共40分)(1)函数y =的定义域为 。
(2)1123lim 23n nn n n ++→∞+=+ 。
(3)20arcsin(1cos )limsin()x x x →−= 。
(4)()ln(d x x += dx 。
(5)已知()f x 在处可导,0x =(0)0f =,(0)1f ′=,则220(1)lim x x f e x→−= 。
(6)函数()cos f x x x =在0x =处的3阶带拉格朗日型余项的泰勒公式为 。
(7)当时,0x →sin x x −是x 的阶无穷小,则k k = 。
(8)函数1sin 2y x =+x 在区间[0,]π上的最大值为 。
(9)曲线2x y e−=的拐点横坐标为 。
(10)抛物线243y x x =−+在其顶点处的曲率为 。
二、解下列各题(每题6分,共30分)(1)利用函数极限定义证明2limx =。
(2)计算数列极限lim n →∞⎛⎞"。
(3)计算函数极限()10lim sin cos xx x x →+。
(4)已知函数10()10x e x f x x x ⎧−≠⎪=⎨⎪=⎩,求()f x ′并讨论()f x ′在0x =处的连续性。
(5)证明对任意,0x >1x x ααα−≤−,其中01α<<。
三、(7分)设函数由方程()y y x =1yy xe =+确定,求dy dx 与22d ydx 。
四、(8分)设函数()f x 在[,上连续,在内可导,]a b (,)a b ()f a a >,()f b b <。
(1) 证明存在(,)a b ξ∈,使得()f ξξ=。
(2) 证明存在(,)a b η∈使得()1f η′<。
一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.1lim 2xx -→=_________。
(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。
(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。
0()()()lim ()x f a x f a A f a x -∆→+∆-'=∆0()(0)()lim (0)x f tx f B tf x→-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()()()lim ()x f x f a D f a a x →-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。
(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。
()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dxφ=⎰⎰ 二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。
2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ= 。
3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。
4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。
中南大学第二学期期末考试试卷考试科目高等数学考试时间:100分钟 试卷总分100分一、填空题(每小题10分,总计60分)1、螺旋线cos sin x a y a z b θθθ=⎧⎪=⎨⎪=⎩在xoy 上的投影曲线方程为 .222()x y a += 2、设,x y z f xy g y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中,f g 均可微,则z x ∂=∂ .1221()y yf f g y x '''+- 3、设()12sin cos x y e c x c x =+为某二阶常系数线性齐次微分方程的通解,则该方程为 .(220)y y y '''-+= 4、二次积分10x y dx dy y =⎰ .(1sin1)- 5、设L 为逆时针取向的圆周222x y R +=,则22L ydx xdy x y -=+⎰Ñ .(2)π- 二、设平面π是过直线3220260x y x y z -+=⎧⎨--+=⎩的平面, 且点()1,2,1M 到平面π的距离为 1,求平面π的方程. 解:(22100;43160)x y z y z ++-=+-=三、设函数()()222222221sin ,0,0,0x y x y x y x y f x y x y ⎧++++≠⎪+=⎨⎪+=⎩(1)问(),f x y 在原点()0,0处是否连续?(2)问(),f x y 在原点()0,0处的偏导数是否存在?(3)问(),f x y 在原点()0,0处是否可微?解:(1)连续;(2)存在;(3)可微.四、设Ω是由z =及1z =围成的立体, 求221zdv x y Ω++⎰⎰⎰.解:1(ln 2)2π-五、(1)求函数23u x y z =-+在222236x y z ++=条件下的最大值与最小值.