2017年春季学期新版新人教版九年级数学下学期27.3、位似同步练习5
- 格式:doc
- 大小:121.00 KB
- 文档页数:4
27.3 位似知能演练提升能力提升1.已知小孔成像原理的示意图如图所示,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( )A.16 cmB.13 cmC.12 cmD.1 cm2.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E'的坐标是( ) A.(-2,1) B .(-8,4) C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)3.在任意一个三角形内部,画一个小三角形,使其各边与原三角形各边平行,则它们的位似中心是( ) A.一定点B.原三角形三边垂直平分线的交点C.原三角形角平分线的交点D.位置不定的一点4.如图,将△ABC 的三边分别放大为原来的2倍得到△A 1B 1C 1(顶点均在格点上),它们是以点P 为位似中心的位似图形,则点P 的坐标是( )A.(-4,-3)B.(-3,-3)C.(-4,-4)D.(-3,-4)5.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的图形是△A'B'C.设点B 的对应点B'的横坐标是a ,则点B 的横坐标是( )A.-12a B.-12(a+1) C.-12(a-1)D.-12(a+3)6.下列关于位似图形的表述正确的是 .(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形 ②位似图形一定有位似中心③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形④位似图形上任意两点与位似中心的距离之比等于相似比7.如图,原点O 是△ABC 和△A'B'C'的位似中心,点A (1,0)与A'(-2,0)是对应点,△ABC 的面积是32,则△A'B'C'的面积是 .8.如图,梯形ABCD 的四个顶点分别为A (0,6),B (2,2),C (4,2),D (6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,相似比为1的位似图形A1B1C1D1;2(2)画出位似图形A1B1C1D1向下平移5个单位长度后的图形A2B2C2D2.9.如图,为测量有障碍物相隔的A,B两点间的距离,在适当处放置一水平桌面,铺上白纸,在点A,B处立上标杆,在纸上立大头针于点O,通过观测,在纸上确定了点C.已知O,C,A在同一条直线上,并且OA的长为OC的100倍,问接下来怎么做,就能得出A,B两点间的距离?创新应用★10.已知平面直角坐标系如图所示.(1)描出下列各点:A(1,0),B(3,0),C(3,3),D(0,1),并将这些点用线段依次连接起来;(2)以坐标原点O为位似中心,把(1)中所得图形放大为原来的2倍.★11.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)求△A1B1C1与△ABC的相似比;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,求依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标.能力提升1.D 易得△ABO ∽△CDO ,所以AB CD=122.所以CD=1(cm). 2.D 3.D4.A 因为是放大为原来的2倍,且点A 1,A 同在一条纵线上,所以点P 一定也在A 1A 的延长线上,设AP=x ,所以有xx+5=12,解得x=5,所以点P 的坐标是(-4,-3).5.D 假设将点C 平移到原点,则此时点B'的横坐标为a+1,则点B 的横坐标为-12(a+1),故原来的点B 的横坐标为-12(a+1)-1,即-12(a+3). 6.②③7.6 由题意得,相似比为2,所以S △ABC ∶S △A'B'C'=1∶4,即32∶S △A'B'C'=1∶4,所以S △A'B'C'=6. 8.解 (1)图形A 1B 1C 1D 1如图所示;(2)图形A 2B 2C 2D 2如图所示.9.解 再在纸上确定点D ,使点O ,B ,D 在一条直线上,且OB 是OD 的100倍,然后,再在纸上量出C ,D 两点间的距离,将其放大100倍即得A ,B 两点间的距离. 创新应用 10.解 如图.(1)顺次连接点A ,B ,C ,D 得四边形ABCD ;(2)以点O 为位似中心,把四边形ABCD 放大为原来的2倍,得新四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2.11.解(1)△A1B1C1与△ABC的相似比等于A1B1AB =42=2.(2)如图所示.(3)点P(a,b)为△ABC内一点,依次经过题中的两次变换后,点P的对应点P2的坐标为(-2a,2b).。
