五月月考试题
- 格式:doc
- 大小:2.06 MB
- 文档页数:6
2024年广东省肇庆市香山中学高考数学模拟试卷(5月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z i +=,则z =()A .12B .22C .D .22.双曲线()222210,0x y a b a b-=>>,则其渐近线方程为()A .y =B .y =C .2y x =±D .2y x =±3.已知角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边与单位圆交于第二象限的点P ,且点P 的纵坐标为12,则sin 2πα⎛⎫-= ⎪⎝⎭()A .12B .12-C .32D .32-4.()812y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为()A .336-B .28-C .56D .1125.记正项等差数列{}n a 的前n 项和为n S ,20100S =,则1011a a ⋅的最大值为()A .9B .16C .25D .506.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型()0kxy cec =>去拟合x 与y 的关系,设ln z y =,x 与z 的数据如表格所示:得到x 与z 的线性回归方程 1.2zx a =+ ,则c =()x3467z22.54.57A .2-B .1-C .2e-D .1e -7.已知直线y kx =是曲线xy e =的切线,则实数k 的值为()A .1eB .1e-C .e -D .e8.已知0b a >>,且满足ln ln a b b a =,e 为自然对数的底数,则()A .eaba e e<<B .b e ae a e<<C .b a ee e a<<D .aebe a e<<二、多选题:本题共3小题,共18分。
一、选择题(每小题2分,共20分)1. 下列词语中,字形、字音都正确的一项是()A. 沉鱼落雁恣意妄为B. 谦逊有礼融会贯通C. 鸡鸣狗盗妙手偶得D. 风驰电掣呼啸山林2. 下列句子中,没有语病的一项是()A. 他不仅在学术上有很高的成就,而且是一位优秀的演讲家。
B. 这个计划不仅受到了大家的支持,还得到了上级领导的批准。
C. 他的研究成果在国际上产生了广泛的影响,被誉为我国植物学领域的领军人物。
D. 由于连续加班,他的身体状况急剧恶化,不得不请假休息。
3. 下列各句中,没有错别字的一项是()A. 翠色欲流,碧波荡漾。
B. 气壮山河,意气风发。
C. 雕梁画栋,金碧辉煌。
D. 翠色欲滴,碧波荡漾。
4. 下列各句中,没有使用比喻修辞手法的一项是()A. 月亮像一面银盘,静静地挂在天空中。
B. 他的笑容像阳光一样温暖。
C. 她的声音像夜莺一样动听。
D. 那座山就像一位守卫边疆的战士。
5. 下列各句中,没有使用夸张修辞手法的一项是()A. 他跑得像风一样快。
B. 这本书厚得像一座山。
C. 她的歌声如天籁之音。
D. 这场雨下得像瀑布一样。
6. 下列各句中,没有使用拟人修辞手法的一项是()A. 风儿轻轻地拂过脸庞。
B. 雨滴在窗户上跳舞。
C. 树叶在风中沙沙作响。
D. 花儿在阳光下绽放。
7. 下列各句中,没有使用排比修辞手法的一项是()A. 春天来了,万物复苏,草木生长,花开满园。
B. 那是一座座高耸的山峰,一片片广阔的草原,一条条蜿蜒的河流。
C. 她是美丽的,是聪明的,是善良的。
D. 我们要努力学习,要积极向上,要勇于创新。
8. 下列各句中,没有使用设问修辞手法的一项是()A. 什么是真正的友谊?B. 这本书的价值在哪里?C. 为什么他会取得这样的成绩?D. 这句话是什么意思?二、填空题(每空1分,共10分)9. 下列诗句出自哪位诗人?()千山鸟飞绝,万径人踪灭。
10. 下列词语出自哪部作品?()草长莺飞二月天,拂堤杨柳醉春烟。
七年级第二学期5月份月考检测数学试卷含答案一、选择题1.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩2.已知|x+y -1|+(x -y+3)2=0,则(x+y)2019的值是( ) A .22019B .-1C .1D .-220193.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A .329557230x y x y +=⎧⎨+=⎩B .239557230x y x y +=⎧⎨+=⎩C .329575230x y x y +=⎧⎨+=⎩D .239575230x y x y +=⎧⎨+=⎩5.在关于x 、y 的二元一次方程组321x y a x y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( )A .1B .-3C .3D .4 6.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种 7.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有( )A .4种B .5种C .6种D .7种8.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5)9.若二元一次方程组的解为x=a ,y=b ,则a+b 的值 ( )A .B .C .D .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩二、填空题11.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).12.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.13.若m 1,m 2,…,m 2019是从0,1,2,这三个数中取值的一列数,m 1+m 2+…+m 2019=1525,( m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…,m 2019中,取值为2的个数为___________.14.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 15.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.16.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.17.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.18.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.19.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.23.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足34624 a b ca b c+-=⎧⎨-+=-⎩.(1)若a没有平方根,判断点A在第几象限并说明理由.(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由. 24.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A种魔方多少个时,两种活动费用相同?25.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A型电脑的进货量不少于14台,B 型电的进货量不少于A型电脑的2倍,那么该商店有几种进货方案?该商场购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.26.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组:}}1{,?{?3{39,311?4max x x ymin x x y-=++=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.2.C解析:C 【分析】由绝对值和平方的非负性可得1030x y x y +-=⎧⎨-+=⎩,再解方程组代入原式进行计算即可.【详解】解:根据题意可得10?30?x y x y +-=⎧⎨-+=⎩①②,用①加上②可得,2x+2=0,解得x=-1,则y=2,故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组. 3.A解析:A【分析】根据大小桶所盛酒的数量列方程组即可.【详解】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,∴得到方程组5352 x yx y+=⎧⎨+=⎩,故选:A.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.4.B解析:B【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可.详解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:2395 57230x yx y+=⎧⎨+=⎩,故选B.点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组. 5.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.解析:C【分析】设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x张+20y张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x0,,,,,,432105 x x x x xy y y y y y======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C.【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.7.C解析:C【分析】设可以兑换m张5元的零钱,n张2元的零钱,根据零钱的总和为50元,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出结论.【详解】设可以兑换m张5元的零钱,n张2元的零钱,依题意,得:5m+2n=50,∴m=10﹣25 n.∵m,n均为非负整数,∴当n=0时,m=10;当n=5时,m=8;当n=10时,m=6;当n=15时,m=4;当n=20时,m=2;当n=25时,m=0.∴共有6种兑换方案.故选:C.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8.A【分析】设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n-a n-1=2n,则a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,以上相加得到a n-a1的值,进而求得a n来解,再找到运动方向的规律即可求解.【详解】由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n的递推关系式a n-a n-1=2n是本题的突破口,对运动规律的探索知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动是解题的关键.9.A解析:A【解析】【分析】首先解方程组求得x、y的值,即可得到a、b的值,进而求得a+b的值.