黑曲霉的固定化
- 格式:pdf
- 大小:229.55 KB
- 文档页数:5
一、D380(功能基团为伯氨基)为载体戊二醒交联固定化α一淀粉酶1、固定化载体的预处理吸附树脂采用乙醇、丙酣、蒸馏水交替处理,最后用蒸馆水冲洗至中性备用;离子交换树脂先用蒸馆水漫泡胀润、去杂,然后用 HCl 、NaOH 交替处理,最后用蒸锢水冲洗至中性,置于 4 "C冰箱保存备用。
2、载体选择取处理后载体(湿态)约1.0g,分别加入 20mL 酶液摇匀,在摇床上室温 (25°C摄氏度),100r/min 振摇,过夜(12h),弃去上清,并以磷酸缓冲液反复洗涤至洗涤液中无蛋白检出。
分别测定固定化酶和上清液的酶活,并计算固定化得率。
根据其酶活和得率进行筛选。
3、固定化条件的优化取处理后载体(湿态)1.0g左右,加入一定量戊二醒,在摇床上定温(25°C) , 100r/min 振摇一定时间,弃去上清,蒸馏水反复冲洗至无戊二醛残留。
处理后加入酶液进行固定化,条件同载体选择。
4、蛋白质含量测定采用 Bradford 的方法,以牛血清蛋白为标准曲线。
5、酶活收率指实际测定的总的固定化酶活与固定化时所用的全部游离酶活之比。
6、酶活测定以 20.0mL 的 2% 可溶性淀粉为底物,加入 5.0mL 的缓冲液。
在60 °C预热 5min 后加入适量固定化酶或稀释至适当浓度的酶液,准确反应 5min 后,立即取出1.0mL 反应液置于稀腆液5.0mL 中摇匀显色。
以稀腆液为空白,于 660nm 波长下测定其吸光度值。
二、D301 树脂固定化假丝酵母脂肪酶1、固定化载体及其预处理选择 7 种工业应用广泛的吸附和离子交换树脂: D301、D113、AB-8、D3520、D4020、D290、D280, 购自南开大学化工厂。
其中 D301 为大孔弱碱性苯乙烯系阴离子交换树脂,D113 为大孔弱酸性丙烯酸系阳离子交换树脂, AB-8、D3520 和 D4020 为大孔吸附树脂, D290和 D280 为大孔强碱性苯乙烯系阴离子交换树脂。
固定化黑曲霉活性炭吸附铀的机理喻清;丁德馨;李登科;余园平;罗艺;王启方;胡南【期刊名称】《中国有色金属学报》【年(卷),期】2016(026)004【摘要】采用海藻酸钠包埋黑曲霉及活性炭粉末的方法制备固定化黑曲霉活性炭微球,利用静态吸附试验研究铀溶液的pH值、初始铀浓度、吸附时间、黑曲霉粉末与活性炭粉末质量的配比及固定化黑曲霉活性炭微球的投加量等因素对其吸附铀的影响.通过对动力学模型、等温吸附模型进行拟合,研究固定化黑曲霉活性炭吸附铀的行为.采用扫描电镜、能谱仪和红外光谱仪分析吸附前后固定化黑曲霉活性炭微球表面的形貌、化学组成和官能团结构的变化,进而探讨吸附过程可能涉及的反应机理.结果表明:固定化黑曲霉活性炭吸附铀的最佳条件为pH值为5.0,铀初始浓度为l mg/L,固定化黑曲霉活性炭微球投加量为0.3 g/L,9h即达到吸附平衡,最大吸附量为691.7 mg/g.固定化黑曲霉活性炭吸附铀的过程符合准二级动力学模型,相关系数为0.9994; 吸附等温线符合Freundlich和Langmuir等温线模型,相关系数分别为0.9875和0.9993,体现固定化黑曲霉活性炭对铀的吸附模式是以单层吸附为主与多层吸附的共同作用的吸附模式.【总页数】10页(P936-945)【作者】喻清;丁德馨;李登科;余园平;罗艺;王启方;胡南【作者单位】中南大学资源与安全工程学院,长沙410083;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001;中南大学资源与安全工程学院,长沙410083;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001;南华大学铀矿冶生物技术国防重点学科实验室,衡阳421001【正文语种】中文【中图分类】X172【相关文献】1.固定化活性炭吸附铀(Ⅵ)试验 [J], 喻清;丁德馨;李登科;余园平;罗艺;王启方2.固定化黑曲霉细胞与固定化葡萄糖异构酶生产高含量低聚果糖 [J], 高放;秦克亮;赵玉秀;范秋昱;吴志龙;杨光礼3.交联海藻酸钠固定化的腐殖酸多孔性薄膜对铀(Ⅵ)的吸附性能及机理 [J], 谢水波;段毅;刘迎九;王劲松;刘金香4.同时进行发酵和分离的CO2气提、活性炭吸附乙醇发酵动力学研究(三)固定化 [J], 张民权;赵学法;等5.活性炭吸附固定化粪产碱杆菌青霉素G酰化酶 [J], 程仕伟;董桂秀;郑彬彬;王艺霖因版权原因,仅展示原文概要,查看原文内容请购买。
实验一黑曲霉孢子固定化及其对淀粉糖化的效果分析一、目的要求1. 学习、掌握用包埋法固定微生物细胞的技术及固定化细胞增殖技术。
2. 了解固定化细胞的应用技术。
3. 掌握评价固定化细胞应用效果的方法。
二、试剂①马铃薯斜面培养基:马铃薯200g,葡萄糖20g,琼脂15~20g,定容至1000ml,pH值自然。
②生长培养基:同上(不加琼脂),200ml,灭菌。
③发酵培养基:配制1%、2%、3%、4%的可溶性淀粉溶液各200ml,pH=5.0,灭菌。
④3g海藻酸钠溶于80ml蒸馏水中,灭菌。
⑤0.1M CaCl2溶液250ml,灭菌。
⑥无菌水,500ml,灭菌。
三、实验步骤1. 制备黑曲霉孢子悬液将斜面黑曲霉孢子刮下,用无菌水制成5×108个/ ml孢子的悬液10 ml。
2. 制备海藻酸钠菌悬液将10 ml孢子悬液加入到80ml海藻酸钠溶液中,加入10ml无菌水定容至100ml,配成海藻酸钠浓度为3%、黑曲霉孢子浓度为5×107个/ ml的海藻酸钠菌悬液。
3. 制粒和固定用制粒装置将海藻酸钠菌悬液滴入0.1M CaCl2溶液中使之成粒。
固定化球直径为3mm,室温下固定5小时。
4. 固定化细胞预培养固定化球用无菌水冲洗三次,称重,每瓶15-20g装入生长培养基,25~28℃,220r/min震荡预培养36小时。
5. 摇床发酵培养:固定化球过滤,无菌水冲洗后转入发酵培养基。
对照:0.5%、1%、2%可溶性淀粉,28℃,220r/min震荡培养。
处理:含有15-20g固定化凝胶球的相同浓度的可溶性淀粉,50~60℃,220r/min,24小时6. 还原糖测定用3,5-二硝基水杨酸比色法测还原糖生成量。
取3支25ml刻度试管,编号(对照1管,处理每个浓度2管),按下表精确加入待测液和试剂。
单位:ml对照 处理① 处理② 待测液(?%淀粉)1 1 1 蒸馏水1 1 1 3,5-二硝基水杨酸 1.5 1.5 1.5摇匀,沸水浴中,5分钟,取出后立即放入盛有冷水的烧杯中冷却至室温,蒸馏水定容至25ml 。
固定化酶在现代工业中的应用姓名:胡艳芬学号:2008132106 指导教师:张孟摘要酶是一类有催化功能的蛋白质,具有反应条件温和, 底物专一性强, 可在水溶液和中性pH 下操作等优点。
与游离酶相比,固定化酶在保持其高效专一及温和的酶催化反应特性的同时,又克服了游离酶的不足之处。
本文简要介绍了固定化酶的概念、制备方法及其在生物、医药、环境保护等方面的广泛应用。
重点介绍一些固定化酶在现代工业中的应用,并对其应用前景进行了展望。
关键词固定化酶制备工业应用前景酶是一类由活细胞产生的具有生物催化功能的分子量适中的蛋白质,具有极高的催化效率、高度的特异性及控制的灵敏性。
大多数酶是水溶性的。
由于酶催化反应具有底物专一性、催化高效性、反应条件温和等优点,符合绿色化学的要求,从而被大家高度重视,已在许多领域得到广泛的应用[1]。
酶的最大缺点是其不稳定性,在酸、碱、热及有机溶剂中易发生变性,活性降低或丧失;而且酶反应后,会在溶液中残留,造成酶反应难以连续化、自动化,同时也不利于终产品的分离提纯,这些都大大阻碍了酶工业的发展,所以有必要采取酶工程技术改善这些缺点。
酶工程技术措施较多,其中酶的固定化技术是重要举措之一。
酶的固定化是用人工方法把从生物体内提取出来的酶固定在特定的载体上或使酶与酶相交联,酶被限定在一定区域内,但仍保持原有高效、专一、条件温和的催化功能[2]。
已固定化的酶像化学反应所用的固体催化剂那样, 既能发挥它们的催化特性, 又能回收, 并能多次反复使用, 使整个生产工艺可以连续化、自动化。
近年来, 国内外科技工作者在固定化酶在工业生产中的应用做了大量研究,并得到了广泛的发展,本文将对这些成就做具体介绍。
1 固定化酶的概念1916 年Nelson 和Griffin最先发现了酶的固定化现象后, 科学家就开始了固定化酶的研究工作。
1969 年日本一家制药公司第1 次将固定化的酰化氨基酸水解酶用来从混合氨基酸中生产L-氨基酸, 开辟了固定化酶工业化应用的新纪元。