初中九年级数学下册第二十七章:相似——27.3:位似解析一:知识点讲解知识点一:位似图形的定义定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似也称为位似比。
位似图形一定是相似图形,而相似图形不一定是位似图形。
两个位似图形的位似中心可能位于图形的内部、外部、边上或顶点上。
两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。
图例:例1:如右图中的3组图形中,位似图形有(C)第1和3组是位似图形A.0组B.1组C.2组D.3组知识点二:位似图形的性质性质:✧位似图形的任意一对对应点到位似中心的距离之比等于相似比;✧位似图形的对应点连线交于一点;✧位似图形的对应线段平行(或在同一条直线上)且比相等;✧位似图形是相似图形,所以它具有相似图形的一切性质。
位似图形中任意两对对应点的连线的交点就是位似中心。
一对对应边与位似中心(不在同一直线上)形成的两个三角形相似。
五边形ABCDE ∽五边形E D C B A ''''',相似比=A O OA '例2:如图,D 、E 、F 分别是OA 、OB 、OC 的中点,下面的说法中,正确的是(B )1△ABC 与△DEF 是位似图形2△ABC 与△DEF 的相似比为1∶23△ABC 与△DEF 的周长之比为2∶14△ABC 与△DEF 的面积之比为4∶1A.①②③B.①③④C.①②④D.②③④知识点三:位似图形的画法步骤:✧确定位似中心✧分别过位似中心和原图的各关键点作直线✧根据相似比,找出所作位似图形的对应点✧按原图连接各点,得到放大或缩小的图形符合条件的位似图形往往不唯一作出的位似图形一般有两种情况:✧各对应点在位似中心的同侧✧各对应点在位似中心的两侧作位似图形时,要注意位似比的顺序性例3:如图所示的网格中,每个小方格都是边长为1的小正方形,B 点的左边为(﹣1,﹣1)。
人教版数学九年级下册第二十七章相似 27.3 位似同步练习1.如图,DE∥AB,CE=2BE,则△ABC与△DEC是以点为位似中心的位似图形,其相似比为.2.如图,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC与是位似图形,位似比为,△OAB与是位似图形,位似比为. 3.如图所示,下列图形中不是位似图形的是( )4.图中两个四边形是位似图形,它们的位似中心是( )A.点M B.点NC.点O D.点P5.△ABC的顶点坐标分别是A(0,-2),B(3,0),C(0,1),将这三个点的横、纵坐标都乘以3得到△A′B′C′,则△ABC与△A′B′C′是以为位似中心的位似图形,相似比是,S△A′B′C′∶S△ABC=.6.如图所示,在平面直角坐标系xOy中,点A、B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且点O′的坐标为(-1,0),则点B′的坐标为.7.两个图形不仅,而且对应顶点的连线,对应边,像这样的两个图形叫做位似图形,叫做位似中心.8.位似图形上任意一对对应点到位似中心的距离之比等于,位似图形的对应边分别或.9.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于.10.在平面直角坐标系中,在作(x,y)→(kx,ky)变换时,当k>0时得到的图形是向位似图形;当k<0时,得到的图形是向位似图形.11.如图,分别按下列要求作出四边形ABCD以O点为位似中心的位似四边形A′B′C′D′.(1)沿OA的方向放大为原图的2倍;(2)沿AO的方向放大为原图的2倍.12.已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标; (2)以点B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比为2∶1,并直接写出C 2点的坐标及△A 2BC 2的面积. 答案: 1. C 3∶22. △A′B′C′ 7∶4 △OA′B′ 7∶43. C4. D5. O 1∶3 9∶16. (53,-4)7. 相似 相交于一点 互相平行8. 这个交点 相似比 平行 在同一条直线上 9. k 或-k 10. 同 反 11. 解:12. 解:(1)C 1(2,-2),图略; (2)如图,C 2(1,0),S△A 2BC 2=10.。