【详解】解:解方程组得:则则【点睛】此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.10.D解析:D 【解析】 ∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.二、填空题 11.是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三解析:是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y z x z ⎧+-=⎪⎨⎪-=⎩是三元一次方程组; 故填:是. 【点睛】本题主要考查三元一次方程组的定义.12.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可. 【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230. 故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可. 【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a,b,c,均为正整数.13.508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:解得:故取值为2的个数为508个,故答案为:508解析:508【分析】先设0有a个,1有b个,2有c个,根据据题意列出方程组2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩求解即可.【详解】解:设0有a个,1有b个,2有c个,由题意得:2019215251510a b cb ca c++=⎧⎪+=⎨⎪+=⎩解得:1002509508 abc=⎧⎪=⎨⎪=⎩故取值为2的个数为508个,故答案为:508.【点睛】此题主要考查了三元一次方程组的应用,会根据题意设未知数列方程并正确求解是解题的关键.14.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.15.25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的56,利润是每袋甲利润49,可知每袋乙礼包的利润是:4.5x×49=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴19.54612515415610512100%25% 415610512x x x x x xx x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯,∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.16.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】解析:43445 xyz⎧=⎪⎪=⎨⎪⎪=⎩【分析】先将三个方程依次标号,然后相加可得11194x y z++=④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.17.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
广东省广州市花都区黄冈中学2024-2025学年五月月考三模化学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本题包括12个小题,每小题3分,共36分.每小题只有一个选项符合题意)1.下列物质间的反应中,观察不到明显现象的是( )A.稀硫酸滴入碳酸钠溶液中B.将CO2通入氢氧化钙溶液中C.稀盐酸滴入氢氧化钠溶液中D.将稀盐酸滴入氢氧化铜中2.如果将物质按单质、氧化物、酸、碱、盐、有机物分类,如图中甲、乙、丙是三种不同类别的物质,且相连物之间均能发生化学反应,下列说法符合图示要求的是()A.当甲为氯化铵时,X可以为氢氧化钾B.当甲、乙、丙分别为酸、碱、盐时,X一定不可能为碳酸钠C.当X为氧气时,甲、乙、丙可以为氢气、红磷、葡萄糖D.当X为稀盐酸时,甲、乙、丙可以为铜、氢氧化铜、硝酸银3.下列有关安全知识的说法,正确的是A.通过降低可燃物的着火点可以灭火B.燃气泄漏时应马上打开排气扇C.高层建筑发生火灾时,应乘坐电梯撤离D.用灭火器灭火时,要对准火焰根部喷射4.四种物质在一定的条件下充分混合反应,测得反应前后各物质的质量分数如图所示。
则下列有关说法中不正确的是A.生成的甲、丙两物质的质量比例为1:8B.乙一定是这个反应的催化剂C.甲可能是单质D.参加反应的丁的质量一定等于生成甲和丙的质量之和5.钢的含碳量不低于0.03%,其中碳元素以Fe3C形式存在,则钢中Fe3C质量分数不低于() A.0.45% B.0.42% C.4.5% D.4.2%6.“关爱生命,拥抱健康”是人类永恒的主题,下列说法不科学的是A.加铁酱油可预防贫血病B.用亚硝酸钠代替食盐腌制腊肉C.甲醛有防腐作用,但不能浸泡食材D.煮沸是降低硬水硬度的方法之一7.与C60 互为同素异形体的是A.活性炭B.石墨C.木炭D.铅笔芯8.下列变化属于化学变化的是( )A.酒精挥发B.铁铸成锅C.河水结冰D.木柴燃烧9.分类可以使人们有序的研究物质,以下分类正确的是( )A.酸:HCl、H2CO3、KHCO3B.氧化物:SO2、Fe3O4、C1O2C.氮肥:HNO3、NH4Cl、CO(NH2)2D.有机物:CH4、CO、CH3COOH10.阿司匹林是一种历史悠久的解热镇痛药,其化学式为C9H8O4。
一、基础知识(每题2分,共20分)1. 下列字音、字形完全正确的一项是()A. 沉鱼落雁(yàn)B. 赏心悦目(shǎng)C. 青丝白发(sī)D. 眉清目秀(móu)2. 下列词语书写有误的一项是()A. 惊涛骇浪B. 摧枯拉朽C. 风和日丽D. 破釜沉舟(chén)3. 下列句子中,没有语病的一项是()A. 他每天早上都会去图书馆学习,直到晚上才回家。
B. 为了提高成绩,他努力学习,几乎把所有的时间都用在了学习上。
C. 这本书的内容非常丰富,对于喜欢阅读的同学来说,是一本不可多得的好书。
D. 经过长时间的努力,他的成绩有了很大的提高,这使他非常高兴。
4. 下列句子中,修辞手法使用正确的一项是()A. 月亮升上了天空,仿佛是一块银盘。
B. 他跑得像一阵风一样快。
C. 那只小鸟的叫声,像是在诉说着什么。
D. 这朵花真美,就像一个仙子。
5. 下列词语中,解释有误的一项是()A. 恍若:好像,仿佛。
B. 琳琅满目:形容东西很多,很美。
C. 津津有味:形容很有兴趣,很入迷。
D. 奇峰异石:形容山峰和石头奇特、美丽。
二、阅读理解(每题3分,共15分)阅读下面的文章,回答问题。
我的母亲(节选自《傅雷家书》)母亲是个好强的人,什么事都肯做。
父亲不在家,她既做母亲,又做父亲。
那时我还小,记不清有多少夜晚她等着我回来。
我回来晚了,她便倚在门边,微微闭着眼睛,手里拿着小竹扇,见我回来,她便微笑着说:“还不快去睡觉,明天还要早起呢!”她永远不责备我,总是安慰我。
母亲虽然身体不好,但她总是忙个不停。
家里家外,大事小事,她都要管。
她每天早起晚睡,几乎没有休息的时候。
我知道她为了家庭,为了我,付出了很多。
有一天,我生病了,躺在床上不能动弹。
母亲守在我的床前,日夜照顾我。
她给我喂药,给我擦汗,给我讲故事。
她用温柔的话语安慰我,让我感到温暖。
我虽然生病,但心里却很踏实,因为我知道,有母亲在,我就有了依靠。
2022-2023学年湖北省武汉市高一下学期5月月考数学试题一、单选题1.设复数满足,则( )z ()1i 2z +=z =A B .1C D .2【答案】C【分析】由复数相等及除法运算求复数,根据共轭复数概念及模的求法求结果即可.【详解】由题设,则.22(1i)1i1i (1i)(1i)z -===-++-1i z =+故选:C2.最接近( )sin2023A .B .C D 【答案】B【分析】先利用诱导公式得到,从而利用特殊角的三角函数值,判断出答案.()sin 137sin2023=-︒︒【详解】,()()0s sin 216137si in2023n 137=︒-︒=-︒︒其中为第三象限角,且当为第三象限角时,,137-︒αsin 0α<其中,又()sin 135sin 45-︒=-︒=()sin 120sin 60-︒=-︒=而较,离更近,135-︒120-︒137-︒综上,最接近sin2023故选:B3.下列说法正确的是( )A .各侧面都是正方形的四棱柱一定是正方体B .球的直径是连接球面上两点并且经过球心的线段C .以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥D .用一个平面截圆锥,得到一个圆锥和圆台【答案】B【分析】根据几何体的结构特征逐项分析判断.【详解】对于A :虽然各侧面都是正方形,但底面不一定是正方形,所以该四棱柱不一定是正方体,故A 错误;对于B :球的直径的定义即为“连接球面上两点并且经过球心的线段”,故B 正确;对于C :以直角三角形的直角边所在直线为轴旋转一周所得的旋转体是圆锥,以直角三角形的斜边所在直线为轴旋转一周所得的旋转体是两个共底面的圆锥组成的几何体,故C 错误;对于D :用一个平行于底面的平面截圆锥,得到一个圆锥和圆台,故D 错误;故选:B.4.已知都是锐角,且,则( )a β、cos a =cos β=a β+=A .B .4π34πC .或D .或4π34π3π23π【答案】B【分析】先求,,然后求的值,根据为锐角求出的值.sin a sin βcos()a β+,a βa β+【详解】因为都是锐角,且a β、cos a =cos β=所以sin sin a βcos()cos cos sin sin a a a βββ∴+=-==又()0,a βπ+∈34a β∴+=π故选B.【点睛】本题考查任意角的三角函数的定义,考查计算能力,是基础题.5.中国古代四大名楼鹳雀楼,位于山西省运城市永济市蒲州镇,因唐代诗人王之涣的诗作《登鹳雀楼》而流芳后世.如图,某同学为测量鹳雀楼的高度,在鹳雀楼的正东方向找到一座建筑物MN ,高约为37,在地面上点处(,,三点共线)测得建筑物顶部,鹳雀楼顶部AB m C B C N A 的仰角分别为30°和45°,在处测得楼顶部的仰角为15°,则鹳雀楼的高度约为( )M A MA .64B .74C .52D .91m m m m【答案】B【分析】求出,,,在中,由正弦定理求出,从AC 30AMC ∠=︒45MAC ∠=︒ACM △MC =而得到的长度.MN 【详解】因为中,⊥,m ,,Rt ABC △AB BC 37AB =30ACB ∠=︒所以m ,274AC AB ==因为中,⊥,,Rt MNC △NC MN 45MCN ∠=︒所以,sin 45MN MC =⋅︒=由题意得:,45,1804530105MAC MCA ∠=︒∠=︒-︒-︒=︒故,1801054530AMC ∠=︒-︒-︒=︒在中,由正弦定理得:,ACM △sin sin MC ACMAC AMC =∠∠即,74sin 45sin 30MC =︒︒故,74sin 45sin 30MC ︒==︒故m74MN ==故选:B6.已知锐角,,则边上的高的取值范围为( )ABC AB =π3C =AB A .B .C .D .(]0,3()0,3(]2,3()2,3【答案】C【分析】设边上的高为,根据题意得,再结合条件得,再分析求AB h ππ62A <<π2sin 216h A ⎛⎫=-+ ⎪⎝⎭值域即可.【详解】因为为锐角三角形,,设边上的高为,ABC π3C =AB h所以,解得π022ππ032A A ⎧<<⎪⎪⎨⎪<-<⎪⎩ππ62A <<由正弦定理可得,,4sin sin sin a b c A B C ====所以,,因为,4sin a A =4sin b B =11πsin223S ch ab ==所以2π14sin sin 4sin sin 32h A A A AA ⎫⎛⎫==-=+⎪ ⎪⎪⎝⎭⎭2πcos 2sin 21cos 22sin 216A A A A A A ⎛⎫=+=+-=-+ ⎪⎝⎭因为,所以,所以,ππ62A <<ππ5π2666A <-<1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭所以,所以边上的高的取值范围为.