高活性黑曲霉固定化酶制备甘油二酯的研究目录一、内容综述...............................................21.1 研究背景及意义.........................................2 1.2 国内外研究现状.........................................31.3 研究目的与任务.........................................4二、黑曲霉及其固定化酶概述.................................52.1 黑曲霉的基本特性.......................................6 2.2 黑曲霉固定化酶技术.....................................62.3 固定化酶在油脂加工中的应用.............................7三、实验材料与设备.........................................83.1 实验材料...............................................83.2 实验设备...............................................9四、实验方法..............................................104.1 高活性黑曲霉的选育及培养..............................11 4.2 固定化酶的制备........................................12 4.3 甘油二酯的制备........................................134.4 分析与检测............................................14五、实验结果与分析........................................155.1 黑曲霉活性及生长情况分析..............................165.2 固定化酶的酶活性及稳定性分析..........................165.3 甘油二酯的制备结果....................................175.4 产品性能分析..........................................18六、讨论与结论............................................186.1 实验结果讨论..........................................196.2 研究结论..............................................21七、本研究的创新点及展望..................................217.1 创新点................................................227.2 展望与进一步研究方向..................................23一、内容综述近年来,随着生物技术及酶工程领域的飞速发展,利用固定化酶技术从可再生资源中高效生产生物燃料及高附加值产品受到了广泛关注。
自我小测1.下列关于固定化酶和一般酶制剂在应用效果上的说法,错误的是()A.固定化酶生物活性强,可长久使用B.一般酶制剂应用后和产物混在一起,产物的纯度不高C.一般酶制剂参加反应后不能重复利用D.固定化酶可以反复利用,降低生产成本,提高产量和质量2.下列关于固定化酶技术说法正确的是( )A.固定化酶技术就是固定反应物,将酶依附着载体围绕反应物旋转的技术B.固定化酶的优势在于能催化一系列的酶促反应C.固定化酶中的酶无法重复利用D.固定化酶是将酶固定在一定空间的技术3.下列说法中,哪项不是在应用酶的过程中常遇见的一些实际问题?()A.酶与反应物混合,产品难以提纯B.酶在生物化学反应中往往难以回收C.酶遇强酸、强碱、高温等条件易失活D.酶作为催化剂,绝大多数酶是蛋白质4.高果糖浆的生产需要使用葡萄糖异构酶,它能将葡萄糖转化成果糖,而不能转化成其他物质。
这是根据酶的特性中的()A.特异性B.专一性C.高效性D.多样性5.下列有关固定化技术的叙述,正确的是()A.固定化酶只能在细胞内发挥作用B.固定化酶能提高酶的利用率C.酶的固定是酶分离纯化的常用方法D.固定化酶的固定化方式就是吸附在固体表面上6.对固定酶的作用影响较小的固定方法是()A.包埋法B.化学结合法C.物理吸附法D.生物法7.下列关于固定化酶中的酶说法正确的是()A.固定化酶活性不稳定B.酶被固定在不溶于水的载体上,可反复利用C.酶作为催化剂,反应前后结构不改变,所以固定化酶可永远利用下去D.固定化酶由于被固定在载体上,所以丧失了酶的高效性和专一性特点8.下列说法不正确的是( )A.固定化酶和固定化细胞的方法包括包埋法、化学结合法和物理吸附法B.固定化酶更适合采用化学结合法和物理吸附法C.由于细胞个体大,而酶分子很小,因此细胞多采用物理吸附法固定D.反应物是大分子物质时应采用固定化酶9.如果反应物是大分子物质,采用下列哪种方法催化受限制()A.直接使用酶B.使用化学方法结合的酶C.使用固定化细胞D.使用物理吸附法固定的酶10.将谷氨酸棒状杆菌生产谷氨酸的发酵过程变为连续的酶反应,应当固定();若将谷氨酸棒状杆菌内的蛋白质变成氨基酸,应当固定()A.谷氨酸棒状杆菌蛋白酶B.谷氨酸棒状杆菌谷氨酸棒状杆菌C.蛋白酶蛋白酶D.蛋白酶谷氨酸棒状杆菌11.研究认为,用固定化酶技术处理污染物是很有前途的,如从大肠杆菌中得到的三酯磷酸酶固定到尼龙膜上制成制剂,可用于降解残留在土壤中的有机磷农药,与微生物降解相比,其作用不需要适宜的()A.温度B.酸碱度C.水分D.营养12.固定化酶和固定化细胞的主要区别是()A.前者只能固定胞外酶,后者只能固定胞内酶B.前者只能固定胞内酶,后者只能固定胞外酶C.前者可以固定胞内酶和胞外酶,后者只可以固定胞内酶D.前者只可以固定胞外酶,后者可以固定胞外酶和胞内酶13.右图为固定化酶的反应柱示意图,请据图回答下面的问题。
壳聚糖接枝双醛淀粉固定化黑曲霉木聚糖酶的研究的开题报告一、研究背景在近年来,随着生物技术的发展,越来越多的研究者开始探索利用酶固定化技术来提高酶的稳定性和重复使用性,降低生产成本。
而壳聚糖和双醛淀粉则是常用的固定化载体,可通过接枝反应将其固定化于酶分子表面上。
另外,黑曲霉木聚糖酶是一种能够水解木聚糖的酶,具有广泛的应用前景,因此研究将黑曲霉木聚糖酶固定化于壳聚糖接枝双醛淀粉载体上的方法具有重要意义。
二、研究目的本研究旨在通过将壳聚糖接枝双醛淀粉固定化于黑曲霉木聚糖酶分子表面的方法,以提高酶的稳定性、降低生产成本,从而提高黑曲霉木聚糖酶的应用效率。
三、研究内容1. 合成壳聚糖接枝双醛淀粉载体:通过合成壳聚糖和双醛淀粉,并运用接枝反应将其联结,制备出固定化载体。
2. 固定化黑曲霉木聚糖酶:将黑曲霉木聚糖酶与制备好的壳聚糖接枝双醛淀粉载体进行化学反应,将酶固定于载体表面上。
3. 固定化酶的表征:利用扫描电镜观察固定化酶的表面形貌,同时测定固定化酶的酶活力与稳定性。
4. 应用评价:将固定化酶应用于木质纤维素的水解反应中,测定其水解效果,并评价其相应的生产成本和效益。
四、研究意义1. 通过将壳聚糖接枝双醛淀粉固定化于黑曲霉木聚糖酶表面上的方法,不仅能够提高酶的稳定性,缩短生产周期,也能够降低生产成本。
2. 该技术可为未来的木质纤维素水解加工提供一种新的解决方法,有望广泛应用于相关领域。
3. 同时,在生物技术领域,该研究也为制备其他酶的固定化载体提供了可参考的实验方案和经验。
五、研究方法和步骤1. 合成壳聚糖和双醛淀粉,利用接枝反应合成壳聚糖接枝双醛淀粉载体。
2. 利用化学标记的方法将黑曲霉木聚糖酶与制备好的壳聚糖接枝双醛淀粉进行化学反应,将酶固定于载体表面上。
3. 利用扫描电镜观察固定化酶的表面形貌,同时测定固定化酶的酶活力与稳定性。
4. 将固定化酶应用于木质纤维素的水解反应中,测定其水解效果,并评价其相应的生产成本和效益。
酶的固定化技术及其应用曾鸿雁(西南科技大学,四川,绵阳)摘要:随着工业生物技术和酶工程的不断发展,酶在各个领域的广泛应用,对酶的要求也越来越严格。
本文针对目前酶工程技术之一酶的固定化,对酶的固定化技术及其展望做一综述。
关键词:酶,固定化,技术Immobilization of Enzyme And its Applications Abstract:with the continuous development of biotechnology industrial and enzyme engineering , enzyme are widely used in various fields and the requirements to enzymes also become more and more stringent . This article is to review the enzyme immobilization, which is one of the current enzyme engineering technologiesKey words: enzyme, immobilization, technology一、引言酶是一类具有生物催化性质的高分子物质,其催化性具有专一性强、催化效率高和作用脚尖温和等特点。