人教版九年级数学下册《27.3位似》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中不是位似图形的是()A.B.C.D.2.如图,△ABC与△DEF是位似图形,点O是位似中心,若OA=2AD,S△ABC=4,则S△DEF等于()A.6B.8C.9D.123.如图,△ABC与△DEF是位似三角形,位似比为2:3,已知AB=3,则DE的长等于()A.49B.2C.92D.2744.如图,四边形EFGH与四边形ABCD位似,其位似中心为点O,且相似比为59,若四边形ABCD的周长为9,则四边形EFGH周长为()A.5B.259C.815D.729255.在平面直角坐标系中,已知点E(−4,2),F(−2,−2),以原点O为位似中心,将△EFO放大为原来的2倍,则点E的对应点E1的坐标是()A.(−2,1)B.(−8,4)C.(−8,4)或(8,−4)D.(−2,1)或(2,−1)6.如图,将视力表中的两个“E”放在平面直角坐标系中,两个“E”是位似图形,且相似比为2:1,位似中心为坐标原点O,点M与点N为一组对应点,若点M的坐标为(1,2),则点N的坐标为()A.(2,3)B.(2,4)C.(3,4)D.(1,4)7.如图,在平面直角坐标系中,△ABC与△FDE是位似图形,则它们位似中心的坐标是().A.(3,1)B.(4,2)C.(5,2)D.(6,0)8.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(−1,0)以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.−12a B.−a+12C.−a−12D.−a+32二、填空题9.已知点A(0,3),B(−4,8),以原点O为位似中心,把线段AB缩短为原来的1,点D与点B对应.则点D的坐4标为.10.如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为.11.如图,菱形ABCD与菱形A'BC'D'是位似图形,若AD=6,A'D'=4则菱形A'BC'D'与菱形ABCD的位似比为.12.在△ABC中A(−2,1),B(3,2),C(1,−4),将△ABC以O为位似中心放大为原来的3倍,成为△A′B′C′,则A′点的坐标为.,在位似13.如图,在平面直角坐标系中,已知△AOB中,点B(−9,−3),以原点O为位似中心,相似比为13中心同侧把△ABO缩小,则点B的对应点B′的坐标是.14.在如图所示的正方形网格中,以点O为位似中心,作△ABC的位似图形,若点D是点C的对应点,则点A的对应点是点.15.如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA=AD,则△ABC与△DEF的面积比是.16.如图,在平面直角坐标系中,△OAB顶点O在坐标原点,顶点A,B的坐标分别为(−2,−1),(−1.5,0).△OCD与△OAB位似,位似中心是原点O,若点D的坐标为(4.5,0),则点C的坐标为.三、解答题17.如图,分别按下列要求作出四边形ABCD以O点为位似中心的位似四边形A′B′C′D′.(1)沿OA方向放大为原图的2倍;(2)沿AO的方向放大为原图的2倍.18.在平面直角坐标系中,△OAB的三个顶点坐标分别为A(2,3),B(3,1),O(0,0).以原点O为位似中心,在第三象限画出△OA1B1,使它与△OAB的相似比是2.19.如图,在每个小正方形的边长为1个单位的网格中,给出了以格点(网格线的交点)为端点的线段AB和格点O.(1)在所给网格中,以格点O为位似中心将线段AB放大2倍得到线段A1B1,画出线段A1B1;(2)把线段AB绕端点B顺时针旋转90°得到线段BA2,画出线段BA2.20.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A1B2C2,且△A1B1C1与△A1B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.21.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−2),B(4,−1)(1)画出将△ABC向左平移5个单位,再向上平移3个单位后的△A1B1C1,并写出点B的对应点B1的坐标;(2)以原点O为位似中心,在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的面积比为4:1,并写出点B1的对应点B2的坐标;(3)若△A1B1C1内部任意一点P1的坐标为(a−5,b+3),直接写出经过(2)的变化后点P1的对应点P2的坐标(用含a ,b 的代数式表示).参考答案:题号 1 2 3 4 5 6 7 8 答案DCCAC BCD1.解:A 、是位似图形,故本选项不符合题意; B 、是位似图形,故本选项不符合题意; C 、是位似图形,故本选项不符合题意; D 、不是位似图形,故本选项符合题意; 故选:D .2.解:∵△ABC 与△DEF 是位似图形且OA =2AD . ∵两位似图形的位似比为2:3 ∵两位似图形的面积比为4:9 又∵S △ABC =4 ∵S △DEF =9. 故选:C .3.解:∵△ABC 与△DEF 是位似图形,位似比为2:3 ∵ABDE =23 ∵AB =3 ∵DE =92故选:C .4.解:∵四边形EFGH 与四边形ABCD 位似,且相似比为59∵C 四边形EFGHC四边形ABCD=59∵C 四边形ABCD =9 ∵C 四边形EFGH =5 故选A .5.