π22sin 2136A ⎛⎫<-+≤ ⎪⎝⎭AB (2,3]故选:C.7.已知向量,,满足,,,则的取值范围是( )a b c 1a = 2a b += ||3a c -= b c ⋅ A .B .C .D .[]12,6-[]12,4-[]10,6-[]10,4-【答案】A【分析】利用向量三角形不等式,求出的范围,进而求出的范围,再利用数量积的性||,||b c||||b c 质求解作答.【详解】,,而,即,解得,1a = 2a b += ||||||||||||b a a b b a -≤+≤+ |||1|2||1b b -≤≤+ 1||3b ≤≤ ,而,即,解得||3a c -=||||||||||||c a a c c a -≤-≤+ |||1|3||1c c -≤≤+ 2||4c ≤≤ 在直角坐标平面内,作,令,则,1,OA a OC a==- ,OB b OC c ==1||||2C B a b =+= ,||||3AC c a =-=于是点在以为圆心,2为半径的圆上,点在以为圆心,3为半径的圆上,如图,B 1C C A观察图形知,,当且仅当点都在直线上,且方向相反,||||||12b c b c ⋅≤≤ ,B C OA ,b c即点B 与D 重合,点C 与E 重合时取等号,即,解得,||||12b c b c -⋅≤≤ 12b c ⋅≥- 当且仅当点都在直线上,且方向相同,,B C OA ,b c若点B 与A 重合,点C 与E 重合时,,若点B 与D 重合,点C 与F 重合时,,因4b c ⋅= 6b c ⋅=此,6b c ⋅≤所以的取值范围是.b c ⋅126b c -≤⋅≤ 故选:A8.在中,有,则的最大值是( )ABC ()()2AC AB BC CB CA AB⋅-=⋅- tan CA B C D 【答案】D【分析】利用余弦定理和数量积定义化简得出三角形三边,,的关系,利用基本不等式求出a b c 的最小值,显然为锐角,要使取最大值,则取最小值,从而得出的最大值,cos C C tan C cos C sin C 即可求出的最大值.tan C 【详解】因为,()()2AC AB BC CB CA AB⋅-=⋅- 所以,22AC AB AC BC CB CA CB AB ⋅-⋅=⋅-⋅ 又,,AC BC CA CB ⋅=⋅ CB AB BC BA ⋅=⋅ 所以23AC AB BC BA CB CA ⋅+⋅=⋅ 又,,,222cos 2b c a AB AC bc A +-⋅== 222cos 2a c b BA BC ab B +-⋅== 222cos 2a b c CA CB ab C +-⋅==所以,2222222223()()22b c a a b c a c b +-+-++-=即,22223a b c +=,22222221(2)3cos 2236a b a b a b c a b C ab ab b a +-++-∴===+≥当且仅当即时取等号,36a b b a=b 显然为锐角,要使取最大值,则,此时C tan C cos C sinC =所以,即.sin tan cos C C C===tan C 故选:D .二、多选题9.若复数(i 为虚数单位),则下列结论正确的是( )20231i z =+A B .z 的虚部为-1C .为纯虚数D .2z 1iz =-【答案】ABC【分析】由的幂运算的周期性可求得;根据复数模长、虚部定义、乘方运算和共轭复数定i 1i z =-义依次判断各个选项即可.【详解】,()5052023431i 1i i 1iz =+=+⋅=-对于A ,A 正确;对于B ,由虚部定义知:的虚部为,B 正确;z 1-对于C ,为纯虚数,C 正确;()221i 2iz =-=-对于D ,由共轭复数定义知:,D 错误.1i z =+故选:ABC.10.在正方体中,M 为AB 中点,N 为BC 中点,P 为线段上一动点(不含C )过1AC 1CC M ,N ,P 的正方体的截面记为,则下列判断正确的是( )αA .当P 为中点时,截面为六边形1CC αB .当时,截面为五边形112CP CC <αC .当截面为四边形时,它一定是等腰梯形αD .设中点为Q ,三棱锥的体积为定值1DD Q PMN -【答案】AC【分析】延长交于,交于,延长交于,取的中点,连接交MN AD M 'CD N 'N P '11C D T 11A D S M S '于,连接,结合图形即可判断A ;延长交于,交于,连接1AA P '11,AC A C MN AD M 'CD N '交于,连接交于,此时截面为五边形,求出即可判断B ;当截面为1N D '1CC P 1M D '1AA P 'α1CPCC α四边形时,点与点重合,判断四边形的形状即可判断C.设为到平面的距离,P 1C 11A MNC h P QMN 三棱锥的体积:,不为定值,可判断D.Q PMN -13Q PMN P QMN QMN V V S h--==⋅ h 【详解】对A ,如下图所示,延长交于,交于,延长交于,取MN AD M 'CD N 'N P '11C DT 的中点,连接交于,连接,11A D S M S '1AA P '11,AC A C 因为M 为AB 中点,N 为BC 中点,所以,//MN AC 同理,又因为,所以,11//ST A C 11//AC A C //ST MN 同理,所以共面,//,//SP PN MP PT '',,,,,S T P N M P '此时六边形为截面,STPNMP 'α所以截面为六边形,故A 正确;α对B ,如下图所示,延长交于,交于,连接交于,MN AD M 'CD N '1N D '1CC P 连接交于,此时截面为五边形,1M D '1AA P 'α因为,所以,11CD C D ∕∕11CPN C PD ' ∽所以,即,11112CP CN C P C D '==113CP CC =所以当时,截面为五边形,故B错误;113CP CC ≤α对C ,当截面为四边形时,点与点重合,如图,αP 1C 由A 得,,所以四边形即为截面,11//MN A C 11A MNC α设正方体的棱长为1,则,1NC =1MA 11NC MA =所以四边形是等腰梯形,故C 正确.11A MNC 对D ,设为到平面的距离,h P QMN 延长,交于一点,连接与交于一点,MN DC E QE 1CC F 所以直线与平面相交,所以直线与平面不平行,1CC QMN 1CC QMN 三棱锥的体积:,Q PMN -13Q PMN P QMN QMN V V S h--==⋅ 因为为定值,P 为线段上一动点,所以到平面的距离不为定值,QMNS 1CC P QMN 所以三棱锥的体积为不为定值,故D 不正确.Q PMN -故选:AC.11.设、、是平面上任意三点,定义向量的运算:,其中由向量O A B ()det ,OA OB OA OB'=⋅ OA ' 以点为旋转中心逆时针旋转直角得到(若为零向量,规定也是零向量).对平面向量、OA O OA OA 'a 、,下列说法正确的是( )b cA .()()det ,det ,a b b a= B .对任意,R λ∈()()det ,det ,a b b a bλ+=C .若、为不共线向量,满足,则,a b(),yb c x a y x +=∈R ()()det ,det ,a c x a b=()()det ,det ,by c b a =D .()()()det ,det ,det ,0a b c b c a c a b ++=【答案】BD【分析】利用平面向量数量积的坐标运算可判断A 选项;利用A 选项中的结论结合题中定义可判断B 选项;利用平面向量数量积的运算性质可判断C 选项;对、是否共线进行分类讨论,结合a b题中定义可判断D 选项.【详解】设向量、在平面直角坐标系中的坐标分别为,,a b()12,a a a = ()12,b b b = 设,则,()cos ,sin a r r θθ=()()21ππcos ,sin sin ,cos ,22a r r r r a a θθθθ⎛⎫⎛⎫⎛⎫'=++=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 同理可得,()21,b b b '=-所以,,()()()21122112det ,,,a b a b a a b b a b a b '=⋅=-⋅=-+,则,A 错;()()()21121221det ,,,b a b a b b a a a b a b '=⋅=-⋅=-+()()det ,det ,a b b a≠ 对任意的,由A 选项可知,,R λ∈0b b '⋅= 当、不共线时,,a b ()1221det ,0a b a b a b =-≠,B 对;()()()()()det ,det ,det ,det ,a b b b a b b a b b a b a a bλλλ''+=-+=-⋅+=-⋅=-=因为,所以,,xa yb c +=c b xa b yb b xa b ''''⋅=⋅+⋅=⋅ 所以,,同理可得,C 错;()()()()det ,det ,det,det ,b c c b c b x a b b a a b '⋅==='⋅()()()()det ,det ,det ,det ,c a a c y b a a b==当、不共线时,由C 选项可知,,a b ()()()()det ,det ,det ,det ,c b a c c a b a b a b =+所以,,()()()()()det ,det ,det ,det ,det ,a b c c b a a c b b c a c a b=+=-- 所以,.()()()det ,det ,det ,0a b c b c a c a b ++=任取两个向量、,对任意的实数,,m n p ()()()det ,det ,m pn m pn p m n p m n''=⋅=⋅= 当、共线时,设存在使得,且,a b k ∈R b ka = ()det ,0a b = 所以,()()()()()det ,det ,det ,det ,det ,a b c b c a c a b b c ka c kb b++=⋅+,()()()()det ,det ,det ,det ,0k b c a k c b a k b c a k b c a =+=-=综上所述,,D 对.()()()det ,det ,det ,0a b c b c a c a b ++=故选:BD.【点睛】关键点点睛:本题考查平面向量中的新定义,解题的关键在于理解题中运算的含义,结合平面向量的线性运算与数量积运算逐项判断即可.12.假设,且.当时,定义平面坐标系为仿射坐标系,在仿射(0,π)α∈π2α≠xoy α∠=xoy α-α-坐标系中,任意一点P 的斜坐标这样定义:分别为x 轴,y 轴正方向上的单位向量,若21,e e ,则记为,那么下列说法中正确的是( )12OP xe ye =+ (,)OP x y = A.设,则(,)a m n = ||a = B .设,若//,则(,),(,)a m n b s t == a bmt ns -=C .设,若,则(,),(,)a m n b s t == a b ⊥ ()sin 0ms nt mt ns α+++=D .设,若与的夹角为,则(1,2),(2,1)a b =-=- ab π3π3α=【答案】ABD【分析】根据题意结合平面向量的相关运算逐项分析判断.