高中数学:向量中的三角形“四心”
- 格式:doc
- 大小:92.00 KB
- 文档页数:3
平面向量“四心”知识点总结与经典习题【强烈推荐】平面向量的“四心”是指三角形的外心、内心、重心和垂心,它们各自具有特殊的性质。
在高中数学中,向量问题经常与“四心”问题结合考查。
因此,熟悉向量的代数运算和几何意义是解决这类问题的关键。
四心知识点总结如下:重心:1.重心是三角形三条中线的交点,也是重心到三角形三个顶点距离之和最小的点。
2.重心坐标为$(\frac{1}{3}(x_A+x_B+x_C),\frac{1}{3}(y_A+y_B+y_C))$。
垂心:1.垂心是三角形三条高线的交点,也是垂足到三角形三边距离之积最大的点。
2.若垂心为$O$,则有$OA\cdot OB=OA\cdot OC=OB\cdot OC$。
外心:1.外心是三角形三条中垂线的交点,也是到三角形三个顶点距离相等的点。
2.若外心为$O$,则有$OA=OB=OC$,或$(OA+OB)\cdot AB=(OB+OC)\cdot BC=(OC+OA)\cdot CA$。
内心:1.内心是三角形三条角平分线的交点,也是到三角形三边距离之和最小的点。
2.若内心为$O$,则有$a\cdot OA+b\cdot OB+c\cdotOC=0$,其中$a,b,c$为三角形三边的长度。
下面是一些经典题:1.在$\triangle ABC$中,$D,E,F$分别为$BC,CA,AB$的中点,$M$为重心,则$\vec{AM}$等于()。
A。
$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})$B。
$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})$C。
$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ D。
$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ 答案:C2.在$\triangle ABC$中,$O$为坐标原点,$P$满足$\vec{OP}=\frac{1}{3}(\vec{OA}+\vec{OB}+\vec{OC})$,则$P$一定在()上。
解题技巧与方法JIETI JIQIAO YU FANGFA 121平面向量与三角形“四心”◎胡建勋刘健( 永吉实验高中132200)平面向量是高中数学的重要工具之一,它不仅可以把几何问题转化为代数问题求解,也可以把代数问题转化为几何问题求解. 它与高中数学的许多模块( 三角函数,平面解析几何,立体几何,数列,不等式等) 都有紧密联系. 借助平面向量研究三角形“四心”问题更会起到意想不到的效果. 本文仅从几个方面加以说明,以餐读者.一、“三角形四心”的向量表示1. 三角形重心的向量表示→ → →G 是△ABC 重心 GA + GB + GC = 0 若 D ,E ,F 分别为→ → → → → →AB ,BC ,CA 中点则CG = 2 GD ( 或AG = 2 GE ,BG = 2GF ) 2. 三角形外心的向量表示 →→ →O 是 △ABC 外 心,==OB OC ( → →→ → →→ → →→OA + OB )·AB = ( OB + OC )·BC = ( OA + OC ) ·AC = 0.3. 三角形内心的向量表示 (→ → )→ →I 是 △ABC 内 心IA ·= IB ·( → → ( →→= IC·= 0.4. 三角形垂心的向量表示H 是 △ABC→→ → → → →垂心 HA ·BC = HB ·AC = HC ·AB→ → → → → →HA·HB = HB·HC = HC·HA .二、“三角形四心”相关问题 1.“三角形四心”的判定解题策略 利用向量运算化简题干中的向量等式,再据“三角形四心”的向量表示判定. 例,(→→)1 点 O 为 △ABC 所在平面内一点OA + OB ·→ ( → →) → ( → →) →AB = OB + OC ·BC = OA + OC ·OB = 0,则 O 是△ABC() .A . 重心B . 外心C . 内心D . 垂心→解析 设 D 为 AB→ →边中点,( OA + OB ) = 2 OD ,由→ →→ → →( OA + OB )·AB = 0,∴ OD·AB = 0,O 在 AB 垂直平分线上,同理 O 应在 BC ,AC 垂直平分线上.∴ O 是△ABC 外心. 应选 B .例 2 点 O 为△ABC 所在平面内一点,且满足→2 +OA BC → 2 = OB → 2 + AC → 2 = OC → 2 +AB →2 ,则 O 是 △ABC的( ) . A . 重心 B . 外心 C . 内心 D . 垂心解析由→2 +→2 = → 2 +→ 2得,OABC OB AC → → → →→ → →→→ ( AC - BC ) ( AC + BC ) + ( OB - OA ) ( OB + OA ) =0, AB( → →) →( → →)AC + BC + AB OB + OA = 0.→ →2 AB·OC = 0,则 O 是△ABC 中 AB 边的高上,同理 O 应在△ABC 中 AC ,BC 边的高上, ∴O 是△ABC 垂心. 应选 D .2.“三角形四心”与动点轨迹解题策略: 探究动点经过特殊点问题,首先据题干给出的向量等式,利用向量运算化简后,结合向量运算的几何意义,判定动点轨迹特征. 例 3 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →( → → ),则 P 点轨在平面内一动点,若OP = OA + λ 迹一定通过△ABC 的() .A . 重心B . 外心C . 内心D . 垂心( → → )解析由若+ →OP = OA + λ→→AP =→→→→分别为→,→同向的单位向λ量,AP 与∠A 平分线所在直线共线, ∴ P 过△ABC 内心,应选 C .