解:∵原点O 为位似中心,将△EFO 放大为原来的2倍,点E 的坐标为(−4,2) ∵点E 的对应点E 1的坐标为(−4×2,2×2)或(−4×(−2),2×(−2)),即(−8,4)或(8,−4) 故选:C .6.解:∵两个“E”的相似比为2:1,点M的坐标为(1,2)∵点N的坐标为(2,4)故选B.7.解:如图,点G为位似中心,则它们位似中心的坐标是(5,2)故选:C.8.解:以点C为坐标原点建立新的坐标系点C的坐标是(−1,0)点B′的横坐标为:a+1以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′则点B在以C为坐标原点的坐标系中的横坐标为:−a+12点B在原坐标系中的横坐标为:−a+12−1=−a+32故选:D9.解:∵以原点O为位似中心,把线段AB缩短为原来的14,B(−4,8)∴点D的坐标为(−4×14,8×14)或[−4×(−14),8×(−14)]即:(−1,2)或(1,−2)故答案为:(−1,2)或(1,−2).10.解:∵图形甲与图形乙是位似图形,位似比为2:3 AB=6∵AB A′B′=23即6A′B′=23解得,A′B′=9故答案为:9.11.解:∵菱形ABCD与菱形A'BC'D'是位似图形∴菱形A'BC'D'与菱形ABCD 的位似比=A′D′AD=46=23故答案为:2∶3.12.解:∵△ABC 以原点O 为位似中心,将△ABC 以O 为位似中心放大为原来的3倍A (−2,1) ∵A ′的坐标为(−2×3,1×3)或[−2×(−3),1×(−3)] 即A ′的坐标为(−6,3)或(6,−3). 故答案为:(−6,3)或(6,−3).13.解:∵以原点O 为位似中心,相似比为13,在位似中心同侧把△ABO 缩小∵点B (−9,−3)的对应点B ′的坐标是(−3,−1). 故答案为:(−3,−1). 14.解:如图,连接AO 并延长∵以点O 为位似中心,点D 是点C 的对应点 ∴位似比为OC OD=24=12∴则点A 的对应点是H 故答案为:H . 15.解:∵OA =AD∴OA :OD =1:2∵△ABC 和△DEF 是以点O 为位似中心的位似图形∴△ABC ∽△DEF ,AB ∥DE ∴∠ODE =∠OAB,∠OBA =∠OED∴△AOB ∽△DOE ∴AB DE =OA OD =12∴△ABC 与△DEF 的面积比为:(12)2=14故答案为:1:4.16.解:∵顶点A,B的坐标分别为(−2,−1),(−1.5,0).△OCD与△OAB位似,位似中心是原点O,若点D 的坐标为(4.5,0)∴A点的对应点C的坐标为[−2×(−3),−1×(−3)],即(6,3)故答案为:(6,3).17.(1)解:沿OA方向放大为原图的2倍的图如下图所示(2)解:沿AO的方向放大为原图的2倍的图如下图所示18.解:∵△OAB的三个顶点坐标分别为A(2,3),B(3,1),O(0,0),△OA1B1在第三象限,且与△OAB的相似比是2∵A1(−4,−6),B1(−6,−2)如图所示:△OA1B1即为所求;19.(1)解:连接OA并延长至A1,使AA1=OA,连接OB并延长至B1,使BB1=OB,连接A1B1,所作线段A1B1如图所示;(2)解:以B中心,把线段AB顺时针旋转90°得到线段BA2,如图所示,线段BA2为求作的.20.(1)解:如图所示,连接AA1,CC1,线段AA1,CC1交与点M∵点M即为所求位似中心∵点M的坐标为(0,2)故答案为:(0,2).(2)解:位似比为2:1,位似中心为点A1,如图所示,延长C1A1,反向延长C1A1,使得A1C2=12A1C1,A1C2′=1 2A1C1延长B1A1,反向延长B1A1,使得A1B2=12A1B1,A1B2′=12A1B1∵△A1B2C2与△A1B2′C2′均为所求图形.(3)解:由(2)作图可知∵C2(−4,2)或C2′(−4,6)故答案为:(−4,2)或(−4,6).21.(1)解:如图所示,△A1B1C1为所求三角形,B1(−1,2);(2)解:如图所示,△A2B2C2为所求三角形,B2(−2,4);(3)解:∵在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的面积比为4:1∵△A2B2C2和△A1B1C1的相似比为2:1∵P1(a−5,b+3)∵P2(2a−10,2b+6).第11 页共11 页。
《27.3.1位似(1)》◆ 基础题1. 下列说法不正确的是 ( ) A .位似图形一定是相似图形 B. 相似图形不一定是位似图形C. 位似图形上任意一对对应点到位似中心的距离之比等于位似比D. 位似图形中每组对应点所在的直线必相互平行2.如图,已知BC ∥DE ,则下列说法中不正确的是 ( ) A .两个三角形是位似图形 B .点A 是两个三角形的位似中心 C .AE ︰AD 是位似比D .点B 与点E 、点C 与点D 是对应位似点3.把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________。