【详解】由题意可得:,21211,11cos cos e e e e αα==⋅=⨯⨯=对于A :若,则,(,)a m n =12a me ne =+ 可得,()2222222212112222cos a me ne m e mne e n e m n mn α=+=+⋅+=++所以,故A 正确;||a = 对于B :∵,则,(,),(,)a m n b s t ==1212,a me ne b se te =+=+ 若//,则有:a b 当或时,则或,可得成立;0a = 0b =0m n ==0s t ==0mt ns -=当且时,则存在唯一实数,使得,0a ≠ 0b ≠λa b λ= 则,可得,整理得;()121212me ne se te se te λλλ+=+=+ m s n t λλ=⎧⎨=⎩0mt ns -=综上所述:若//,则,故B 正确;a b 0mt ns -=对于C :∵,则,(,),(,)a m n b s t ==1212,a me ne b se te =+=+ 可得,()()()()2212121122cos me ne se te mse m a b t ns e e nte ms nt mt ns α+⋅+=++⋅+=+++⋅= 若,则,故C 错误;a b ⊥ ()cos 0ms nt ns a b mt α+++==⋅对于D :∵,(1,2),(2,1)a b =-=-由选项A 可得:,|||a b ====由选项C 可得:,()()()()12211122cos 45cos a b αα-⨯-+⨯+-⨯+⨯-=-⎡⎤⎣⎦⋅=若与的夹角为,则,a bπ3πcos 3a b a b⋅=⋅即,解得,145cos 254cos αα-=-1cos 2α=∵,则,故D 正确;(0,π)α∈π3α=故选:ABD.三、填空题13.已知,则________.5π2tan 43θ⎛⎫+=-⎪⎝⎭tan θ=【答案】5-【分析】根据两角和的正切公式可求出结果.【详解】因为,5πtan tan5π4tan()5π41tan tan 4θθθ++=-⋅tan 121tan 3θθ+==--所以.tan 5θ=-故答案为:.5-14.已知,为非零不共线向量,向量与共线,则______.a b4a kb - ka b -+ k =【答案】2±【分析】依题意,可以作为平面内的一组基,则,根据平面向量基本定理a b ()4a a bkb k λ=-+-得到方程组,解得即可.【详解】因为,为非零不共线向量,所以,可以作为平面内的一组基底,a b a b又向量与共线,所以,即,4a kb - ka b -+ ()4a a b kb k λ=-+- 4k b a kb a λλ-=+- 所以,解得.4k k λλ=-⎧⎨-=⎩2k =±故答案为:2±15.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好116AA =11AA B B过的中点.当底面水平放置时,液面高为__________.1111,,,AC BC A C B C ABC 【答案】12【分析】根据给定条件利用柱体体积公式求出水的实际体积,再由两种情况的放置水的体积相同求解作答.【详解】设的面积为a ,底面ABC 水平放置时,液面高为h ,ABC 侧面水平放置时,水的体积为11AA B B133161244ABC V S AA a a =⋅=⋅=当底面ABC 水平放置时,水的体积为,于是,解得,ABC V S h ah == 12ah a =12h =所以当底面水平放置时,液面高为12.ABC 故答案为:1216.在中,角A ,B ,C 的对边分别为a ,b ,c ,若,ABC 2b =,点P 是的重心,且,则___________.(()cos 24sin 1A B C ++=ABCAP ==a 【答案】【分析】根据三角恒等变换可得或,利用重心的性质、模的性质及数量积得运算,可3A π=23A π=建立关于的方程,求解后利用余弦定理求a 即可.c 【详解】,(()cos 24sin 1A B C +++=(212sin 4sin 1A A ∴-+=整理得,(22sin 4sin 0A A -++=解得(舍去),sin A =sin 2A =0A π<< 或.3A π∴=23A π=又∵点P 是的重心,ABC 1,3AP AB AC →→→⎛⎫∴=+ ⎪⎝⎭22212||||cos 9AP AB AC AB AC A →→→⎛⎫∴=++⋅ ⎪⎝⎭,||2AP b == 整理得.24cos 240c c A +-=当时,,得,3A π=22240c c +-=4c =此时,214162242a =+-⨯⨯⨯解得;a =当时,,得,23A π=22240c c --=6c =此时,214362262a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭解得.a =故答案为:【点睛】本题主要考查了三角恒等变换,向量的数量积运算法则、性质,余弦定理,属于难题.四、解答题17.如图是一个奖杯的三视图,试根据奖杯的三视图计算:(1)求下部四棱台的侧面积;(2)求奖杯的体积.(尺寸如图,单位:,取3)cm π【答案】(1)2120cm(2)31344cm【分析】(1)根据题意直接运算求解即可;(2)根据相关体积公式分析运算.【详解】(1.5cm ==故.()2(816)522120cm 2S +⨯=+⨯=侧(2)V V V V=++球直四棱柱四棱台3441π8420[12816243323⎛⎫=+⨯⨯+⨯+⨯⨯ ⎪⎝⎭.3326406721344cm ≈++=18.已知棱长为1的正方体中.1111ABCD A B C D -(1)证明:平面;1//D A 1C BD (2)求三棱锥的体积.111B A B C -【答案】(1)证明见解析;(2).16【分析】(1)证明,再由线面平行的判定定理证明;11//AD BC (2)根据三棱锥体积公式计算即可.【详解】证明:(1)在棱长为1的正方体中,,且 1111ABCD A B C D -11//B C A D ∴11AB C D =所以四边形为平行四边形11ABC D 11//D A BC ∴又平面,平面,1BC ⊂1C BD 1AD ⊄1C BD 平面;1//D A ∴1C BD (2)由正方体易知,三棱锥的高为,111B A B C -1BB 所以111111111111113326A B C B A B C V S BB -==⨯⨯⨯⨯=⨯=.19.已知的内角,A ,B ,C 的对边为a ,b ,c ,且.ABC 3()3sin 2sin sin sin a b C Bc A B --=+(1)求;cos A(2)若的面积为为内角A 的角平分线,交边于点D ,求线段长的最大值.ABC AD BC AD【答案】(1)13(2)2【分析】(1)利用正弦定理角化边以及余弦定理求解;(2)根据面积公式求得,再根据等面积得6bc =11sin sin 22ABC S b AD CAD c AD BAD =⋅⋅∠+⋅⋅∠=△AD =解.【详解】(1)由正弦定理,得,即,3()32a b c ba b c --=+22223c b a bc +-=故.2221cos 23232bc c b a A bc bc +-===(2)由(1)知,sin A =因为的面积为,ABC 1sin 2bc A =6bc =又因为,1,cos 23A BAD CAD A ∠=∠==所以221cos1sin sin ,sin sin 23A BAD CAD BAD CAD -∠=∠==∠=∠=于是11sin sin 22ABC S b AD CADc AD BAD =⋅⋅∠+⋅⋅∠=△那么.1122AD b c⎛⋅⋅+⋅= ⎝所以(当且仅当时等号成立)2AD =≤=b c ==故的最大值为2.AD 20.设是边长为4的正三角形,点、、四等分线段(如图所示).ABC 1P 2P 3P BC(1)求的值;112AB AP AP AP ⋅+⋅ (2)为线段上一点,若,求实数的值;Q 1AP 19AQ mAB AC=+m (3)在边的何处时,取得最小值,并求出此最小值.P BC PA PC ⋅【答案】(1)26(2)13m =(3)在处时,取得最小值.P 3P PA PC ⋅1-【分析】(1)根据向量的线性运算和向量数量积的定义;(2)根据平面向量基本定理即可求解;(3)根据向量的数量积的定义和向量的加法即可求解.【详解】(1)∵是边长为4的正三角形,点、、四等分线段,ABC 1P 2P 3P BC ∴()()()112112AB AP AP AP AB AB BP AB BP AB BP ⋅+⋅=⋅+++⋅+ ;2211112264428AB AB BC AB BC AB BC AB AB BC BC ⎛⎫⎛⎫⎛⎫=⋅+++⋅+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)设,13134444AQ AP AB AC AB AC λλλλ⎛⎫==+=+ ⎪⎝⎭ 又,19AQ mAB AC=+根据平面向量基本定理解得;3111,4943m m λλ==⇒=(3)设,,PC tBC =[]0,1t ∈∴,()()2222168PA PC PC CA PC PC CA PC t BC CA tBC t t⋅=+⋅=+⋅=+⋅=-又,[]0,1t ∈∴当时,即在处时,取得最小值.(本题也可以建系来解题)14t =P 3P PA PC ⋅1-21.如图,某小区有一块空地,其中AB =50,AC =50,∠BAC =90°,小区物业拟在中间挖一ABC 个小池塘,E ,F 在边BC 上(E ,F 不与B ,C 重合,且E 在B ,F 之间),且.AEF △π4EAF ∠=(1)若EF 的值;BE =(2)为节省投入资金,小池塘的面积需要尽可能的小.设,试确定的值,使得AEF △EAB θ∠=θ的面积取得最小值,并求出面积的最小值.AEF △AEF △【答案】(2))12501【分析】(1)在中,利用余弦定理、正弦定理求得中,利用正弦定理EAB sin θ=ACF △结合三角恒等变换可求,即可得结果;CF (2)利用正弦定理用表示,再结合条件得到θ,AE AF AEF S△函数的性质求最值即可.【详解】(1)由题意可得BC ==设,则,π0,4EAB θ⎛⎫∠=∈ ⎪⎝⎭ππ,42FAC AFC θθ∠=-∠=+在中,由余弦定理,EAB 2222cos AE AB BE AB BE ABE =+-⋅⋅∠则,即,(222502501700AE=+-⨯⨯=AE =由正弦定理,可得sin sin BE AE EAB ABE =∠∠sin sin BE ABE EAB AE ⋅∠∠==即,可得πsin 0,4θθ⎛⎫=∈ ⎪⎝⎭cosθ==在中,ACF △πππsin sin sin cos cos sin 444FAC θθθ⎛⎫∠=-=-= ⎪⎝⎭,πsin sin cos 2AFC θθ⎛⎫∠=+==⎪⎝⎭由正弦定理,可得,sin sin CF ACFAC AFC =∠∠sin sin AC FACCF AFC⋅∠===∠故MN BC BE CF =--==故EF(2)设,则,π0,4EAB θ⎛⎫∠=∈ ⎪⎝⎭3ππ,42AEB AFC θθ∠=-∠=+由正弦定理,可得,sin sin AB AE AEB ABE =∠∠sin sin AB ABEAE AEB⋅∠===∠在中,由正弦定理,可得,ACF △sin sin AF ACACF AFC =∠∠sin sin AC ACFAF AFC⋅∠===∠故的面积AEF△11sin 22AEF S AE AF EAF =⋅⋅∠=,26251250sin cos cos sin 2cos 21θθθθθ====+++∵,∴,,π0,4θ⎛⎫∈ ⎪⎝⎭ππ3π2,444θ⎛⎫+∈ ⎪⎝⎭πsin 214θ⎛⎫<+≤ ⎪⎝⎭∴,当且仅当,即时,等号成)12501AEF S =≥=△πsin 214θ⎛⎫+= ⎪⎝⎭π8θ=立,故面积的最小值.AEF △)1250122.已知函数,其中a 为参数.()()sin cos 3sin 27f x a x x x =+--(1)证明:,;()()π3ππ22f x f x f x f x ⎛⎫⎛⎫=-=+=- ⎪ ⎪⎝⎭⎝⎭x ∈R(2)设,求所有的数对,使得方程在区间内恰有2023个根.