例 4 点 O 是△ABC 所在平面内一定点,P 是△ABC 所( → →) ( → →)在平面内一动点,若 OP - OA · AB - AC = 0,则 P 点轨迹一定通过△ABC 的A . 重心B . 外心C . 内心D . 垂心解析→ → → → → →→ →AB - AC = CB ,OP - OA = AP ,又∵ ( OP - OA )·( → →)AB - AC= 0,→ →→ →∴ AP·CB = 0,AP ⊥BC . ∴ P 在过 A 点且垂直于 BC 的垂线上,点 P 轨迹过 △ABC 的垂心应选 D .例 5 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →→→,则 P 点轨迹一定通过△ABC 的() . A . 重心 B . 外心C . 内心 D.垂心→ → →→得:解析由OA = OP + λ+→→,→ →= λ= 0.→ →∴ PA ⊥BC .∴ P 在过 A 点且垂直于 BC 的直线上,( 转下页)数学学习与研究 2016. 9解题技巧与方法122 JIETI JIQIAO YU FANGFA数列{ n2 }和 S n 的新求法◎郑晶晶 ( 永嘉县东瓯街道办事处消防办,浙江温州 325100) 【摘要】介绍数列{ n2}和 S n的新求法.【关键词】数列; 初等数学= 4 + 4 + 4 + 4笔者在文中介绍了数列{ n2}和 S n的新求法.其很好的= 3 + 3 + 3 = 2 + 2展现了数学之美且易懂.= 1.即: T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]一式: n2 = 1 + 3 + 5 + 7 + … + ( 2n - 3) + ( 2n - 1) +[1 + 2 + 3 + 4 + … + ( n - 1) + n]= 2 + 4 + 6 + 8 + … + ( 2n - 2) + 2n - n=[1 + 2 + 3 + 4 + … + ( n - 1) + n]·2 - n.+[1 + 2 + 3 + 4 + … + ( n - 1) + n]得到三式:( n2 + n) /2 = 1 + 2 + 3 + 4 + … + ( n - 1) + n +[1 + 2 + 3 + 4 + … + ( n - 1) + n](在这里我们把等号的右边部分看作数列{ n( n + 1) /2}其+[1 + 2 + 3 + 4 + … + ( n - 1) + n].和 T n.(上共有( n + 1)个[1 + 2 + 3 + 4 + … + ( n - 1) + n]相T n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]+ 加)[1 + 2 + 3 + … + ( n - 1)]所以容易得出T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]·( n + 1) + ( 1 + 2 + 3 + 4) = n·( n + 1) /2·( n + 1)+ ( 1 + 2 + 3) =[n·( n + 1)2]/2.+ ( 1 + 2) 又因为 T n为数列{ n( n + 1) /2}和,+ 1.因为 n( n + 1) /2 = ( n2 + n) /2,二式: n2 = n + n + n + … + n + n.(此处共有 n 个 n 相所以 Tn=[n( n + 1) /2 + S ]/2.加) 所以 T n + S n =[n( n + 1) /2 + S n]/2 + S n.所以所以[n( n + 1) /2 + S n]/2 + S n =[n·( n + 1)2]/2.S n = n + n + n + … + n + n.(此处共有 n 个 n 相加) 最后得出 S n = n( n + 1) ( 2n + 1) /6.= n + n + n + … + n(此处共有 n - 1 个 n - 1 相加)( 接上页)∴ P 在 BC 边高上,应过△ABC 的垂心,应选 D.→例 6 在△ABC 中,动点 M →2 -→2 →满足AC AB = 2 AM·BC,则点 M 一定通过△ABC 的( ) .A.重心B.外心C.内心→2-→2D.垂心→ →→→解析由 AC AB = 2 AM · BC 得: ( AC - AB )→ →→→( AC + AB) = 2 AM·BC→→→→→→设 D 为 BC 中点,AC + AB = 2 AD,2 BC·AD = 2 AM·→ → →BC,BC·MD = 0.M 点应在 BC 的垂直平分线上.应选B.3.“三角形四心”的应用解题策略: 利用向量法解决有关“三角形四心”相关问题,首先确定一组基底,再根据“三角形四心”的向量表示,用向量线性运算,模的运算,向量数量积运算等简化( 经常利用正弦定理和余弦定理) 题干条件.例 7 G 是△ABC 的重心,AB,AC 的边长为 2 和 1,→→) .∠BAC = 60°,则AG·BG等于(A.8 B.-1099C.5 -槡3 D.-5 + 槡39 9→ 1 → →解析AG = ( AB + AC),3→ 1 →→ 1 →→BG = ( BC + BA) = ( AC - 2 AB).3 3→ → 1 →→ 1 →→AG·BG = ( AB + AC) ×( AC - 2 AB)3 31 →2 →→→2)8= ( AC - AB·AC - 2 AB = -.9 9→例 8 O 是外接圆半径为 1 的△ABC 外心,且满足了 3 →→→→OA + 4 OB + 5 OC = 0,则OA·BC =→→→→→→解法 1 →→→OA·BC = OA ( OC - OB) = ,OA ·OC - OA ·→= →= →,OB又∵OA OB OC→→→3 OA +4 OB +5 OC = 0,∴ 9 → 2 →→→= 25 → 2OA + 12 OA·OB + 16 OB OC→→→→→→ 2 →→OA·OB = 0,3 OA + 5 OC = - 4 OB,9 OA + 30 OA·→ 2 = 16 → 2OC + 25 OC OB→ → 3 → → 3∴ OA·OC = -,∴ OA·BC = -.5 5→→解法 2 →→→→由 3 OA + 4 OB + 5 OC = 0,则以 3 OA,4 OB,5 →→OC为边可构成一个边长为3,4,5 的三角形,OA ·BC =→·→cos ∠AOC -→·→cos ∠AOB = cos OA OC OA OB∠AOC - cos∠AOB.∵ cos∠AOB = ,cos∠AOC = -3 →→ 3,∴ OA·BC = -.5 5数学学习与研究2016. 9。