(2)求圆锥面222z x y =+被柱面222x y x +=截下有限部分的面积.解:(1)6±;(2).六、计算333x y z I dydz dzdx dxdy r r r ∑=++⎰⎰Ò,其中∑取曲面2222x y z a ++=的外侧. 解:4π七、(1)计算23ydx xzdy yz dz Γ--⎰Ñ,其中Γ为曲面222x y z +=与平面2z =的交线,从z 轴正向看是逆时针方向.(20)π-(2)求方程()3232(3)30x xy dx y x y dy -+-=的通解.解:44226x y x y c +-=八、设()),0u f r r r ==>,其中f 具有二阶连续导数,且函数u 满足方程2222220u u u x y z∂∂∂++=∂∂∂,求函数()f r 求的表达式.解:112c r c -=+。
微积分试题(A卷)一。
填空题(每空2分,共20分)1.已知则对于,总存在δ〉0,使得当时,恒有│ƒ(x)─A│< ε。
2.已知,则a =,b = .3.若当时,α与β是等价无穷小量,则 .4.若f (x)在点x = a处连续,则。
5.的连续区间是。
6.设函数y =ƒ(x)在x0点可导,则______________。
7.曲线y = x2+2x-5上点M处的切线斜率为6,则点M的坐标为.8.。
9.设总收益函数和总成本函数分别为,,则当利润最大时产量是.二. 单项选择题(每小题2分,共18分)1.若数列{x n}在a的ε 邻域(a-ε,a+ε)内有无穷多个点,则()。
(A) 数列{x n}必有极限,但不一定等于a(B) 数列{x n}极限存在,且一定等于a(C)数列{x n}的极限不一定存在(D) 数列{x n}的极限一定不存在2.设则为函数的().(A)可去间断点(B)跳跃间断点(C) 无穷型间断点(D) 连续点3.( )。
(A) 1 (B) ∞(C) (D)4.对需求函数,需求价格弹性。
当价格()时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105.假设在点的某邻域内(可以除外)存在,又a是常数,则下列结论正确的是( )。
(A)若或∞,则或∞(B ) 若或∞,则或∞ (C ) 若不存在,则不存在 (D) 以上都不对6. 曲线的拐点个数是( ) 。
(A) 0 (B)1 (C) 2 (D) 37. 曲线( )。
(A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D ) 既有水平渐近线,又有垂直渐近线8. 假设连续,其导函数图形如右图所示,则具有( )(A ) 两个极大值一个极小值 (B ) 两个极小值一个极大值 (C ) 两个极大值两个极小值 (D ) 三个极大值一个极小值9. 若ƒ(x )的导函数是,则ƒ(x )有一个原函数为 ( ) 。
2011高数(2)单元测试答案高等数学(Ⅱ)试题参考答案一、解答下列各题 (本大题共6小题,总计48分) 1、计算d d (1)d x x y y x y z,其中是从点(1,1,1)到点(2,3,4)的直线段。
[解] 教材P200.习题11-2 A 类 2.(2)2、设∑是锥面 上被平面z =3所截下的有限部分曲面。
试计算[解]2222222222:()()1()23xy xyxyD x y D D x y dsx y z z dxdyx y dxdyxy222()229xyD Dx y dxdyd d3、计算22222x d dd dy y z z x xyz,其中为曲面222xy R 与两平面zR,(0)zR R 所围立体表面的外侧.[解] 教材P228.习题11-5 A 类 1.(9) 4、设数量场222ln ux y z ,求向量场grad(u)的散度div(gradu).[解]222222u u u uu u div(gradu)div,,x y zx y z222u x xx y z ,2222222222222222(x y z )x 2x y z x u x (x y z )(x y z )由此,不难得到222222222x z y u y (x y z ),222222222x y z u z (x y z )故222222222u u u 1div(gradu)x y z (x y z )5、讨论级数221(0)1nnn a a a的收敛性.[解] 01a时收敛,1a时发散。
6、设10(),20x f x xx,其以2为周期的傅里叶级数的和函数为()S x ,求(3)S 的值 [解] 由条件,是区间[,]端点,由收敛定理知,傅里叶级数在x处收敛于111[(0)(0)][12]222f f即1()2S ,故1(3)()2S S 。
二、( 本大题10分 ) 求(e sin ())d (e cos )d x x LIyb xy xyax y ,其中,a b 为正常数,L为从点(2,0)A a 沿曲线22yaxx 到点(0,0)O 的弧.[解] 教材P211.习题11-3 B 类 2.三、( 本大题8分 )设对2R内任意分段光滑简单闭曲线C,有2()0Cxy dx y x dy,其中函数()x具有连续导数且(0)0,,求(1,1)2(0,0)()xy dx y x dy的值。