*N n ∈(),a n ()0f x =()0,πn 【答案】(1)证明见解析;(2).2023)【分析】(1)根据给定条件,利用诱导公式计算推理作答.(2)确定函数的周期,讨论在方程在区间上的根的情况,再结合给定2023()f x π()0f x =(0,π)个根推理计算作答.【详解】(1)依题意,(π)[|sin(π)||cos(π)|]3sin(22π)7f x a x x x +=+++-+-,(|sin ||cos |)3sin 27()a x x x f x =-+---=,πππ()[|sin()||cos()|]3sin(π2)7222f x a x x x -=-+----(|cos ||sin |)3sin 27()a x x x f x =+--=3π3π3π()[|sin()||cos()|]3sin(3π2)7222f x a x x x -=-+----,(|cos ||sin |)3sin 27()a x x x f x =-+----所以.π3π()()(π)()22f x f x f x f x =-=+=-(2)由(1)知,函数是周期函数,周期为,()f x π对于每个正整数,都有,k ππ3π(7,()10,()4244k f a f f =-=-=-若1)得在区间内若有根,则各有偶数个根,7,a a a ≠≠≠()0f x =ππ(0,),(,π)22于是方程在区间内有偶数个根,不符合题意,()0f x =(0,π)n 如果,则,且,7a =()7(|sin ||cos |)3sin 27f x x x x =+--π()02f =当时,,π(0,2x ∈()7(sin cos )3sin 27f x x x x =+--设,结合,知可化为,πsin cos )4y x x x =+=+∈2sin 21x y =-()0f x =23740y y -+=于是,当时,方程在内有两个根,1241,3y y ==2y =43()0f x =π(0,)2当时,,π(,π)2x ∈()7(sin cos )3sin 27f x x x x =---设,结合,知可化为,πsin cos )4y x x x =-=-∈2sin 21x y =-()0f x =23y +7100y -=于是,方程在内无解,因此方程在内有三个解,12101,3y y ==-()0f x =π(,π)2()0f x =(0,π)从而方程在区间内有个解,由,得;()0f x =(0,π)n 3141n n n +-=-412023n -=506n =若,a =()sin ||cos |)3sin 27f x x x x =+--当时,,π(0,2x ∈()cos )3sin 27f x x x x =+--设,结合,知可化为,πsin cos )4y x x x =+=+∈2sin 21x y =-()0f x =2340y -+=于是,即只有一个解,121y y ==<π4x =当时,,π(,π)2x ∈()f x x =-cos )3sin 27x x --设,结合,知可化为,πsin cos )4y x x x =-=-∈2sin 21x y =-()0f x =23100y +-=显然函数在上单调递增,,方程没有属于2()310g y y =+-(1)70g =>()0g y =的根,因此方程在内只有1个根,从而方程在内有个根,于是;()0f x =(0,π)()0f x =(0,π)n n 2023n =若,a =()sin ||cos |)3sin 27f x x x x =+--当时,,π(0,2x ∈()cos )3sin 27f x x x x =+--设,结合,知可化为,πsin cos )4y x x x =+=+∈2sin 21x y =-()0f x =2340y -+=此方程无解,当时,,π(,π)2x ∈()cos )3sin 27f x x x x =---设,结合,知可化为,πsin cos )4y x x x =-=-∈2sin 21x y =-()0f x =23100y +-=于是,即只有一个解,121y y ==<3π4x =因此方程在内只有1个根,从而方程在内有个根,于是;()0f x =(0,π)()0f x =(0,π)n n 2023n =综上所述满足条件的为.(,)a n 2023)【点睛】思路点睛:涉及分段函数零点个数求参数范围问题,可以按各段零点个数和等于总的零点个数分类分段讨论解决.。
武汉中学2023—2024学年度五月月考高二数学试卷考试时间:2023年5月29日14:30——16:30 试卷满分:150分一、单选题(本大题共8小题,每小题5分,共40分。
在每小题列出的选项中,选出符合题目的一项)1.将甲、乙、丙、丁四名同学随机分配到三个会议中心担任志愿者,每个会议中心至少有一名同学,且每名同学只去一个会议中心,则甲和乙没有被分配到同一会议中心的概率为()A.16B.13C.56D.11122. 设110,022a b<<<<,随机变量ξ的分布3. 已知变量xx,yy=cc·ee kkkk拟合,设zz=ll ll yy,其变换后得到一组数据如下:xx16171819zz50344131由上表可得线性回归方程zz�=−4xx+aa�,则cc=( )A. −4B. ee−4C. 109D. ee1094. 我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没.三药”分别为金花清感颗粒、连花清瘟胶囊、血必清注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方.若某医生从“三药三方”中随机选出两种,事件AA表示选出的两种中至少有一药,事件BB表示选出的两种中有一方,则(|)()P B A=1 53103534式中任取2项,则取到的项都是有理项的概率为()6. 数列{}n a 的前n 项和为n S ,对一切正整数n ,点(),n n S 在函数2()2f x x x =+的图象上,n b n ∗=∈N且)1n ≥,则数列{}n b的前n 项和n T =( )A−B1− CD7. 现有3道四选一的单选题,学生李明对其中的2道题有思路,1道题完全没有思路.有思路的题答对的概率为0.8,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25,若每题答对得5分,不答或答错得0分,则李明这3道题得分的期望为( )A. 9310B. 374C. 394D.211208. 若1aa=ππ1ππππ=√31√3cc=ee (其中e 为自然对数的底数),则aa ,bb ,cc 的大小关系是( ) <bb <aaB. bb <cc <aaC. cc <aa <bbD. aa <cc <bb二、多选题(本大题共4小题,每小题5分,共20分。
七年级语文五月月考一积累和运用(32分)1、下面句中有一个错别字,改正后用行楷将这两句话书写在方格中。
要求:运笔流畅,结构合理,字形美观。
(4分)采得百花成密后,为谁辛苦为谁甜。
2、下列加点字注音全部正确的一项是()(2分)A、彷.徨(pánɡ)校.补(jiào)哽咽.(yàn)磐.石(pán)B、重荷.(hã)深邃.suì)归省.(xǐnɡ)不惮.(dān)C、炽.痛(chì)踱.步(duï)气氛.(fēn)祈.祷(qí)D、亘古..(ɡânɡ)嗥.鸣(háo)惬.意(qiâ)蓦.然(mî)3、下列对加点字解释没有错误的一项是()(2分)A、借旁近与之:给兽铤亡群:冒险人迹罕至:稀少B、未尝识书具:曾经锲而不舍:刻鲜为人知:新鲜C、卒之为众人:最终仰之弥高:更加层出不穷:穷尽D、蒙辞以军中多务:告辞警报迭起:屡次风悲日曛:昏黄4、下面文言语句中加点的字解释有误的一项是()(2分)A、其文理皆有可观者(文采和道理)B、不能称前时之闻(相当)C、万里赴戎机(奔赴)D、大兄何见事之晚矣(看见这些事情)5、加点成语使用不当的一项是()(2分)A、上课之前,教室里总是人声鼎沸。
B、这里秀丽的自然风光与丰富的文化景观,使游人流连忘返。
C、多少年来,弟弟到处打听哥哥的下落,真是望闻问切。
D、一篇文章,最忌杂乱无章。
6、指出说法正确的一项()(2分)A、法国作家莫泊桑,他的代表作有《项链》、《羊脂球》等,他被称为长篇小说巨匠。
B、《社戏》的作者,是中国现代文学的奠基人之一。
他的代表作有我国现代文学史上第一篇白话小说《狂人日记》,小说集《呐喊》、《彷徨》、《朝花夕拾》等。
C、《邓稼先》一文是美籍华裔物理学家杨振宁写的一篇人物传记,杨振宁曾获1957年诺贝尔物理学奖。
D、《最后一课》的作者是德国作家都德。
七年级五月月考语文试卷及答案七年级5月月考语文试卷一、(12分,每小题3分)1.下列各组词语中,加点字注音或书写有误的一组是()A.腌臜(zā)拘谨一代天骄迥(jiǒng)乎不同....B. 颀(qí)长妖娆张皇失措锲(qiâ)而不舍....C. 呜咽(yān)赫然慷概淋漓气冲斗(dîu)牛....D. 寒噤(jìn) 风骚心会神凝沥(lì)尽心血....2.依次填入下面横线上的词语,恰当的一组是()..(1)书能的兴趣,它教给人们憧憬和幻想。
它还唤起人们去行动:要知道受人尊敬的英雄都是敢作敢为、顽强劳动、不顾险阻才走向预定目标的。
(2)教室里自然一片笑声,但笑过之后,每个学生的心头都一股酸涩的感情,同时更增加了对刘老师的尊敬。
A.引发激烈腾起泛起B.激发强烈腾起泛起C.激发激烈泛起腾起D.引发强烈泛起腾起3.下列各项中,有语病的一项是()A.推进素质教育是保证青少年健康成长的条件之一。
B.学会控制自己的情绪,在己是一种涵养,对人是一种公德。
C.学校也要加强宣传,提高同学们对汉字书写的重要性。
D.国务院办公厅下发通知,禁止在全国范围内生产、销售、使用超薄塑料购物袋。
4.下列句子排序正确的一项是()..①咱们画图,有时候为的是实用。
②这类的图,绘画的动机都在实用。
③读者看了,明白了,住在外地的朋友看了,知道了,就完成了它的功能。
④编纂关于动物植物的书籍,要让读者明白动植物外面的形态跟内部的结构,就得画种种动物植物的图。
⑤修建一所房屋或者布置一个花园,要让住在别地的朋友知道房屋花园是怎么个光景,就得画关于这所房屋这个花园的图。
A. ⑤①②④③B.①④⑤②③C.①⑤④②③D.②①④⑤③二、阅读下面短文,完成5~7题。
(9分,每小题3分)感知地球的“千里眼”①2019年,第三十五届国际环境遥感大会在北京召开,来自全球56个国家和地区的1000余位遥感专家参加了会议,这也是该会议发起50年来首次在中国举办,这说明我国遥感技术的应用发展得到了国际同行的广泛认可。