用向量表示三角形的四心由高中数学新教材中的向量知识出发,利用定比分点的向量表达式,可以简捷地导出三角形的重心、内心、垂心、外心这四心的向量表达式.【例】 如图9-5-14,在△ABC 中,F 是AB 上的一点,E 是AC 上的一点,且FB AF =l m ,EC AE =l n (通分总可以使两个异分母分数化为同分母分数),连结CF 、BE 交于点D.求D 点的坐标.解:在平面上任取一点O ,连结O A 、O B 、O C 、O D 、O E 、O F ,由定比分点的向量表达式,得:OF =(OA +l m ·OB )÷(1+l m) =m l OBm OA l +∙+∙ ①=l n l n +∙+1=n l n l +∙+∙ ② 又=λλ+∙+1OC OF =u OEu OB +∙+1 ③(其中DC FD =λ,u DE BD =).整理①、②、③式得λ=1+m n. 所以=n m l l +++n m l m +++n m l n++ ④由④式出发,可得三角形四心的向量表达式:(1)若BE 、CF 是△ABC 两边上的中线,交点G 为重心.由④式可得重心G 的向量表达式:OG =31(OA +OB +OC ).(2)若BE 、CF 是△ABC 两内角的平分线,交点I 是内心. 因为FB AF =a b ,EC AE =a c ,由④式可得内心I 的向量表达式:OI =c b a a ++OA +c b a b ++OB +c b a c++OC .(3)若BE 、CF 是△ABC 两边上的高,交点H 是垂心.EC AE =C a A c cos cos ∙∙=A aCccos cos . 同理FB AF =A a Bbcos cos .由④式可得垂心H 的向量表达式:OH =C c B b A a C a cos cos cos cos +++C c B b A a C b cos cos cos cos +++C c B b A a C ccos cos cos cos ++.(4)若BE 、CF 的交点O ′是△ABC 的外心,即三边中垂线交点,则O ′A=O ′B=O ′C.根据正弦定理:EC AE =CBE C BE EBA ABE ∠∙∠∙sin sin sin sin =)(21sin sin )(21sin sin C BO A B AO C '∠-∙'∠-∙ππ =A A C C cos sin cos sin ∙∙=A C2sin 2sin . 同理FB AF =A B 2sin 2sin .由④式可得外心O ′的向量表达式:OO =C B A A 2sin 2sin 2sin 2sin ++OA +C B A B2sin 2sin 2sin 2sin ++OB +OC C B A C 2sin 2sin 2sin 2sin ++.这四个向量表达式,都由④式推出,都有着各自轮换对称的性质.好记,好用!新教材的优越性,由此可见.。
向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍1.定义:我们把三角形三个内角的角平分线的交点叫做三角形的内心,即三角形内切圆圆心;三角形三条边上的中垂线的交点叫做三角形的外心,即三角形外接圆圆心;三角形三条边上的中线的交点叫做三角形的重心;三角形三条高线的交点叫做三角形的垂心.我们将三角形的“内心”、“外心”、“重心”、“垂心”合称为三角形的“四心”.(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
2.应用:三角形的内心到三角形三边的距离相等;三角形的外心到三角形三个顶点的距离相等;三角形的重心到三角形的顶点的距离是相应中线长的三分之二;三角形的垂心与顶点的连线垂直于该顶点的对边.3.注意点:三角形的“四心”与平面向量知识的结合.二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++0OC OB OA ⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔O 是ABC∆的重心. 证法2:如图OC OB OA ++02=+=OD OA ∴OD AO 2=∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅CA OB OC OA OB OC OB OB OAAC OB ⊥⇔同理BC OA ⊥,AB OC ⊥⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心.证明:bACc AB 、分别为AC AB 、方向上的单位向量, ∴bAC c AB +平分BAC ∠, (λ=∴AO b AC c AB +),令cb a bc++=λ ∴cb a bcAO ++=(b AC c AB +) 化简得0)(=++++AC c AB b OA c b a ∴0=++OC c OB b OA a(4==⇔O 为ABC ∆的外心。
三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。
向量中三角形四心的结论和推导一、引言在平面几何中,一个三角形有四个特殊的点,它们分别是三角形的重心、外心、内心和垂心。