但是在实际工业生产中,由于实际环境因素,应用酶的过程出现了一些不足之处:①酶的催化效率不高。
人们在使用酶的过程中,往往要求酶的催化效率要足够高,以加快反应速度,提高劳动生产率,然而实际上很多酶的催化效率不够高而难于满足人们的使用要求。
②酶的稳定性较差。
大多数酶稳定性较差,在高温、强酸、强碱和重金属离子等外界因素的影响下,都容易变形失活。
③酶的一次性使用。
酶一般是在溶液中与底物反应,这样酶在反应系统中,与底物和产物混合在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用。
Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus nigerK.Tsekova a ,*,D.Todorova a ,S.Ganeva ba Stephan Angeloff Institute of Microbiology e Bulgarian Academy of Sciences,Acad.G.Bonchev,Str.,bl.26,1113So fia,Bulgaria bFaculty of Chemistry e So fia University,1164So fia,Bulgariaa r t i c l e i n f oArticle history:Received 24March 2010Received in revised form 5May 2010Accepted 9May 2010Available online 7June 2010Keywords:Biosorption Heavy metals Wastewater Immobilization Aspergillus nigera b s t r a c tAspergillus niger ,strain B 77,was immobilized by inclusion in two different polymers:polyvinyl e alcohol hydrogel (PVA)and Ca e alginate.The biomass/polymer matrices were formed into equal size unites of the cubes and spheres,and the resulting biomass/polymer matrices were used to remove heavy metals (Cu 2þ,Mn 2þ,Zn 2þ,Ni 2þ,Fe 3þ,Pb 2þ,Cd 2þ)from wastewater in shake flask experiments.Total biosorption capacities of the biosorbents were in the following order:free cells (33.3mg/g)<PVA e biomass (39.8mg/g)<Ca alginate e biomass (44.6mg/g).The metal removal ef ficiencies of the beads Ca alginate e biomass were 96.2%for Cd 2þ;90.0%for Pb 2þ;80.0%for Fe 3þ;72.8%for Cu 2þ;55.4%for Zn 2þ;54.4%for Ni 2þand 52.3%for Mn 2þ,while the removal ef ficiencies of cubes PVA e biomass for the same heavy metals ions were:95.0%;88.0%;80.0%;67.1%;58.5%;48.9%and 44.6%,respectively.The results obtained from these experiments,were compared with those using dispersed biomass as a sorbent.Promising results were obtained in the laboratory,as effective metal removals were observed.Ó2010Elsevier Ltd.All rights reserved.1.IntroductionThe increase use of heavy metals in difference industrial activ-ities causes their existence in wastewater.The discharge of heavy metal ions in industrial ef fluent is of great concern because of their toxic effect on living species,even at very low concentrations.The detoxi fication of metal ions from industrial ef fluent using biosorption processes is an area of extensive research during the last years (Volesky and Holan,1995;Tripathi et al.,2007).Biosorption is an innovative and low cost effective method for the removal of toxic substances from wastewaters (Zouboulis et al.,2003;Silva et al.,2009;Chatterjee et al.,2010).Fungi are recognized for their superior ability to produce a large variety of extra cellular proteins,organic acids,enzymes and other metabolites,and their waste biomass may be used as effective biosorbent for removal,reduction and detoxi fication of industrial ef fluents ingredients (Gupta and Mukerji,2001;Christian et al.,2005).Various fungal species under the genus Aspergillus ,Penicil-lium and Rhizopus have been shown to be effective in biosorption of heavy metals from polluted ef fluents both as immobilized cells and in the mobilized state (Kapoor and Viraraghvan,1995;Leitão,2009;Tsekova et al.,2010a,b ).During the last decade many research works have been focused on the development of immobilized systems of microorganisms into polymeric matrices suitable for metal ions uptake applications (Zouboulis et al.,2003;Tsekova et al.,2008;Mata et al.,2009).Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrials ef fluents and natural waters.In view of potential applications in remediation of heavy metals from aqueous solutions the immobilization of the biomass is generally necessary.Immobilized cells are usually easier to handle,require less complex separation systems,allow a high biomass density to be maintained and provide a greater opportu-nity for reuse and recovery.Despite the current interest in microbial detoxi fication of ef fluents,relatively little work has been concerned with charac-terization of metal uptake by filamentous fungi,particularly when the heavy metals present at different and low concentrations.The purpose of this study was to determine the ability of Aspergillus niger (free and immobilized biomass)to remove toxic metals from an industrial wastewater by batch system.2.Materials and methods 2.1.Sample collection siteWastewater samples were from copper production factory in Pirdop,Bulgaria.The samples were collected for a relative long*Corresponding author.Tel.:þ35929793167;fax:þ35928700109.E-mail addresses:ktsekova@microbio.bas.bg (K.Tsekova),sganeva@chem.uni-so fia.bg (S.Ganeva).Contents lists available at ScienceDirectInternational Biodeterioration &Biodegradationjou rn al homepage:/locate/ibiod0964-8305/$e see front matter Ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.ibiod.2010.05.003International Biodeterioration &Biodegradation 64(2010)447e 451period of time(April e November2009)in high e grade plastic bottles of1.5l capacity and stored in a refrigerator at4 C.From all taken wastes a representative sample was prepared mixing150ml from each separate bottle.2.2.Determination of heavy metal concentrationsThe initial concentration of the metals in the wastewater and samples after biosorption treatment were determined using an Atomic Absorption Spectrophotometer Perkin Elmer Analyst400, air-acetyleneflame.Cadmium and lead after biosorption were determined using electrothermal atomic absorption spectrom-eter Zeeman Perkin Elmer3030,pyrolytically coated graphite tubes and optimized temperature program for modifier freeETAAS.2.3.Preparation of biosorbents2.3.1.Microorganisms,medium and cultivationThe mutant strain A.niger B77(A.niger),an industrial producer of glucoamylase(N 65/1980,National Bank of Industrial Micro-organisms and Cell Cultures,Bulgaria)was used in this study. Spores from established culture(6e7days old)incubated on potato glucose agar slants at30 C were used for the preparation of inocula.The liquid growth medium consisted of(g/L):glucose30 and corn steep liqueur45;pH adjusted to4.8.Cultivation of A.niger was carried out in500e ml Erlenmeyer flasks with75ml growth medium on a rotary shaker at30 C.After 48h of cultivation,the mycelium was harvested byfiltration from the medium,washed twice with distilled water and stored at4 C until use.The dry weight of the free fungal biomass(FC)was determined after drying at85 C for48h.2.3.2.Immobilizing materials and techniquesPoly(vinyl)alcohol(PVA)hydrogel was obtained as describe earlier(Tsekova et al.,2008).The PVA e hydrogel used for immo-bilization was cut into small pieces(4Â4Â4mm in size).They were washed with distilled water and than submerged in500-ml Erlenmeyerflasks containing75ml growth medium(previously autoclaved for20min at120 C).The carrier pieces were inoculated with10ml A.niger spores suspension(1Â106/ml)were cultivated as described above.After48h of incubation,the PVA e immobi-lized biomass of A.niger was harvested from the medium,washed twice with distilled water and stored at4 C until used as a bio-sorbent.The dry weight of PVA e biomass was determined as described for FC.Method described by El e Naggar et al.