◆ 能力题4.将一个菱形放在2倍的放大镜下,则下列说法中不正确的是 ( ) A .菱形的边长扩大到原来的2倍 B .菱形的角的度数不变 C .菱形的面积扩大到原来的2倍 D .菱形的面积扩大到原来的4倍 5.如图,DC ∥AB ,OA =2OC ,,则OCD △与OAB △的位似比是________。
6.如图,以A 为位似中心,将△ADE 放大2倍后,得位似图形△AB C ,若 1S 表示△ADE 的面积,2S 表示四边形DBCE 的面积,则21:S S =( ) A . 1︰2 B .1︰3 C .1︰4 D .2︰3提升题7.雨后操场,小明从他前面2米远的一小块积水中看到了旗杆顶端的倒影,如果旗杆底端到积水的距离为20米,小明眼睛离地面1.5米,则旗杆的高度为多少?8.在如图的方格纸中(每个小方格的边长都是1个单位)有一点O 和ABC △。
(1)请以点O 为位似中心,把ABC △缩小为原来的一半(不改变方向),得到A B C '''△。
(2)请用适当的方式描述A B C '''△的顶点A ',B ',C '的位置。
9.如图,已知△ABC中,AB=12,BC=8,AC=6,点D、E分别在AB、AC上,如果以A、D、E为顶点的三角形和以A、B、C为顶点的三角形相似,且相似比为13。
27.3 位似第1课时 位似图形的概念及画法1.下图中的两个图形不是位似图形的是( )2.图中的两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P3.两个图形中,对应点到位似中心的线段比为2∶3,则这两个图形的相似比为( )A .2∶3B .4∶9 C.2∶ 3 D .1∶24.如图,两个位似图形△ABO 和△A ′B ′O ,且AB ∥A ′B ′,若OA ∶OA ′=3∶1,则正确的是( )A .AB ∶A ′B ′=3∶1 B .AA ′∶BB ′=AB ∶A ′B ′C .OA ∶OB ′=2∶1D .∠A =∠B ′5.如图,△DEF 与△ABC 是位似图形,点O 是位似中心,点D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1∶6B .1∶5C .1∶4D .1∶26.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE EA =43,则FGBC= .7.如图,△ABC 与△A ′B ′C ′是位似图形,且位似比是1∶2,若AB =2 cm ,则A ′B ′= cm ,并在图中画出位似中心O.8.如图,以O点为位似中心,将四边形ABCD缩小为原来的一半.9.如图,边长为1的正方形网格纸中,△ABC为格点三角形(顶点都在格点上).在网格纸中,以点O为位似中心画出△ABC的一个位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为1∶2.(只需画出一个符合条件的△A′B′C′,不要求写画法)10.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对11.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②③ B.①②C.③④ D.②③④12.如图,四边形ABCD与四边形AEFG是位似图形,且AC∶AF=2∶3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2∶3C.四边形ABCD与四边形AEFG的周长比是2∶3D.四边形ABCD与四边形AEFG的面积比是4∶913.如图,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心O ;(2)求出△ABC 与△A ′B ′C ′的相似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的相似比等于1.5.14.如图,已知B ′C ′∥BC ,C ′D ′∥CD ,D ′E ′∥DE. (1)求证:四边形BCDE 位似于四边形B ′C ′D ′E ′; (2)若AB ′B ′B=3,S 四边形BCDE =20,求S 四边形B ′C ′D ′E ′.第2课时 平面直角坐标系中的位似1.如图,在平面直角坐标系中,以原点为位似中心,将△AOB 扩大到原来的2倍,得到△OA ′B ′.若点A 的坐标是(1,2),则点A ′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)2.如图所示,在平面直角坐标系中,已知点A(2,4),过点A 作AB ⊥x 轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .2 53.如图,在平面直角坐标系中,以点O 为位似中心,将△OCD 放大得到△OAB ,点C ,D 的坐标分别为(2,1),(2,0),且△OCD 与△OAB 的面积之比为1∶4,则点A 的坐标为( )A .(8,4)B .(8,2)C .(4,2)D .(4,8)4.