这些点被称为三角形的四心。
在向量中,我们也可以推导出三角形的四心的坐标。
二、定义1. 向量向量是一个有大小和方向的量,通常用箭头表示。
在平面直角坐标系中,一个向量可以表示为(x, y),其中x和y分别是向量在x轴和y轴上的投影长度。
2. 三角形三角形是由三条线段连接而成的图形。
它有三个顶点和三条边。
3. 重心重心是连接三角形每个顶点与对边中点所得线段交于一点的点。
4. 外心外接圆是通过三角形每个顶点并且垂直于对边所得圆。
外接圆圆心就是外心。
5. 内心内切圆是切于三角形每一条边并且内部没有其他点在其内部所得圆。
内切圆圆心就是内心。
6. 垂心垂足分别位于每条高线上,高线即从某个顶点垂直于对边所得线段。
7. 四边形四边形是由四条线段连接而成的图形。
它有四个顶点和四条边。
8. 向量的运算向量的加法:向量相加就是将它们的坐标对应位相加。
向量的减法:向量相减就是将它们的坐标对应位相减。
向量的数量积:两个向量之间的数量积等于这两个向量模长之积与这两个向量夹角余弦值之积。
三、结论1. 重心三角形ABC三个顶点坐标分别为A(x1, y1), B(x2, y2), C(x3, y3)。
则重心G坐标为:G = ((x1 + x2 + x3)/3, (y1 + y2 + y3)/3)2. 外心三角形ABC三个顶点坐标分别为A(x1, y1), B(x2, y2), C(x3, y3)。
则外心O坐标为:OA = OB = OC = R其中R为外接圆半径,有以下公式:R = a/(2sinA) = b/(2sinB) = c/(2sinC)其中a、b、c分别为三角形ABC三条边长度,A、B、C分别为对应角度。
O = ((x1^2+y1^2)(y2-y3)+(x2^2+y2^2)(y3-y1)+(x3^2+y3^2)(y1-y2))/(2(x1(y2-y3)+x2(y3-y1)+x3(y1-y2))), ((x1^2+y1^2)(x3-x2)+(x2^2+y2^2)(x1-x3)+(x3^2+y3^2)(x2-x1))/(2(y1(x3-x2)+y2(x1-x3)+y3(x2-x1)))其中,(x,y)为向量的坐标。
专题02 平面向量解析三角形的“四心”一.“四心”的概念介绍及平面向量表示1. 重心——中线的交点:重心将中线长度分成2:1.⇔=++O 是ABC ∆的重心.2. 垂心——高线的交点:高线与对应边垂直.⇔⋅=⋅=⋅O 为ABC ∆的垂心.3. 内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等. 设a ,b ,c 是三角形的三条边长,O 是ABC ∆的内心.O c b a ⇔=++为ABC ∆的内心.4. 外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.==⇔O 为ABC ∆的外心.二.考点讲解 考点一:三角形的重心例1:在ABC ∆中,已知 AB a =,BC b =,G 为ABC ∆的重心,用向量,a b 表示向量AG =______. 【答案】2133a b 【分析】利用平面向量的基本定理,结合重心性质即可得解.【详解】由重心的性质可知()111333BG BA BC b a =+=-, 所以11213333AG AB BG a b a a b =+=+-=+.故答案为:2133a b 【点睛】本题考查了重心的几何性质和平面向量基本定理,属于基础题.例2:若P 是ABC ∆内部一点,且满足2PA PB CB +=,则ABP ∆与ABC ∆的面积比为_______. 【答案】13【分析】利用向量的加法运算得出PA PB CP +=,取AB 的中点为O ,进而得出点P 为ABC ∆的重心,根据重心的性质即可得出答案.【详解】2PA PB CB PA PB CB BP CP +=⇒+=+= 取AB 的中点为O ,则2PA PB PO += 即2PO CP =,则点P 为ABC ∆的重心根据重心的性质可得,点P 到AB 的距离是点C 到AB 的距离的13则13ABP ABC S S ∆∆= 故答案为:13【点睛】本题主要考查了根据向量关系判断三角形的重心,属于常考题.考点二:三角形的垂心例3:已知点P 是ABC ∆所在平面内一点,且满足()()cos cos AB AC AP R AB BAC Cλλ=+∈,则直线AP 必经过ABC ∆的( ) A .外心 B .内心C .重心D .垂心【答案】D【分析】两边同乘以向量BC ,利用向量的数量积运算可求得0AP BC ⋅=从而得到结论. 【详解】()cos cos AB AC AP R AB B AC C λλ⎛⎫⎪=+∈ ⎪⎝⎭两边同乘以向量BC ,得AP BC ∴⊥(1t ∈即点P 在BC 边的高线上,所以P 的轨迹过△ABC 的垂心, 故选D.【点睛】本题考查平面向量数量积的运算、向量的线性运算性质及其几何意义,属中档题. 考点三:三角形的内心例4:O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,[)0,μ∈+∞,则P 点的轨迹一定经过ABC ∆的( )A .外心B .内心C .重心D .垂心【答案】B 【分析】先根据||ABAB →→、||AC AC →→分别表示向量AB →、AC→方向上的单位向量,确定||||A A B A A C C B →→→→+的方向与BAC ∠的角平分线一致,再由AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭可得到AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,可得答案.