2022-2023学年河南省郑州市高二下学期5月月考数学试题一、单选题1.在某项测试中,测量结果服从正态分布,若,则ξ()()21,0N σσ>()120.3P ξ<<=( )()0P ξ<=A .0.1B .0.2C .0.3D .0.4【答案】B【分析】根据正态分布的性质,利用其概率公式,可得答案.【详解】由题意可知,变量所作的正态曲线关于直线对称,ξ1x =则,,()()1201P P ξξ<<=<<()()02P P ξξ<=>故.()()121200.22P P ξξ-<<<==故选:B.2.已知等差数列的前n 项和为,,,则使取得最大值时n 的值为{}n a n S 1593a a a ++=1111S =-n S ( )A .5B .6C .7D .8【答案】A【分析】利用下标和性质和前n 项和公式可判断的符号,然后可得.56,a a 【详解】设等差数列的公差为d ,{}n a 因为,所以159533a a a a ++==510a =>又,所以11111611()11112a a S a +===-610a =-<所以等差数列的前5项为正数,从第6项开始为负数,{}n a 所以当时,取得最大值.5n =n S 故选:A3.已知的展开式中各项的二项式系数之和为256,则展开式中的常数项为( )()*1N nx n x ⎛⎫+∈ ⎪⎝⎭A .B .C .40D .7070-40-【分析】先由求得n ,再利用的展开式的通项求解常数项.2256n=81x x ⎛⎫+ ⎪⎝⎭【详解】因为的展开式中各项的二项式系数之和为256,()*1N nx n x ⎛⎫+∈ ⎪⎝⎭所以,解得,822562n ==8n =则的展开式的通项为,81x x ⎛⎫+ ⎪⎝⎭()()8821881C C rr r r rr T x x x --+⎛⎫== ⎪⎝⎭令,解得,820r -=4r =所以展开式中的常数项为,48C 70=故选:D.4.函数的单调递增区间是( )()ln f x x x =-A .B .C .D .(,e)-∞-1,e ⎛⎫-∞ ⎪⎝⎭10,e ⎛⎫⎪⎝⎭(0,e)【答案】C【分析】求出函数的定义域与导函数,再解关于导函数的不等式,即可求出函数的单调递增区间.【详解】函数的定义域为,()ln f x x x =-()0,∞+又,令,即,即,所以,()ln 1f x x '=--()0f x '>ln 10x -->ln 1x <-10e x <<所以的单调递增区间为.()f x 10,e ⎛⎫ ⎪⎝⎭故选:C5.某同学参加篮球测试,老师规定每个同学罚篮次,每罚进一球记分,不进记分,已知该1051-同学的罚球命中率为,并且各次罚球互不影响,则该同学得分的数学期望为( )60%A .B .C .D .30362026【答案】D【分析】根据二项分布数学期望公式可求得该同学罚球命中次数的数学期望,结合罚球得分的规则可计算得到结果.【详解】记该同学罚球命中的次数为,则,,X ()10,0.6X B ()100.66E X ∴=⨯=该同学得分的数学期望为.∴()()65106130426⨯+-⨯-=-=6.在数列中,已知且,则其前项和的值为( ){}n a 11a =12n n a a n ++=2929S A .B .C .D .56365421666【答案】C 【分析】将展开,根据题中递推公式进行分组求和,再利用等差数列前n 项和公式计算求解即29S 可.【详解】291234272829S a a a a a a a =++++⋅⋅⋅+++()()()()1234526272829a a a a a a a a a =+++++⋅⋅⋅++++12224226228=+⨯+⨯+⋅⋅⋅+⨯+⨯.()122462628421=+++⋅⋅⋅++=故选:C7.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列是一个“2023积数列”,且,则当其前n 项的乘积取最小值时n 的值为{}n a 101a <<( )A .1011B .1012C .2022D .2023【答案】A【分析】根据“m 积数列”判断出的单调性,再根据具体数据找出满足的最后一项,即可{}n a 1n a <得到选项.【详解】根据“2023积数列”性质可知,1234202220232023a a a a a a a ⨯⨯⨯⨯⋅⋅⋅⨯⨯=即,123420221a a a a a ⨯⨯⨯⨯⋅⋅⋅⨯=根据等比中项性质可知:,120222202132020101110121a a a a a a a a ===⋅⋅⋅==因为,且,101a <<0q >所以前1011项都是小于1的,从第1012项开始往后的都是大于1的,即为递增的等比数列,且,{}n a 101110121,1a a <>则当其前n 项的乘积取最小值时n 的值为1011.故选:A.8.设,,,则( )141e 5a =14b =5ln 4c =A .B .a b c >>a c b >>C .D .b a c >>c a b>>【答案】A【分析】利用作商法,结合对数函数的单调性,可得答案.【详解】由题意可得:,,441e e 5625a ==44114256b ==由,则;44256256e 2.7 1.11625625a b =≈⨯≈>a b >,令,,141ln e ln e 4b ==14e x =54y =由,则,即;44256e 1.11625x y =≈>y x >b c >综上可得:.a b c >>故选:A.二、多选题9.已知是两个随机事件,,下列命题正确的是( ),A B 0()1P A <<A .若相互独立,B .若事件,则,A B ()()P B A P B =A B ⊆()1P B A =C .若是对立事件,则D .若是互斥事件,则,A B ()1P B A =,A B ()0P B A =【答案】ABD【分析】利用条件概率、相互独立事件判断A ;利用条件概率的定义判断B ;利用条件概率及对立、互斥事件的意义判断C ,D 作答.【详解】对于A ,随机事件相互独立,则,,A 正,A B ()()()P AB P A P B =()(|)()()P AB P B A P B P A ==确;对于B ,事件,,,B 正确;A B ⊆()()P AB P A =()(|)1()P AB P B A P A ==对于C ,因是对立事件,则,,C 不正确;,A B ()0P AB =()(|)0()P AB P B A P A ==对于D ,因是互斥事件,则,,D 正确.,A B ()0P AB =()(|)0()P AB P B A P A ==故选:ABD10.对任意实数,有.则下列结论成立x ()()()()()823801238231111x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-的是( )A .B .01a =-2112a =-C .D .01281a a a a +++⋅⋅⋅+=8012383a a a a a -+-+⋅⋅⋅+=【答案】CD 【分析】求得的值判断选项A ;求得的值判断选项B ;求得的值判断选项0a 2a 0128a a a a +++⋅⋅⋅+C ;求得的值判断选项D.01238a a a a a -+-+⋅⋅⋅+【详解】由,()()()()()823801238231111x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-可得,()()8823121x x -=-+-⎡⎤⎣⎦当时,,则,A 选项错误;1x =()823a -=01a =由二项式定理可得,,B 选项错误;()822228C 12112a -=-=当时,,2x =()8012843a a a a -=+++⋅⋅⋅+即,C 选项正确;01281a a a a +++⋅⋅⋅+=当时,,0x =()8012383a a a a a -=-+-+⋅⋅⋅+即,D 选项正确.8012383a a a a a -+-+⋅⋅⋅+=故选:CD11.现将把椅子排成一排,位同学随机就座,则下列说法中正确的是( )84A .个空位全都相邻的坐法有种4120B .个空位中只有个相邻的坐法有种43240C .个空位均不相邻的坐法有种4120D .4个空位中至多有个相邻的坐法有种2840【答案】AC【分析】对于A ,利用捆绑法结合排列数;对于B ,利用插空法结合排列数;对于C ,利用插空法结合排列组合;对于D ,根据分类加法原理结合插空法,可得答案.【详解】对于A ,将四个空位当成一个整体,全部的坐法:种,故A 对;55A 120=对于B ,先排4个学生,然后将三个相邻的空位当成一个整体,和另一个空位插入由4个学生44A 形成的5个空档中有种方法,所以一共有种,故B 错;25A 4245480A A =对于C ,先排4个学生,4个空位是一样的,然后将4个空位插入由4个学生形成的个空档中44A 5有种,所以一共有种,故C 对;45C 4445A C 120=对于D ,至多有2个相邻即都不相邻或者有两个相邻,由C 可知都不相邻的有120种,空位两个两个相邻的有,空位只有两个相邻的有,4245A C 240=412454A C C 720=所以一共有种,故D 错;1202407201080++=故选:AC.12.甲、乙、丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,下列说法正确的是( )A .2次传球后球在丙手上的概率是14B .3次传球后球在乙手上的概率是13C .3次传球后球在甲手上的概率是14D .n 次传球后球在甲手上的概率是111132n -⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【答案】ACD【分析】列举出经2次、3次传球后的所有可能,再利用古典概率公式计算作答可判断ABC ,n 次传球后球在甲手上的事件即为,则有,利用全概率公式可得,nA 111n n n n n A A A A A +++=+11(1)2n n p p +=-再构造等比数列求解即可判断D.【详解】第一次甲将球传出后,2次传球后的所有结果为:甲乙甲,甲乙丙,甲丙甲,甲丙乙,共4个结果,它们等可能,2次传球后球在丙手中的事件有:甲乙丙, 1个结果,所以概率是,故14A 正确;第一次甲将球传出后,3次传球后的所有结果为:甲乙甲乙,甲乙甲丙,甲乙丙甲,甲乙丙乙,甲丙甲乙,甲丙甲丙,甲丙乙甲,甲丙乙丙,共8个结果,它们等可能,3次传球后球在乙手中的事件有:甲乙甲乙,甲乙丙乙,甲丙甲乙,3个结果,所以概率为,故B 错误;383次传球后球在甲手上的事件为:甲乙丙甲,甲丙乙甲,2个结果,所以概率为,故C 正确;2184=n 次传球后球在甲手上的事件记为,则有,nA 111n n n n n A A A A A +++=+令,则于是得()n n p P A =111(|)0,(|),2n n n n P A A P A A ++==,1111()()(|)()(|0(1)2n n n n n n n n n P A P A P A A P A P A A p p +++=+=⋅+-故,则,而第一次由甲传球后,球不可能在甲手中,即,11(1)2n n p p +=-1111()323n n p p +-=--10p =则有,数列是以为首项,为公比的等比数列,所以11133p -=-1{}3n p -13-12-即,故D 正确.1111(),332n n p --=--1111(32n n p -⎡⎤=--⎢⎥⎣⎦故选:ACD三、填空题13.在等比数列中,,是函数的极值点,则=__________.{}n a 3a 7a ()3214413f x x x x =++-5a 【答案】2-【分析】根据极值点的必要条件,可得,是函数的零点,结合零点的定义以3a 7a ()284f x x x '=++及二次方程根的性质,利用等比数列中等比中项的性质,可得答案.【详解】由函数,则其导数,()3214413f x x x x =++-()284f x x x '=++由,是函数的极值点,3a 7a ()3214413f x x x x =++-则,是函数的零点,3a 7a ()284f x x x '=++即,是方程的两个解,故,3a 7a 2840x x ++=374a a =378a a +=-在等比数列中,,且同号,即,故.{}n a 25374a a a ==357,,a a a 50a <52a =-故答案为:.2-14.接种流感疫苗能有效降低流行感冒的感染率,某学校的学生接种了流感疫苗,已知在流感高25发时期,未接种疫苗的感染率为,而接种了疫苗的感染率为.现有一名学生确诊了流感,则该14110名学生未接种疫苗的概率为___________【答案】1519【分析】根据条件概率公式求解即可.【详解】设事件“感染流行感冒”,事件“未接种疫苗”,A =B =则,,()31211954510100P A =⨯+⨯=()3135420P AB =⨯=故.()()()15|19P AB P B A P A ==故答案为:.151915.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃,将小球从顶端放入,小球在下落过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中,格子从左到右分别编号为1,2,3,……,6,用表示小球落入格子的号码,则下面结论中正确的序号是___________.X① ;()()11664P X P X ====② ;()()52532P X P X ====③ ;()()53416P X P X ====④.