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(32,32)C .(2,2)D .(2,2)5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则大鱼上的一点(a ,b)对应小鱼上的点的坐标是6.如图,以原点O 为位似中心,把△OAB 放大后得到△OCD ,求△OAB 与△OCD 的相似比.7.如图,在平面直角坐标系中,作出五边形ABCDE 的位似图形,使得新图形A 1B 1C 1D 1E 1与原图形对应线段的比为2∶1,位似中心是坐标原点O.8.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0),现以原点为位似中心,将线段CD 放大得到线段AB.若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为9.在平面直角坐标系中,点P(m ,n)是线段AB 上一点,以原点O 为位似中心,把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( )A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)10.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(-1,2)B .(-9,18)C .(-9,18)或(9,-18)D .(-1,2)或(1,-2)11.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A(1,0)与A ′(-2,0)是对应点,△ABC 的面积是32,则△A ′B ′C ′的面积是 .12.如图,网格中每个小正方形的边长为1,已知△ABC ,画出△ABC 以坐标原点O 为位似中心的位似图形△A ′B ′C ′,使△A ′B ′C ′在第三象限,与△ABC 的位似比为12,写出三角形各顶点的坐标,位似变换后对应顶点的坐标发生了什么变化?13.如图,正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n ,如图位置依次摆放,已知点C 1,C 2,C 3,…,C n 在直线y =x 上,点A 1的坐标为(1,0).(1)写出正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n 的位似中心的坐标; (2)正方形A 4A 5B 4C 4四个顶点的坐标.14.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1∶S△A2B2C2=1∶4.(不写解答过程,直接写出结果)参考答案:27.3 位似第1课时 位似图形的概念及画法1.D 2.D 3.A 4.A 5.C 6.=47.7.4.解:如图所示. 8.解:图略. 9.解:如图所示. 10.D 11.A 12.B 13.解:(1)位似中心O 的位置如图所示. (2)∵OA OA ′=12,∴△ABC 与△A ′B ′C ′的相似比为1∶2. (3)如图所示.14.解:(1)证明:∵B ′C ′∥BC ,C ′D ′∥CD ,D ′E ′∥DE , ∴AB ′AB =B ′C ′BC =AC ′AC =C ′D ′CD =AD ′AD =D ′E ′DE =AE ′AE, ∠AB ′C ′=∠ABC ,∠AC ′B ′=∠ACB ,∠AC ′D ′=∠ACD ,∠AD ′C ′=∠ADC ,∠AD ′E ′=∠ADE ,∠AE ′D ′=∠AED.∴∠AC ′B ′+∠AC ′D ′=∠ACB +∠ACD , ∠AD ′C ′+∠AD ′E ′=∠ADC +∠ADE , 即∠B ′C ′D ′=∠BCD ,∠C ′D ′E ′=∠CDE. ∵AB ′AB =AE ′AE ,∠B ′AE ′=∠BAE , ∴△B ′AE ′∽△BAE.∴B ′E ′BE =A ′B ′AB ,∠AE ′B ′=∠AEB ,∠AB ′E ′=∠ABE.∴B ′C ′BC =C ′D ′CD =D ′E ′DE =B ′E ′BE ,∠AB ′C ′-∠AB ′E ′=∠ABC -∠ABE , ∠AE ′D ′-∠AE ′B ′=∠AED -∠AEB , 即∠E ′B ′C ′=∠EBC ,∠B ′E ′D ′=∠BED. ∴四边形BCDE 与四边形B ′C ′D ′E ′是相似图形.又∵四边形BCDE 与四边形B ′C ′D ′E ′对应顶点相交于一点A , ∴四边形BCDE 位似于四边形B ′C ′D ′E ′. (2)∵AB ′B ′B =3,∴AB ′AB =34.∴四边形BCDE 与四边形B ′C ′D ′E ′位似之比为43.∵S 四边形BCDE =20,∴S 四边形B ′C ′D ′E ′=20(43)2=20×916=454.第2课时 平面直角坐标系中的位似1.C 2.A 3.C 4.C5. (-0.5a ,-0.5b ).6.