【详解】解:||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,∴||||A AB A AC C B →→→→+的方向与BAC ∠的角平分线一致,又AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,∴AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,∴向量AP →的方向与BAC ∠的角平分线一致∴P 点的轨迹一定经过ABC 的内心.故选:B .【点睛】本题考查平面向量的线性运算和向量的数乘,以及对三角形内心的理解,考查化简运算能力. 考点四:三角形的外心例5:在ABC ∆中,2AC =,6BC =,60ACB ∠=︒,点O 为ABC ∆所在平面上一点,满足OC mOA nOB =+(,m n ∈R 且1m n +≠). (1)证明:11m nCO CA CB m n m n =++-+-;(2)若点O 为ABC ∆的重心,求m 、n 的值; (3)若点O 为ABC ∆的外心,求m 、n 的值.【答案】(1)证明见解析;(2)1m =-,1n =-;(2)3757m n ⎧=⎪⎪⎨⎪=-⎪⎩.【分析】(1)根据条件OC mOA nOB =+,结合向量的加法运算,化简即可证明. (2)根据重心的向量表示为0OA OB OC ++=,即可求得m 、n 的值. (3)根据点O 为ABC ∆的外心,求得21||2CO CB CB ⋅=,21||2CO CA CA ⋅=,CA CB ⋅,再根据已知分别求得CO CB ⋅,CO CA ⋅,结合平面向量基本定理即可求得m 、n 的值. 【详解】(1)CO mAO nBO =+()()m AC CO n BC CO =+++mAC mCO nBC nCO =+++即CO mAC mCO nBC nCO =+++ 所以CO mCO nCO mAC nBC --=+ 则()1m n CO mAC nBC --=+ 所以11m nCO CA CB m n m n =++-+-;(2)若点O 为ABC ∆的重心则0OA OB OC ++= 因为OC mOA nOB =+ 所以0mOA nOB OC --+= 则1m =-,1n =-(3)由O 是ABC 的外心 得21||182CO CB CB ⋅==,21||22CO CA CA ⋅==,6CA CB ⋅=, 所以,1111m n CO CB CA CB CB CB m n m n m n CO CA CA CA CB CAm n m n ⎧⋅=⋅+⋅⎪⎪+-+-⎨⎪⋅=⋅+⋅⎪+-+-⎩即23321m n m n -=⎧⎨+=-⎩,解得3757m n ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了平面向量加法和减法的运算,三角形重心和外心的向量表示,对向量线性运算的化简要熟练掌握,属于中档题.三.课后作业1.在ABC ∆中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪=++ ⎪⎝⎭,m R ∈,则点P 的轨迹一定通过ABC ∆的( ) A .重心 B .内心C .外心D .垂心【答案】A【分析】设sin sin a B b A CH ==,则()mCP a b CH=+,再利用平行四边形法则可知,P 在中线CD 上,即可得答案;【详解】如图,sin sin a B b A CH ==,∴()m OP OC a b CH =++,()mCP a b CH=+, 由平行四边形法则可知,P 在中线CD 上,∴P 的轨迹一定通过ABC 的重心.故选:A.【点睛】本题考查三角形重心与向量形式的关系,考查数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意向量加法几何意义的运用.2.已知点O 是ABC ∆所在平面上的一点,ABC 的三边为,,a b c ,若0a OA bOB c OC →→→→++=,则点O 是ABC ∆的( )A .外心B .内心C .重心D .垂心【答案】B【分析】在AB ,AC 上分别取单位向量,AD AE →→,作AF AD AE →→→=+,则AF 平分BAC ∠,用,,OA AB AC →→→表示出,OB OC →→代入条件式,用,AB AC →→表示出AO→,则可证明A ,F ,O 三点共线,即AO 平分BAC ∠.【详解】在AB ,AC 上分别取点D ,E ,使得AB AD c →→=,AC AE b →→=,则||||1AD AE →→==.以AD ,AE 为邻边作平行四边形ADFE ,如图,则四边形ADFE 是菱形,且AB AC AF AD AE c b→→→→→=+=+.AF ∴为BAC ∠的平分线.0aOA bOB cOC →→→→++=()()0a OA b OA AB c OA AC →→→→→→∴⋅+⋅++⋅+=,即()0a b c OA b AB c AC →→→→++++=,∴()b c bc AB AC bc AO AB AC AF a b c a b c a b c c b a b c→→→→→→=+=+=++++++++.A ∴,O ,F 三点共线,即O 在BAC ∠的平分线上.同理可得O 在其他两角的平分线上,O ∴是ABC 的内心.故选:B .【点睛】本题考查了三角形内心的向量表示,向量的线性运算,属于中档题.3.点M ,N ,P 在ABC ∆所在平面内,满足MA MB MC ++=0,|NA NB NC ==∣,且PA PB ⋅=PB PC PC PA ⋅=⋅,则M 、N 、P 依次是ABC ∆的()A .重心,外心,内心B .重心,外心,垂心C .外心,重心,内心D .外心,重心,垂心【答案】B【分析】由三角形五心的性质即可判断出答案. 【详解】解:0MA MB MC ++=,∴MA MB MC +=-,设AB 的中点D ,则2MA MB MD +=,C ∴,M ,D 三点共线,即M 为ABC ∆的中线CD 上的点,且2MC MD =.M ∴为ABC 的重心.