()52E X =【答案】② ③【分析】根据题意可知小球每次碰到小木钉后落下都是独立重复实验,根据独立重复实验概率计算规则计算即可.【详解】由题意可知,的所有取值为,X 1,2,3,4,5,6则,由对称性可知,()5111232P X ⎛⎫=== ⎪⎝⎭()()16132P X P X ====,()()41511525C 2232P X P X ⎛⎫====⨯⨯=⎪⎝⎭,()()322511534C 2216P X P X ⎛⎫⎛⎫====⨯⨯=⎪ ⎪⎝⎭⎝⎭所以.1557()(16)(25)(34)3232162E X =+⨯++⨯++⨯=故答案为:② ③16.已知e 是自然对数的底数.若,成立,则实数m 的最小值是()0,x ∀∈+∞eln mxm x ≥________.【答案】/1e 1e-【分析】根据给定的不等式,两边同乘x ,利用同构的思想构造函数,借助函数单调性求得恒成立的不等式,再分离参数构造函数,求出函数最大值作答.【详解】由得,即,eln mxm x ≥e ln mx mx x x ≥ln e e ln mx x mx x ≥⋅令,求导得,则在上单调递增,()e ,0xf x x x =>()(1)0x f x x e '=+>()f x ()0,∞+显然,当时,恒有,即恒成立,0m >01x <≤ln e e ln 00,mxx mx x >⋅≤ln e e ln mx x mx x ≥⋅于是当时,,有,1x >ln 0x >()()ln f mx f x ≥从而对恒成立,即对恒成立,ln mx x ≥()1,x ∀∈+∞ln xm x ≥()1,x ∀∈+∞令,求导得,则当时,;当时,,()ln x g x x =()21ln xg x x -'=()1,e x ∈()0g x '>()e,x ∈+∞()0g x '<因此函数在上单调递增,在上单调递减,,则,()g x (1,e)(e,)+∞max 1()e g x =1e m ≥所以实数m 的最小值是.1e 故答案为:1e【点睛】思路点睛:涉及函数不等式恒成立问题,将不等式等价转化,利用同构思想,构造新函数,借助函数的单调性分析求解.四、解答题17.彭老师要从10篇课文中随机抽3篇不同的课文让同学背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的7篇,求:(1)抽到他能背诵的课文的数量的分布列;X(2)他能及格的概率.【答案】(1)分布列见解析(2)4960【分析】(1)根据已知条件求出随机变量的取值,求出对应的概率,即可得出随机变量的分布列;(2)根据已知条件及随机变量的分布列的性质即可求解.【详解】(1)由题意可知,的可能取值为,则X 0,1,2,3,()3037310C C 10C 120P X ===,()2137310C C 71C 40P X ===()1237310C C 212C 40P X ===.()0337310C C 353C 120P X ===所以的分布列为X X123P1120740214035120(2)该同学能及格,表示他能背诵篇或篇,23由(1)知,该同学能及格的概率为.()()()2135492234012060P X P X P X ≥==+==+=18.已知数列是公差为2的等差数列,且满足,,成等比数列.{}n a 1a 2a 5a (1)求数列的通项公式;{}n a (2)求数列的前n 项和.11n n a a+⎧⎫⎨⎬⎩⎭n T 【答案】(1)21n a n =-(2)=21n nT n +【分析】(1)由成等比数列得首项,从而得到通项公式;125,,a a a (2)利用裂项相消求和可得答案.【详解】(1)设数列的公差为,{}n a d ∵成等比数列,∴,125,,a a a 1225a a a =即,2111()(4)a d a a d +=+∴,由题意222111124a a d d a a d ++=+2d =故,得,221111448a a a a ++=+11a =12121n a n n ∴=+-=-()即.21n a n =-(2),111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭∴1111111...23352121⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦n T n n .11122121n n n ⎛⎫=-= ⎪++⎝⎭19.已知函数.()()ln 1R f x x ax a =-+∈(1)讨论函数的单调性;()f x (2)若对任意的,恒成立,求实数的取值范围;0x >()0f x ≤a 【答案】(1)答案见解析(2)1a ≥【分析】(1)求导可得,分和进行讨论即可得解;()()10f x a x x '=->0a ≤0a >(2)根据题意参变分离可得恒成立,令,求出的最大值即可得解.ln 1x a x +≥()ln 1x g x x +=()g x 【详解】(1)依题意,,()()10f x a x x '=->当时,显然,所以在上单调递增;0a ≤()0f x ¢>()f x ()0,∞+当时,令,得;令,;0a >()0f x ¢>10x a <<()0f x '<1x a >即在上单调递增,在上单调递减.()f x 10a ⎛⎫⎪⎝⎭,1,a⎛⎫+∞ ⎪⎝⎭(2)由题意得恒成立,等价于恒成立,()()ln 100f x x ax x =-+≤>()ln 10x a x x +≥>令,即时成立.()()ln 10x g x x x +=>()maxa g x ≥则,当时,,当时,,()2ln xg x x '=-()0,1x ∈()0g x '>()1,+∈∞x ()0g x '<那么在上单调递增,在上单调递增减,所以,()g x ()0,1()1,+∞()()max =11g x g =所以.1a ≥20.已知等差数列的前项和为,,.正项等比数列中,,{}n a n n S 12a =4=26S {}n b 12b =.2312b b +=(1)求与的通项公式;{}n a {}n b (2)求数列的前项和.{}n n a b n nT【答案】(1),31n a n =-2nn b =(2)()13428n n T n +=-+【分析】(1)根据等差数列和等比数列的通项公式即可求的通项公式.(2)利用错位相减法整理化简即可求得前项和.n n T 【详解】(1)等差数列的前项和为,,,设公差为{}n a n n S 12a =4=26S d 所以,解得4342262d ⨯⨯+=3d =所以()()1123131n a a n d n n =+-=+-=-正项等比数列中,,,设公比为{}n b 12b =2312b b +=q 所以,所以()2212q q +=260q q +-=解得,或(舍去)2q ==3q -所以2nn b =(2)由(1)知:()312nn n a b n =-所以()122252312nn T n =⨯+⨯++- ()()23122252342312n n n T n n +=⨯+⨯+-+- 两式相减得:()123122323232312n n n T n +-=⨯+⨯+⨯++⨯--()()()211113212=22312=432812n n n n n -++⨯⨯-⨯+-----()13428n n T n +=-+21.第届亚运会将于年月日至月日在我国杭州举行,这是我国继北京后第二次举222023923108办亚运会.为迎接这场体育盛会,浙江某市决定举办一次亚运会知识竞赛,该市社区举办了一场A 选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表社区参加市亚运A 知识竞赛.已知社区甲、乙、丙位选手都参加了初赛且通过初赛的概率依次为、、,通A 3121213过初赛后再通过决赛的概率均为,假设他们之间通过与否互不影响.13(1)求这人中至多有人通过初赛的概率;32(2)求这人中至少有人参加市知识竞赛的概率;31(3)某品牌商赞助了社区的这次知识竞赛,给参加选拔赛的选手提供了两种奖励方案:A 方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖次,每次中奖的概率均为,且每次抽奖112互不影响,中奖一次奖励元;600方案二:只参加了初赛的选手奖励元,参加了决赛的选手奖励元.200500若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.【答案】(1)1112(2)3181(3)方案二更好,理由见解析【分析】(1)计算出人全通过初赛的概率,再利用对立事件的概率公式可求得所求事件的概率;3(2)计算出人各自参加市知识竞赛的概率,再利用独立事件和对立事件的概率公式可求得所求3事件的概率;(3)利用二项分布及期望的性质求出方案一奖金总额的期望,对方案二,列出奖金总额为随机变量的所有可能取值,并求出对应的概率,求出其期望,比较大小作答.【详解】(1)解:人全通过初赛的概率为,321112312⎛⎫⨯=⎪⎝⎭所以,这人中至多有人通过初赛的概率为.3211111212-=(2)解:甲参加市知识竞赛的概率为,乙参加市知识竞赛的概率为,111236⨯=111236⨯=丙参加市知识竞赛的概率为,131139⨯=所以,这人中至少有人参加市知识竞赛的概率为.31211311116981⎛⎫⎛⎫--⨯-=⎪ ⎪⎝⎭⎝⎭(3)解:方案一:设三人中奖人数为,所获奖金总额为元,则,且,X Y 600Y X =13,2X B ⎛⎫ ⎪⎝⎭ 所以元,()()160060039002E Y E X ==⨯⨯=方案二:记甲、乙、丙三人获得奖金之和为元,则的所有可能取值为、Z Z 600、、,90012001500则,()211160011236P Z ⎛⎫⎛⎫==-⨯-=⎪ ⎪⎝⎭⎝⎭,()212111115900C 1112233212P Z ⎛⎫⎛⎫⎛⎫==⋅--+-=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,()21211111112001C 1232233P Z ⎛⎫⎛⎫⎛⎫==⨯-+⋅-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()211115002312P Z ⎛⎫==⋅=⎪⎝⎭所以,.()1511600900120015001000612312E Z =⨯+⨯+⨯+⨯=所以,,()()E Y E Z <所以从三人奖金总额的数学期望的角度分析,品牌商选择方案二更好.22.已知函数.2()ln 3f x x ax x =+-(1)若函数的图象在点处的切线方程为,求函数的极小值;()f x ()()1,1f =2y -()f x (2)若,对于任意,当时,不等式恒成立,求实数1a =[]12,1,2x x ∈12x x <()()()211212m x x f x f x x x -->的取值范围.m 【答案】(1)2-(2)(],6∞--【分析】(1)利用求得,然后结合的单调性求得的极小值.()'10f =a ()f x ()f x (2)将不等式转化为,通过构造函数法,结合导()()()211212m x x f x f x x x -->1212()()m mf x f x x x ->-数来求得的取值范围.m 【详解】(1)因为的定义域为,2()ln 3f x x ax x =+-()0,∞+所以.()'123f x ax x =+-由函数f (x )的图象在点(1,f (1))处的切线方程为y =-2,得,解得a =1.()'11230f a =+-=此时.()'1(21)(1)23x x f x x x x --=+-=当和时,;10,2x ⎛⎫∈ ⎪⎝⎭()1,+∞()'0f x >当时,.1,12x ⎛⎫∈ ⎪⎝⎭()'0f x <所以函数f (x )在和上单调递增,在上单调递减,10,2⎛⎫ ⎪⎝⎭()1,+∞1,12⎛⎫ ⎪⎝⎭所以当x =1时,函数f (x )取得极小值.()1ln1132f =+-=-(2)由a =1得.()2ln 3f x x x x=+-因为对于任意,当时,恒成立,[]12,1,2x x ∈12x x <()()()211212m x x f x f x x x -->所以对于任意,当时,恒成立,[]12,1,2x x ∈12x x <1212()()m m f x f x x x ->-所以函数在上单调递减.()my f x x =-[]1,2令,,2()()ln 3m m h x f x x x x x x =-=+--[]1,2x ∈所以在[1,2]上恒成立,()'21230m h x x x x =+-+≤则在[1,2]上恒成立.3223m x x x ≤-+-设,()()322312F x x x x x =-+-≤≤则.()2'211661622F x x x x ⎛⎫=-+-=--+⎪⎝⎭当时,,所以函数F (x )在上单调递减,[]1,2x ∈()'0F x <[]1,2所以,()()26F x F ≥=-所以,故实数m 的取值范围为.6m ≤-(],6∞--【点睛】求解不等式恒成立问题,可考虑采用分离常数法,分离常数后,通过构造函数法,结合导数来求得参数的取值范围.。