(2006)was used to prepare Ca alginate beads the spore suspension(10ml,1Â106/ml) was mixed with Na e alginate prior to its stabilization.Beads of approximately4mm diameter were obtained by selecting an appropriate orifice size through which the polymer/spores mixed passed.The cultivation was carried out as described above.After 48h of incubation,the Ca alginate e immobilized biomass of A.niger was harvested from the medium,washed twice with distilled water and stored at4 C until used as a biosorbent.The dry weight of Ca alginate e biomass was determined as described for FC.2.4.Batch biosorption studiesBatch biosorption experiments were carried out in500ml Erlenmeyerflasks,as follows:preweighed biosorbent samples (wet or immobilized biomass)with concentration varying from0.1 to0.5g/l(dry weight)were examined.Each sample was added to 100ml of real wastewater,containing heavy metal ions.Biosorption studies were performed at different initial pH from5.5to7.5using 0.1N NaOH.The mixtures were then agitated at120rpm on a rotary shaker up to30min at25 C.Then the content of theflasks was separated byfiltration using a Whatman N 1filter paper.2.5.Metal uptake(q)Uptake of metal ions was calculated from a metal mass balance yielding:q¼VðC iÀC fÞ(1) where:q is mg metal ions per g dry biosorbent;V is the reaction volume(l),C i and C f are the initial and residual metal concen-trations(mg/l),respectively,and m is the amount of dry bio-sorbent(g).The concentration of the metal ions in thefiltrates was deter-mined using atomic absorption spectrophotometer with an air/ acetyleneflame(model2380;Perkin Elmer,Uberlingen,Germany).Aliquots of wet biomass as well as of immobilized biomass, followed by drying for48h at85 C,were considered as dry biosorbent to calculate the uptake.The efficiency of heavy metal removal was calculated from the amount of metal ions adsorbed on the biosorbent and the amount of metal ions available in the wastewater,as the following equation:%removal¼mg heavy metal ions removedmg heavy metal ions availableÂ100(2)2.6.ReproducibilityAll the experiments were run in triplicates and controls were also run on same pattern without addition of biosorbent.The data shown are average from three separate experiments.Table1Characteristics of the biosorption process for removal of heavy metals from waste-water using free biomass as a sorbent.Performance of biosorbentof A.niger biomassHeavy metals in mixed solution,mg/lCu Zn Ni Fe Pb Cd Mn Initial concentrations mg/l7 1.30.90.20.050.0813 Equilibrium concentrations mg/l 2.8 1.10.460.060.0060.0048.1 Equilibrium time min20151555520 Heavy metal uptake mg/g140.66 1.50.460.150.2516.3 Removal efficiency%6015.448.970889537.7 Free biomass(m)0.3g/l;pH e6.5;number of parallels:(n)3;relative standard deviation(RSD)3e8%.Table2Characteristics of the biosorption process for removal of heavy metals from waste-water:PVA e biomass m¼0.3g/l;pH e6.5.Performance of biosorbent Heavy metals in mixed solution,mg/lCu Zn Ni Fe Pb Cd Mn Initial concentrations mg/l7 1.30.90.20.050.0813 Equilibrium concentrations mg/l 2.30.540.460.040.0060.0047.2 Equilibrium time min1510555515 Heavy metal uptake mg/g15.6 2.5 1.50.530.140.2519.3 Removal efficiency%67.158.548.980889544.6 Number of parallels:(n)3;relative standard deviation(RSD)3e8%.K.Tsekova et al./International Biodeterioration&Biodegradation64(2010)447e451 4483.Results and discussion3.1.Sorption of heavy metals from wastewater by freeand immobilized cells of A.niger3.1.1.Sorption of heavy metals from industrial wastewater by free biomass of A.niger (FC)A.niger biomass absorbed Fe 3þ,Pb 2þand Cd 2þions from industrial wastewater more rapidly than other ions (Table 1)within 15e 20min.Experiments indicated that sorption equilibrium reached much faster in case of industrial wastewater sample (up to 20min)in comparison to single ions solution (up to 30min)using same biosorbent (Tsekova et al.,2010a ).These results are impor-tant,as equilibrium time is one of the important parameters for selecting a wastewater treatment system.This may be due to the presence of co e metal ions in the industrial ef fluents as well as to the differences in the heavy metal ions concentrations (Muhammad et al.,2009;Chatterjee et al.,2010).The removal percentages order at equilibrium was:Cd 2þ(95%)>Pb 