||||||NA NB NC ==, ||||||NA NB NC ∴==,N ∴为ABC 的外心;PA PB PB PC =,∴()0PB PA PC -=,即0PB CA =,PB AC ∴⊥, 同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心;故选:B .【点睛】本题考查了三角形五心的性质,平面向量的线性运算的几何意义,属于中档题. 4.(多选)已知M 为ABC ∆的重心,D 为BC 的中点,则下列等式成立的是( ) A .MA MB MC == B .0MA MB MC ++= C .1233CM CA CD =+ D .2133BM BA BD =+ 【答案】BC【分析】由题可知M 是三边中线的交点,且在中线三等分点处,由此依次计算判断即可得出结果. 【详解】M 为△ABC 的重心,∴M 是三边中线的交点,且在中线三等分点处,对于A ,由于△ABC 为任意三角形,故中线不一定相等,则,,MA MB MC 不一定相等,故A 错误; 对于B ,D 为BC 的中点,2MB M MD C +∴=,2MA MD =-,0MA MB MC ++=∴,故B 正确;对于C ,()22123333CM CA AM CA AD CA CD CA CA CD =+=+=+-=+,故C 正确; 对于D ,()22123333BM BA BA BA B AM AD BD BA A BD +=+=+-==+,故D 错误. 故选:BC.5.ABC ∆中,3AB =,6AC =,G 为ABC ∆的重心,O 为ABC ∆的外心,则AO AG ⋅=______. 【答案】152【分析】根据三角形的外心的性质,得出212AO AB AB ⋅=,212AO AC AC ⋅=,由三角形的重心的性质,得出1()3AO AG AO AB AC ⋅=⋅+,通过向量的数量积运算,即可求出AO AG ⋅的值. 【详解】解:因为G 为ABC 的重心,O 为ABC 的外心,所以212AO AB AB ⋅=,212AO AC AC ⋅=,所以111()333AO AG AO AB AC AO AB AO AC ⋅=⋅+=⋅+⋅221166AB AC =+93615662=+=, 即152AO AG ⋅=. 故答案为:152.【点睛】本题考查平面向量的数量积的应用,考查三角形的重心和外心的向量表示,考查计算能力. 6.已知A ,B ,C 是平面内不共线的三点,O 为ABC ∆所在平面内一点,D 是AB 的中点,动点P 满足()()()122123OP OD OC R λλλ⎡⎤=-++∈⎣⎦,则点P 的轨迹一定过ABC ∆的______(填“内心”“外心”“垂心”或“重心”). 【答案】重心【分析】根据已知条件判断,,P C D 三点共线,结合重心的定义,判断出P 的轨迹过三角形ABC 的重心. 【详解】∵点P 满足()()()122123OP OD OC λλλ⎡⎤=-++∈⎣⎦R ,且()()112212133λλ-++=, ∴P ,C ,D 三点共线.又D 是AB 的中点,∴CD 是边AB 上的中线,∴点P 的轨迹一定过ABC ∆的重心. 故答案为:重心【点睛】本小题主要考查三点共线的向量表示,考查三角形的重心的知识,属于基础题. 7.如图,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG PQ λ=,将OG 用λ,OP ,OQ 表示; (2)设OP xOA =,OQ yOB =,证明:11x y+是定值. 【答案】(1)见解析;(2)见解析【分析】(1)寻找包含OG 的图形OPG ,利用向量的加法法则知OG OP PG += ,再根据PG PQ λ=和PQ OQ OP -= 即可(2)根据(1)结合OP xOA =,OQ yOB =知:()()11OGOP OQ xOA yOB λλλλ-+-+== ,再根据G 是OAB 的重心知:()2211133233OG OM OA OB OA OB ⨯++=== ,最后根据OA OB 、 不共线得到关于x y λ,, 的方程组即可求解 【详解】(1)解=+=+λ=+λ(-)=(1-λ)+λ.(2)证明 一方面,由(1),得=(1-λ)+λ=(1-λ)x +λy ;① 另一方面,△G 是△OAB 的重心,△==× (+)=+.②而,不共线,△由①②,得解得△+=3(定值).【点睛】本题考查了向量的加减法,三角形的重心的性质,平面向量的定值问题,属于基础题.。
三角形“四心”的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。
● 与“重心”有关的向量问题【命题1】 已知G 是ABC △所在平面上的一点,若0GA GB GC ++=,则G 是ABC △的重心.如图⑴.A'A【命题2】已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.【解析】由题意()AP AB AC λ=+,当(0)λ∈+∞,时,由于()AB AC λ+表示BC 边上的中线所在直线的向量,所以动点P 的轨迹一定通过ABC △的重心,如图⑵.● 与“垂心”有关的向量问题【命题3】P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.【解析】由PA PB PB PC ⋅=⋅,得()0P B P A P C ⋅-=,即0P B C A ⋅=,所以PB CA ⊥.同图⑴图⑵理可证PC AB ⊥,PA BC ⊥.∴P 是ABC △的垂心.如图⑶.【命题4】已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.【解析】由题意cos cos AB AC AP AB B AC C λ⎛⎫⎪=+ ⎪⎝⎭, 由于0cos cos AB AC BC AB B AC C ⎛⎫⎪+⋅= ⎪⎝⎭, 即0cos cos AB BC AC BC BC CB AB BAC C⋅⋅+=-=,所以AP 表示垂直于BC 的向量,即P 点在过点A 且垂直于BC 的直线上,所以动点P 的轨迹一定通过ABC △的垂心,如图⑷.