南漳一中2015--2016学年下学期高二5月月考地理试题时间:90分钟总分:100分一、选择题(2分×30=60分)区域是地球表面的空间单位,它是人们在地理要素差异的基础上,按一定的指标和方法划分出来的。
下列三图中分别标注了我国的甲、乙、丙三个不同区域。
读图回答1~2题。
1.甲与丙两个地区的自然景观存在差异的主要原因是( )A.甲区深居内陆、降水量少B.丙区纬度较低,热量较充足C.丙区海拔高,气温低D.甲区年降水量丰富,获得太阳辐射能少2.乙区域中的山脉为我国重要的地理分界线,该山脉大致是( )①季风区和非季风区分界线②暖温带和中温带分界线③干旱区和半干旱区分界线④水田农业与旱作农业分界线A.①②B.②③C.③④D.①③热浪侵袭导致森林火灾频发,2013年至2014年,澳大利亚东南部一些地区森林火灾风险指数达到历史最高点,下图是根据2014年澳大利亚东南部一次森林大火事件T0至T3四个时间点的卫星影像加以分析制成的,下图的资料是该地区①②③④⑤⑥六个不同区域,在T0至T3四个时间点的森林燃烧状况。
据图回答3~4题。
3.图中绘制主要利用下列GIS的分析功能是( ) A.叠图分析 B.地势分析 C.路线分析 D.区域分析4.图中⑥处最可能为( )A.山峰B.山谷C.农田D.湖泊北半球季风气候区内某湖泊与其外流河干流存在“吞吐”关系。
下表为该湖泊水位和TSS(TSS 为总悬浮质,是指在水流中悬浮运动的泥沙量)通量随季节变化统计表,流入为正、流出为负。
据此回答5~6题。
月份 1 2 3 4 5 6 7 8 9 10 1112水位(m) 42.1 41.9 41.7 41.5 41 42.1 45 46 44 42.9 42.5 42.2TSS(106kg) -200 -150 -100 -60 -40 200 1300 2350 820 -300 -360 -3105.关于该湖泊TSS通量变化产生的影响,下列叙述错误的一组是( )①湖畔土壤肥力下降②湖泊航运条件变差③湖泊湿地生物多样性增多④湖泊调蓄功能不断改善⑤湖泊对周围地区气候调节作用减弱A.①②④B.①④⑤C.①②④⑤D.①③④6.该湖泊可能位于我国( )A.华北平原B.长江中游平原C.珠江三角洲D.四川盆地“海绵城市”是指城市能够像海绵一样,在适应环境变化和应对自然灾害等方面具有良好的“弹性”,下雨时吸水、蓄水、渗水、净水,需要时将蓄存的水“释放”并加以利用。
下图是我国西北某城市依“海绵城市”原理建设的道路绿化带。
据此完成7~8题。
7.下列对图中城市道路绿化带设计的评价,正确的是A.绿化带高度过低,不能发挥隔离车辆作用B.下凹式绿化带利于雨水收集,减少内涝C.裸露地面铺设砂石易造成扬沙天气并堵塞下水管道D.绿化带面积过大,易发生城市内涝8.“海绵城市”建设对水循环各环节影响最显著的是( )①调节地表径流②调节水汽输送③增加大气降水④增加下渗A.①②B.①④C.②③D.③④福建省莆田市萩芦镇已建全省最大的山区风电场,首次选用直径90米的大叶片风机,且朝向东北(如下图中乙图所示)。
图中甲图为海峡两岸部分区域图。
读图回答9~10题。
9.该地风电设施的密度和叶片朝向,下列需要考虑的主要因素是( )①人口的分布②年降水量③风频④地形⑤日照时数A.①③④B.①②③C.③④⑤D.②③⑤10.该省大力发展风电的原因是( )①减少酸雨的危害②发电量大且稳定③因地制宜发展可再生能源④以新能源全面替代常规能源A.①②B.①③C.②④D.②③下列为海河水系流域和水利图及海河与珠江水系、水文特征对比表。
据此回答11~12题。
长度(千米) 流域面积(万平方千米) 流域平均年径流量(亿立方米) 海河 1090 26.34 228珠江 2214 45.4 336011.海河平均年径流量远小于珠江,主要是因为海河()A.气候大陆性较强B.河流长度短,流域面积小C.蒸发旺盛,工农业生产和生活耗水量大D.调水工程减少了河流径流量12.20世纪中期以来,流域内出现众多水库,这些水库的作用主要有( )①保障城乡用水②有利于进行有效的防洪调度③实现水能开发,提供充足的电力供应④减缓干旱带来的不利影响⑤大坝拦截泥沙,防治水土流失⑥提高河道的通航能力A.①②④B.①③⑤C.②⑤⑥D.③④⑥读我国大兴安岭东西坡积温和降水量图,回答13~14题。
13.造成东西坡积温差异的主要原因有( )①地势高低②受冬季风影响的强弱③纬度高低④距海远近⑤植被类型的不同A.①②③B.②③⑤C.①②④D.③④⑤14.下列关于山脉东坡降水量变化的叙述中,正确的是( )A.随高度的增加降水量减少B.随高度的增加降水量先增加后减少C.随高度的增加降水量先减少后增加D.随高度的增加先变化不大,后降水量明显增加阅读下列材料,回答15~16题。
材料一就业弹性系数是指劳动力就业的增长率与经济增长率之间的比率。
下表为2002—2012年长沙市三次产业弹性系数表。
就业弹性系数为正值时,弹性系数越高,经济增长对就业的拉动效应越大;当其为负值时,弹性系数绝对值越高,经济增长对就业的“挤出效应”越强。
年份第一产业第二产业第三产业2002 -2.52 0.15 0.712003 -0.11 -0.02 0.49 2004 -0.04 0.08 -0.11 2005 -0.50 0.23 0.02 2006 0.02 0.05 0.05 2007 -0.04 0.17 0.16 2008-0.07 0.02 0.24 2009 -0.32 0.16 0.18 2010 -0.07 0.07 0.23 2011 -0.05 0.11 0.16 2012-0.210.070.16材料二 产业结构偏离度是指各产业的增加值比重与就业比重之比同1的差。
当其趋于0,表明产业结构与就业结构处于均衡状态,协调性最好;当其为正值,表明产业增加值比重大于就业比重,具有较强的劳动力吸纳能力;当其为负值,则表明产业增加值比重小于就业比重,表明该产业的生产效率较低,劳动力就会向其他部门转移。
15.上表信息显示长沙市在2002—2012年( )A.第一产业就业弹性系数多为负值,表明经济增长对第一产业就业具有拉动作用B.第二、三产业就业弹性系数多为正值,说明第二、三产业对就业都具有拉动作用C.第三产业就业弹性系数较大,说明第三产业对就业存在较强的“挤出效应”D.就业人口过分集中于第一产业16.根据材料推测,2002—2012年,长沙市产业结构偏离度最可能的是( ) A.三大产业偏离度都为负值 B.三大产业偏离度都为正值 C.第一产业偏离度为负值,第二、三产业为正值 D.第一、二产业偏离度为负值,第三产业为正值2014年2月14日,“引汉济渭”工程的标志性项目“三河口”水利枢纽在汉中开工建设。
结合下图,完成第17~18题。
17.据统计,关中地区的人均水资源占有量仅为全国平均水平的1/8、全省人均水平的1/4。
从某种意义上讲,“八百里秦川”是块干涸的平原。
下列关于关中地区缺水原因的叙述,正确的是( ) ①雨量集中在夏、秋两季,全年不均衡,雨季宝贵的降水却大多白白地流失 ②自然植被的破坏,土地本身涵养水源的功能降低 ③黄土本身保水性强,大多降水被储存在土层中 ④人类社会生产活动的粗放和不科学加剧了供需不平衡 A.①②④ B.②③④ C.①②③ D.①③④ 18.“引汉济渭”工程的影响有( )①缓解渭河平原地区水资源紧张状况 ②有利于发展航运,缓解南北向的交通压力 ③利用两地落差开发水能 ④可能影响汉江下游地区工农业用水 A.①② B.②③ C.③④ D.①④河北省将在廊坊打造以“研发创新—加工应用—传输发布”为特色的产业园区,成为京津两地产业转移的承接地。
图1为华北某区域图,图2为产业生产成本构成图。
读图,完成第19~20题。
图1 图219.该产业园区发展的主要产业类型与图乙相符的是( ) A.① B.② C.③ D.④20.与保定、承德相比,廊坊承接京津两地产业转移的优势区位是( ) A.交通和劳动力 B.地理位置和交通 C.劳动力和地租 D.科技水平和地租下图1为某大陆北纬48°沿线地区的年降水量变化示意图,据此回答21~22题。
21.该大陆为()A.欧洲大陆 B.南美大陆 C.澳大利亚大陆 D.北美大陆22.影响a地降水的主要风向是()A.东南风 B.西南风 C.东北风 D.西北风天津市某校“地理社团”进行了网上模拟探究活动,图7中表示模拟探究的区域和探险路线。
读图完成23~24题。
23.下列地理现象与主要成因对应正确的是( )A.①与⑦植被相似——大气环流相同 B.④与⑤气候不同——海陆位置不同C.①与②自然带不同——纬度位置不同 D.⑤与⑥自然带不同——海拔高度不同24.关于图中各点的叙述正确的是( )A.②地终年高温多雨 B.⑦地位于板块边界,多火山地震C.⑤地种植园农业发达,商品率低 D.⑥地盛产柑桔、葡萄、油橄榄下图是东亚部分地区示意图,图中甲、乙、丙三地纬度大致相同。
据此回答25~26题。
25.下列气候特征中,三地差异最明显的是()A.气温年较差 B.降水量的季节变化C.夏季风的风向 D.高温期与多雨期的时间26.日本1月0 ℃等温线与北纬38°纬线基本吻合,而中国东部地区1月0 ℃等温线与北纬33°纬线基本吻合。
说明()A.日本地形以山地为主,中国东部以平原为主B.日本1月南北温差小,中国东部1月南北温差大C.日本受冬季风影响小,中国东部受冬季风影响大D.日本1月晴朗天气多,中国东部1月日照时间短西班牙柑橘生产布局最主要的特征是专门化生产,下图示意西班牙柑橘生产布局。
读图10,完成27~28题。
27.柑橘产区按早、中、晚熟品种布局,主要是为了()A.提高劳动效率 B.提高单产 C.延长市场供应期 D.提高作物品质28.橘园中橘树行间种植杂草,其目的是()A.减小昼夜温差 B.提高土地生产效率 C.降低地面反射率 D.保持水土下图是“北美马更些河流域年降水量分布图(图12)”,据此回答29~30题。
29.图示区域年降水量( )A.由东南向西北递减B.由东北向西南递减C.由西南向东北递减D.由西北向东南递减30.马更些河( )A.以雨水补给为主B.有明显的凌汛C.结冰期短D.含沙量大二、综合题(40分)31阅读材料,完成下列问题。
(14分)材料一 下图为牙买加区域示意图。
表格为图中甲、乙两城市气候资料对比表。
1 2 3 4 5 6 7 8 9 10 11 12 甲城 气温(℃)25.725.626.226.927.628.228.628.528.127.62726.2降水(mm) 18 19 20 39 100 74 42 98 114 177 65 47乙城 气温(℃)26.525.326.125.425.626.828.328.427.125.925.625.1降水(mm)260 310 270 301 459 332 346 410 392 407 296 308材料二 咖啡是热带性植物,不耐寒,大多种植在300~400米的地区,但种植在海拔1 500米以上的山坡者品质较好,最适宜生长的平均温度为20 ℃左右,年降水量在1 500 mm ~2 000 mm 。