2þ(88%)>Fe 3þ(70%)>Cu 2þ(60%)>Ni 2þ(48.9%)>Mn 2þ(37.7%)>Zn 2þ(15.4%)3.1.2.Sorption of heavy metals by immobilized biomass of A.nigerThe effect of immobilization of A.niger on PVA e hydrogel as well as on Ca alginate on the removal of heavy metal ions by adsorption was investigated.The metal removal study,illustrated in Tables 2,3showed that their removals were affected by immobilization of A.niger in comparison to the removal ef ficiency by free biomass (Table 1).In general,the both immobilized biosorbents displayed higher bio-sorption capacities for Mn 2þand Cu 2þ,presented in the ef fluent at higher initial concentrations.There was however considerabledifference in total biosorption capability of the test fungal bio-sorbents.Immobilized on Ca alginate cells of A.niger showed highest total biosorption capacity of 71.6mg/g for all heavy metal ions (Table 3),followed by PVA immobilized cells(68.9mg/g,Table 2)and free cells(59.3mg/g j ,Table 1),respectively.Meanwhile,the superior biosorption potential of Ca alginate e immobilized cells (22.6mg/g and 17mg/g)over PVA e immobilized ones (19.3mg/g and 15.6mg/g)was observed in the case of Mn 2þand Cu 2þions,respectively.In general,removal ef ficiency of the test biosorbents,for available metal ions,was observed to follow the sequence in following mode:FC (59.3%)<PVA e biomass (68.9%)<Ca alginate e biomass (71.6%).The both immobilized biosorbents displayed high removal potential for Cd 2,Pb 2þ,Fe 3þ,in comparison to other heavy metal ions from the industrial ef fluent.At the same time the immobilized biomass in Ca alginate exhibited the highest biosorption potency toward Mn 2þand Cu 2þions,that ’s why it was chosen for the following investigations.3.1.3.Effect of pHFig.1shows the effect of pH on the biosorption of different metals by A.niger immobilized biomass.Removal ef ficiency was analyzed over a pH range 5.5e 7.5.The results show that the metal sorption was a function of pH,as the pH increased from 5.5to 6.5,adsorption capacity increased at first for all metals.Maximum adsorption occurs at pH 6.5for Fe 3þ,Cu 2þ,Pb 2þand Cd 2þ,and at pH 7.5for Zn 2þ,Ni2þand Mn 2þ.The maximum removal ef ficiencies (%)for the different metals by Ca alginate e biomass were 96.3%for Cd 2þ(at pH 7.5)>90%for Pb 2þ(at pH 7.5)>80%for Fe 3þ(at pH 6.5)>72.8%for Cu 2þ(at pH 6.5)>61.5%for Mn 2þ(at pH 7.5)>59.7%for Zn 2þ(at pH 7.5)>58.9%for Ni 2þ(at pH 7.5).After pH 7.5the ef ficiency of the metal removal process increases drastically due to the formation of metal hydroxides with their respective metal ions (Zouboulis et al.,2003).This is mostly due to the metal precipitation as hydrox-ides which depend on the pH and ion concentration,but not due to the biosorption (Al e Qodah,2006;AjayKumar et al.,2009).pH value is one of the main factors in biosorption ef ficiency of different biosorbents.The different pH binding pro files for different metal ions are due to the nature of the chemical interactions of metal ions with the biosorbent.Solution pH in fluences surface metal binding sites of the biosorbents and the chemistry of the cell walls,as well as physicochemistry and hydrolysis of the metals.Table 3Characteristics of the biosorption process for removal of heavy metals from waste-water:Ca alginate e biomass m ¼0.3g/l;pH e 6.5.Performance of biosorbentHeavy metals in mixed solution,mg/l CuZnNiFePbCdMn Initial concentrationsmg/l 7 1.30.90.20.050.0813Equilibrium concentrations mg/l 1.90.580.410.040.0050.003 6.2Equilibrium time min 1510555515Heavy metal uptake mg/g 17 2.4 1.60.530.150.3022.6Removal ef ficiency%72.855.454.4809096.252.3Number of parallels:(n)3;relative standard deviation (RSD)3e 8%.102030405060708090100Cu Zn Ni Fe Pb Cd Mnr e m o v a l , %pH - 6.5pH - 7.5Fig.1.Effect of pH on metal ions removal from wastewater using Ca alginate e immobilized cells of Aspergillus niger as a biosorbent.