【命题5】若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC △的垂心 证明:2222HA HB CA BC -=-()()HA HB BA CA CB BA ∴+∙=+∙得()0HA HB CA CB BA +--∙= 即()0HC HC BA +∙= AB HC ∴⊥图⑶ 图⑷A同理,AC HB BC HA ⊥⊥, 故H 是△ABC 的垂心 与“内心”有关的向量问题【命题6】已知I 为ABC △所在平面上的一点,且AB c =,AC b =,BC a = .若0aIA bIB cIC ++=,则I 是ABC △的内心.【解析】∵IB IA AB =+,IC IA AC =+,则由题意得()0a b c IA bAB c AC ++++=,∵AB AC bAB cAC AC AB AB AC AC AB AB AC ⎛⎫⎪+=⋅+⋅=⋅⋅+ ⎪⎝⎭, ∴bc AB AC AI a b c AB AC ⎛⎫ ⎪=+ ⎪++⎝⎭.∵AB AB 与AC AC 分别为AB 和AC 方向上的单位向量,∴AI 与BAC ∠平分线共线,即AI 平分BAC ∠.同理可证:BI 平分ABC ∠,CI 平分ACB ∠.从而I 是ABC △的内心,如图⑸.【命题7】已知O 是平面上一定点,AB C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪=++ ⎪ ⎪⎝⎭uu u r uuu r uu u r uu r uu u r uuu r ,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的内心. 【解析】由题意得AB AC AP AB AC λ⎛⎫⎪=+ ⎪⎝⎭,∴当(0)λ∈+∞,时,AP 表示BAC ∠的平分图⑸图⑹B。
高三数学-三角形四心与向量关系-内心、外心、重心、垂心(附向量知识点)「、三角形四心知识点(1) 重心——中线的交点:重心将中线长度分成2 : 1 ;(2) 垂心一一高线的交点:高线与对应边垂直;(3) 内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4) 外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、向量知识点☆零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行☆单位向量:模为1个单位长度的向量向量a0为单位向量I a0|= 1.☆平行向量(共线向量):方向相同或相反的非零向量平行向量也称为共线向量一uuu UULT uuur☆向量加法AB BC = AC向量加法有“三角形法则”与“平行四边形法则”:uuu uur uuur uuu uuu uuuAB BC CD L PQ QR AR,但这时必须“首尾相连”.☆实数与向量的积:①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下:(I) a a ;(U)当0时,入a的方向与a的方向相同;当0时,入a的方向与a的方向相反;当0时,a 0,方向是任意的☆两个向量共线定理:向量b与非零向量a共线有且只有一个实数,使得b = a☆平面向量的基本定理:如果0(2是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数i , 2使:a 心 2e 2,其中不共线的向量©(2叫做表示这一平面内所有向量的一组 基底☆平面向量的坐标运算:uuu⑵若 A X i , y i , B X 2, y 2,则 AB x ? X i , y 2 y i⑶若a :=(x,y), 则 a =( x, y)⑷若a 冷% r ,b r r x 2, y 2,贝U a//b x 』2 X2% 0⑸若a冷% r ,br rx 2, y 2,贝U a b ,X iX 2y i y 2☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和 性质☆两个向量的数量积:rr r已知两个非零向量a 与b ,它们的夹角为,则a • b = I a 丨・丨b 丨cos叫做a 与b 的数量积(或内积)规定o$ 0rr☆数量积的几何意义:a • b 等于a 的长度与b 在a 方向上的投影的乘积ra若r br by2y1卷X1yy y1X1r bra☆向量的投影:I cos€R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影☆向量的模与平方的关系: r r r 2 r 2 a a a | a |☆乘法公式成立: a br 2 r r r a 2a bb☆向量的夹角:已知两个非零向量 a 与b , uun r uuu r作O A = a , O B = b ,贝AOB=(0°1800 )叫做向量a 与b 的夹角y2卷r r 2 r 2 r r r 2 a b a 2a b br r c r r c r当且仅当两个非零向量a 与b 同方向时,B =0°,当且仅当a 与b 反方向时9 =180 0,同时0与其 它任何非零向量之间不谈夹角这一问题 补充: 线段的定比分点x i x 2X i,p 为P i P 2中点时, y i y 21y设 P X i ,y i ,P 2 X 2,y 2,分点 Px , y ,设R 、P 2是直线I 上两点,P 点在I 上且不同于R 、 P 2,若存在一实数,使 P i PPP 2,则叫做P 分有向线段RP 2所成的比(0,P 在线段P 1P 2内,0,P 在RP 2外),且 如: ABC ,A X i ,y i ,B X 2,y ?C X 3,y 3则ABC 重心G 的坐标是X i X 2 X 3y i y 2 y 33cos = cosrarb 9. rax 1 x 2 2 y i y 2 2—b 2 y2三角形四心与向量关系典型例题: 例1 : O是平面上一定点,A、B、C是平面上不共线的三个点,动点分析:如图所示ABC , D、E分别为边BC、AC的中点.AB AC 2AD OP OA 2 ADOP OA AP AP 2 AD AP〃AD点P的轨迹一定通过ABC的重心,即选C .AB AC平分BAC ,AB AC 满足OP OA (AB AC),0, ,则点P的轨迹一定通过ABC的(A .