解:∵点B 的坐标是(4,0),点D 的坐标是(6,0),∴OB =4,OD =6.∴OB OD =46=23. ∵△OAB 与△OCD 关于点O 位似,∴△OAB 与△OCD 的相似比为23. 7.解:如图所示.8.(4,6)或(-4,-6).9.B10.D11. 6.12.解:△ABC 三个顶点的坐标分别是A (2,2),B (6,4),C (4,6).△A ′B ′C ′三个顶点的坐标分别是A ′(-1,-1),B ′(-3,-2),C ′(-2,-3).观察图形可知,△A ′B ′C ′各顶点的坐标分别是将△ABC 各对应顶点的坐标乘-12. 13.解:(1)正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n 的位似中心的坐标为(0,0).(2)∵点C 1,C 2,C 3,…,C n 在直线y =x 上,点A 1的坐标为(1,0),∴OA 1=A 1C 1=1,OA 2=A 2C 2=2.∴A 3O =A 3C 3=4.∴OA 4=A 4C 4=8.∴OA 5=16.∴A 4(8,0),A 5(16,0),B 4(16,8),C 4(8,8).14.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.。
人教版九年级数学下册27.2.3 相似三角形应用举例同步测试附解析学生版一、单选题(共10题;共30分)1.(3分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m2.(3分)如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cm B.12cm C.18cm D.24cm3.(3分)路边有一根电线杆AB和一块长方形广告牌,有一天小明突然发现在太阳光照射下,电线杆顶端A的影子刚好落在长方形广告牌的上边中点G处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知BC=5米,长方形广告牌的长HF=4米,高HC=3米,DE=4米,则电线杆AB的高度是()A.6.75米B.7.75米C.8.25米D.10.75米4.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36 π平方米B.0. 81 π平方米C.2 π平方米D.3.24 π平方米5.(3分)如图,为了估计某一条河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R,如果QS = 60m,ST =120m,QR=80m,则这条河的宽度PQ为()A.40m B.120m C.60m D.180m6.(3分)如图,路灯距地面8m,身高 1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m7.(3分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯A的高度AB等于()A.4.5 m B.6 m C.7.2 m D.8 m8.(3分)如图,正方形ABCD的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠DPE=90°,PE交AB于点E,设BP=x,BE=y,则y关于x的函数图象大致是()A.B.C.D.9.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米10.(3分)某天同时同地,甲同学测得1m的测竿在地面上影长为0.8m,乙同学测得国旗旗杆在地面上的影长为9.6m,则国旗旗杆的长为()A.10m B.12mC.13m D.15m二、填空题(共5题;共15分)11.(3分)如图,▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S∠AFB :S四边形FEDC的值为12.(3分)如图,身高1.8米的轩轩从一盏路灯下的B处向前走了4米到达点C处时,发现自己在地面上的影子CE长与他的身高一样,则路灯的高AB为米.13.(3分)如图,小明为了测量高楼MN的高度,在离点N18米的点A处放了一个平面镜,小明沿NA方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M,已知小明的眼睛(点B)到地面的高度BC是1.6米,则高楼MN的高度是.14.(3分)如图,为了测量一栋楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直到她刚好在镜子里看到楼的顶部,如果王青身高1.55m,她估计自己眼睛距地面1.50m.同时量得LM=30cm,MS=2m,则这栋楼高m.15.(3分)如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若幻灯片到光源的距离为20 cm,到屏幕的距离为120 cm,且幻灯片中的图形的高度为8 cm,则屏幕上图形的高度为cm.三、解答题(共8题;共55分)16.(7分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连结AC并延长到点D,使CD= 12AC,连结BC并延长到点E,使CE= 12BC,连结DE.量得DE的长为15米,求池塘两端A,B的距离.17.(7分)如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示。