(m 0.3g/l dry weight).Vertical bars show standard error of means of three replicates.K.Tsekova et al./International Biodeterioration &Biodegradation 64(2010)447e 4514493.1.4.Effect of adsorbent weight (g/l)The effect of adsorbent weight (g/l)on the adsorption ef ficiency of the best fungal biosorbent (Ca alginate e immobilized cells)is shown on Fig.2.Adsorption experiments were carried out at different biosorbent doses ranging from 0.1to 0.5g/l in mixed ions solution.It was observed as a general trend that there is an increase of the removal percentage with increase in adsorbent weight from 0.1to 0.3g/l.The maximum removal of the most heavy metal ions was attained at an adsorbent dose of 0.3g/l with no further signi ficant increase in the removal percentage at higher biosorbent concentration tested was observed.In the case of Fe 3þ,Mn 2þand Ni 2þmaximum removal was attained at 0.5g/l of adsorbent weight.Removal ef ficiency increases for Fe 3þfrom 80%till 90%,Mn 2þfrom 52.3%till 61.5%,and for Ni 2þfrom 58.9%till 79%when the sorbent mass increases from 0.3g/l to 0.5g/l.These results are in agreement with previously studies on many other adsorbents (Yu et al.,2001;Dakiky et al.,2002).As the biosorbent mass increases the number of available binding sites or surface area for the heavy metal ions also increased.However,the removal ef ficiency of Pb 2þand Cd 2þretained constant when the biosorbent weight increased.Accord-ing to the previous works,higher biosorbent dose could produce a “screening ”effect on the binding sites,thus resulting in lower heavy metal uptake (Yahaya et al.,2009;Tsekova et al.,2010a,b ).3.1.5.Secondary chemical treatment of the filtrate after biosorptionTo the filtrate obtained after biosorption 5ml 2%sodium diethyldithiocarbamate (NaDDTC)solution and 4g activated char-coal were added,mixed for 10min and filtered through Whatman N 1filter paper.In this second filtrate the concentration of all the examined heavy metals was below the detection limit of the measurement method.Such successful procedure for completely removing of heavy metals from ef fluents has been not reported in the literature yet.4.ConclusionThe ability of A.niger biomass to bind and remove heavy metals,i.e.Cu 2þ,Zn 2þ,Ni 2þ,Pb 2þ,Cd 2þ,Fe 3þ,Mn 2þfrom real wastewater was investigated.To overcome the separation problems of using freely suspended biomass form,as well as,mass loss after regen-eration of the biosorbent,the biomass was immobilized in the polymer matrixes (PVA and Ca alginate gels).Biosorption studies of Ca alginate e A.niger beads have been found to be effective in removing of relatively low concentrations of these seven heavy metals from wastewater.The process was mainly in fluenced by pH and biosorbent dose.At pH 6.5and biosorbent dose of 0.5g/l dry weight the removal ef ficiencies obtained for Ca alginate e biomass beads were:for Cd 2þe 96.2%;for Pb 2þe 90%;for Fe 3þe 90%;for Cu 2þe 73.5%;for Ni 2þe 70.9%for Zn 2þe 60.9%and Mn 2þe 61.5%.The results obtained showed that immobilized biomass of A.niger ,appears as a possible biosorbent to be used for treatment of metal e polluted industrial wastewaters.The secondary chemical treatment with NaDDTC-activated charcoal showed complete removal of all the studied heavy metals.AcknowledgementsThis work was supported by the National Science Fund at the Ministry of Education and Science of Republic of Bulgaria (Grant DOO2-185/2008)and Operative Program Human Resources (Grant BG051PO001e 3.3.04/32).ReferencesAjayKumar,A.V.,Darwish,N.A.,Hilal,N.,2009.Study of various parameters in thebiosorption on heavy metals on activated sludge (Special Issue for Environ-ment).World Applied Sciences Journal 5,32e 40.Al e Qodah,Z.,2006.Biosorption of heavy metal ions from aqueous solutions byactivated sludge.Desalination 