外心B .内心C .重心D .垂心OP 例2 : O是平面上一定点,A、B、C是平面上不共线的三个点,OA(AB AC、AC),0, ,则点P的轨迹一定通过ABC的(B动点满足A .外心B .内心C .重心D .垂心分析:ABMAC分别为AB、AC方向上的单位向量,ACOP点P的轨迹一定通过ABC的内心,即选例3: O是平面上一定点,OA (AB ACB.AB cosB),AC cosCA、B、0,是平面上不共线的三个点, 动点,则点P的轨迹一定通过ABC的(满足A .外心B .内心C .重心D .垂心分析:如图所示AD垂直BC , BE 垂直AC ,D、E是垂足.AB ACAB cosB)BCAC cosCB D=AB BC AC BCAB cosB AC cosC三、四心与向量的结合证法 1:设 O(x, y), A(x 「yj B (X 2, y 2),C(X 3, y 3)证法2 :如图AO 2ODO 是ABC 的重心(2)OA OB OB OC OC OA O 为 ABC 的垂心. 证明:如图所示O 是三角形ABC 的垂心, BE 垂直 AC ,AD 垂直BC E 是垂足.OA OB OB OC OB(OA OC) OB CA 0 OB AC 同理OA BC ,OC AB O 为 ABC 的垂心 (3)设a,b ,c 是三角形的三条边长,0是 ABC 的内心 AC BC cosC| AC | cosC点P 的轨迹一定通过 ABC 的垂心,即选D .(1 ) OA OB OCO 是ABC 的重心.OA OB OC 0(X i x) (y i y)(X 2 x) (X 3 x) 0 y) (y 3y) 0(y 2X i X 2 X 33 % y 2 y 33O 是ABC 的重心.OA OB OC OA2ODA 、0、D 三点共线, 且O 分AD 为2 :AB BC cosBBC + BC =0aOA bOB cOC 0 O 为 ABC 的内心.证明: AB 、、AC 分别为ABAC 方向上的单位向量,c b aOA bOB cOC 0(4) OA OB OC O 为 ABC 的外心。
平面向量三角形四心(有详解)平面向量三角形四心(有详解)平面向量是数学中的重要概念,可以用来表示空间中的点、线、面等几何对象。
在平面向量的运算和应用中,三角形是常见的几何形状之一。
本文将介绍平面向量与三角形四心的关系,并详细解析其性质和应用。
1. 三角形的四心概述三角形的四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。
这四个点有着各自的特点和性质,对于研究三角形的形状和性质非常重要。
1.1 重心三角形的重心是三条中线的交点,即三角形三个顶点与对应中点的连线交于一点。
重心在三角形中心位置,对称性较强,具有重要的几何意义。
1.2 外心三角形的外心是外接圆的圆心,即三角形三个顶点的垂直平分线的交点。
外心离三角形各顶点的距离相等,是三角形的外接圆的圆心。
1.3 内心三角形的内心是内切圆的圆心,即三角形三条边的角平分线的交点。
内心到三角形三边的距离相等,是三角形的内切圆的圆心。
1.4 垂心三角形的垂心是三条高线的交点,即三角形三个顶点与对边垂线的交点。
垂心所在的直线被称为垂心线,与三角形的三条边垂直。
2. 平面向量与四心关系的性质平面向量与三角形的四心之间具有一些重要的几何性质和关系,下面将分别介绍。
2.1 重心与向量以三角形的重心为原点建立直角坐标系,三角形三个顶点的位置向量相对于重心的位置向量之和为零。
即,三角形三个顶点的位置向量和为零向量。
2.2 外心与向量三角形的三个顶点为A、B、C,以外心O为原点建立直角坐标系。
则三角形顶点A、B、C的位置向量之和等于三倍的外心O的位置向量。
即,OA + OB + OC = 3OO。
2.3 内心与向量设三角形的内心为I,以内心I为原点建立直角坐标系。
则三角形三个顶点的位置向量与对边的位置向量之和分别为倍数的内心I的位置向量。
即,AI + BI = CI = 2II。
2.4 垂心与向量以三角形的垂心为原点建立直角坐标系,三角形三个顶点的位置向量与对边垂线的位置向量之和为零。
高中数学:向量中的三角形“四心”
向量的加减法离不开三角形,三角形的重心、垂心、内心、外心是三角形性质的重要组成部分,你知道它们的向量表示吗?
结论1:若点O为△ABC所在的平面内一点,满足
,则点O为△ABC的垂心。
证明:由,得,即,所以。
同理可证。
故O为
△ABC的垂心。
结论2:若点O为△ABC所在的平面内一点,满足
,则点O为△ABC的垂心。
证明:由,得
,所以。
同理可证。
容易得到由结论1知O为△ABC的垂心。
结论3:若点G为△ABC所在的平面内一点,满足
,则点G为△ABC的重心。
证明:由,得。
设BC边中点为M,则,所以,即点G在中线AM 上。
设AB边中点为N,同理可证G在中线CN上,故点G为△ABC的重心。
结论4:若点G为△ABC所在的平面内一点,满足
,则点G为△ABC的重心。
证明:由,得
,得。
由结论3知点G为△ABC的重心。
结论5:若点P为△ABC所在的平面内一点,并且满足
,则点P为
△ABC的内心。
证明:由于,可得。
设与同方向的单位向量为,与同方向的单位向量为,则。
因为为单位向量,所以向量在∠A的平分线上。
由,知点P在∠A的平分线上。
同理可证点P在∠B的平分线上。
故点G为△ABC的内心。
结论6:若点O为△ABC所在的平面内一点,满足
,则点O为△ABC的外心。
证明:因为,所以
同理得由题意得,所以
,得。
故点O为△ABC的外心。