27.3 位似
第1课时位似图形的概念及画法
基础题
知识点1位似图形
1.下列说法不正确的是( )
A.位似图形一定是相似图形
B.相似图形不一定是位似图形
C.位似图形上任意一对对应点到位似中心的距离之比等于相似比
D.位似图形中每组对应点所在的直线必相互平行
2.(呼伦贝尔中考)视力表的一部分如图,其中开口向上的两个“E”之间的变换是( )
A.平移
B.旋转
C.对称
D.位似
3.两个位似图形中,对应点到位似中心的线段比为2∶3,则这两个图形的相似比为( )
A.2∶3 B.4∶9
C.2∶ 3 D.1∶2
4.如图,两个三角形是位似图形,它们的位似中心是( )
A.点P
B.点O
C.点M
D.点N
5.已知:△ABC∽△A′B′C′,下列图形中,△ABC与△A′B′C′不存在位似关系的是( )
6.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为( ) A.1 B.2 C.4 D.8
7.(桂林中考)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为( )
A.1∶3 B.1∶4
C .1∶5
D .1∶9
8.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA =10 cm ,OA ′=20 cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是____________.
知识点2 位似图形的画法
9.如图,以O 为位似中心,将四边形ABCD 缩小为原来的一半.
中档题
10.如图,已知BC ∥DE ,则下列说法中不正确的是( )
A .两个三角形是位似图形
B .点A 是两个三角形的位似中心
C .∠ADE =∠B
D .点B 与点
E 、点C 与点D 是对应点
11.如图,四边形ABCD 与四边形AEFG 是位似图形,且AC ∶AF =2∶3,则下列结论不正确的是( ) A .四边形ABCD 与四边形AEFG 是相似图形 B .AD 与AE 的比是2∶3
C .四边形ABC
D 与四边形AEFG 的周长比是2∶3 D .四边形ABCD 与四边形AEFG 的面积比是4∶9
12.(济宁中考)如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为__________.
13.(钦州中考)如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变换,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的12,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的1
2
,经第三次变化后得
正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的1
2,…,依次规律,经第n 次变化后,所得正方形OA n B n C n 的边长为正方形OABC
边长的倒数,则n =____________.
14.如图,△ABC 与△A ′B ′C ′是位似图形,且相似比是1∶2,若AB =2 cm ,则A ′B ′=____________cm ,并在图中画出位似中心O.
15.如图,已知△DEO 与△ABO 是位似图形,△OEF 与△OBC 是位似图形,试证明:OD ·OC =OF ·OA.
综合题
16.如图,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.
(1)画出位似中心O ;
(2)求出△ABC 与△A ′B ′C ′的相似比;
(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的相似比等于1.5.
参考答案
1.D 2.D 3.A 4.A 5.D 6.B 7.D 8.1
2
9.图略.10.D 11.B 12.18 cm 13.16 14.4 图略.
15.∵△DEO与△ABO位似,
∴OD
OA
=
OE
OB
.
∵△OEF与△OBC位似,
∴OE
OB
=
OF
OC
.
∴OD
OA
=
OF
OC
.
∴OD·OC=OF·OA. 16.(1)位似中心O的位置.
(2)∵
OA
OA′
=
1
2
,
∴△ABC与△A′B′C′的相似比为1∶2.
(3)图略.。