196,164e 176.Chatterjee,S.K.,Bhattacharjee,I.,Chandra,G.,2010.Biosorption of heavy metalsfrom industrial waste water by Geobacillus thermodenitri ficans .Journal of Hazardous Materials 175,117e 125.Christian,V.,Shrivastava,R.,Shukla,D.,Modi,H.A.,Vyas,B.R.M.,2005.Degradationof xenobiotic compounds by lignin e degrading white e rote fungi:enzy-mology and mechanism involved.Indian Journal of Experimental Biology 43,301e 312.Dakiky,M.,Khamis,M.,Manassra,A.,Mer ’eb,M.,2002.Selective adsorption ofchromium (VI)in industrial wastewater using low e cost abundantly available adsorbents.Advance Environmental Research 6(4),533e 540.El e Naggar,M.Y.,El e Assar,S.A.,Youseff,A.Y.,El e Sersy,N.A.,Beltagy,E.A.,2006.Extracellular b e mannanase production by the immobilization of the locally isolated Aspergillus niger .International Journal of Agriculture &Biology 8(1),57e 62.Gupta,R.,Mukerji,K.G.,2001.Bioremediation:Past,present and future.In:Tewari,R.,Mukerji,K.G.,Gupta,J.K.,Gupta,L.K.(Eds.),Role of microbes in the management of environmental pollution.A.P.H.Publishing Corp,New Delhi,pp.73e 81.Kapoor, A.,Viraraghvan,T.,1995.Fungal biosorption:an alternative treatmentoption for heavy metal bearing wastewater:a review.Bioresource Technology 53,195e 206.Cu Zn Ni Fe Pb Cd Mnr e m o v a l , %m - 0.1g/l m - 0.3g/l m - 0.5g/lFig.2.Effect of sorbent dose on metal ions removal from wastewater using Ca alginate e immobilized cells of Aspergillus niger as a biosorbent.(pH 6.5).Vertical bars show standard error of means of three replicates.K.Tsekova et al./International Biodeterioration &Biodegradation 64(2010)447e 451450Leitão, A.L.,2009.Potential of Penicillium species in the bioremediationfield.International Journal of Environmental Research and Public Health6, 1393e1417.Mata,Y.N.,Blázquez,M.L.,Ballester,A.,González,F.,Munoz,J.A.,2009.Biosorption of cadmium,lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus.Journal of Hazardous Materials163,555e562. Muhammad,R.,Nadeem,R.,Hanif,M.A.,Ansari,T.M.,Rehman,K.U.,2009.Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton)waste biomass.Journal of Hazardous Materials161,88e94.Silva,R.M.P.,Rodriguez,A.Á.,De Oca,J.M.G.M.,Moreno,D.C.,2009.Biosorption of chromium,copper,manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum.Bioresource Technology100, 1533e1538.Tripathi,A.K.,Harsh,N.S.K.,Gupta,N.,2007.Fungal treatment of industrial efflu-ents:a mini e review.Life Science Journal4(2),78e81.Tsekova,K.,Christova,D.,Todorova,D.,Ivanova,S.,2008.Biosorption of ternary mixture of heavy metals by entrapped in PVA e hydrogel biomass of Penicillium cyclopium.Comptes rendus de l`Academie bulgare des Sciences61(9),1175e1180.Tsekova,K.,Todorova,D.,Dencheva,V.,Ganeva,S.,2010a.Biosorption of copper(II)and cadmium(II)from aqueous solutions by free and immobilized biomass ofAspergillus niger.Bioresource Technology101,1727e1731.Tsekova,K.,Christova,D.,Dencheva,V.,Ganeva,S.,2010b.Biosorption of binarymixture of copper and cobalt by free and immobilized biomass of Penicilliumptes rendus de l`Academie bulgare des Sciences63(1),85e90.Volesky,B.,Holan,Z.R.,1995.Biosorption of heavy metals.Biotechnology Progress11(3),235e250.Yahaya,Y.A.,Don,M.M.,Bhatia,S.,2009.Biosorption of copper(II)onto immobilizedcells of Pycnoporus sanguineus from aqueous solution:equilibrium and kineticstudies.Journal of Hazardous Materials161,189e195.Yu,B.,Zhang,Y.,Shukla,S.S.,Dorris,K.L.,2001.The removal of heavy metals fromaqueous solutions by sawdust adsorption:removal of lead and comparison ofits adsorption with copper.Journal of Hazardous Materials84,83e94.Zouboulis,A.I.,Matis,K.A.,Loukidou,M., Sebesta,F.,2003.Metal biosorption by PAN e immobilized fungal biomass in simulated wastewaters.Colloids andSurfaces212,185e195.K.Tsekova et al./International Biodeterioration&Biodegradation64(2010)447e451451。