AlTiCrFeNiCu高熵合金的性能和显微组织
- 格式:pdf
- 大小:1.22 MB
- 文档页数:5
《Al_xCoCrFeNi高熵合金力学性能的分子动力学模拟》篇一一、引言高熵合金,作为一种新兴的金属材料,因其在各种环境下所表现出的卓越力学性能和抗腐蚀性,引起了科研工作者的广泛关注。
近年来,AlxCoCrFeNi高熵合金以其优异的物理和化学性质成为了研究的热点。
本文利用分子动力学模拟的方法,探究了AlxCoCrFeNi高熵合金的力学性能,旨在从微观层面揭示其力学特性的本质。
二、AlxCoCrFeNi高熵合金概述AlxCoCrFeNi高熵合金主要由Al、Co、Cr、Fe和Ni五种金属元素构成。
高熵合金的高性能来源于各组成元素的相互作用以及由于多种主元素引起的晶格混乱效应。
由于其特殊的结构特性,该合金在强度、硬度、延展性等方面表现优异。
三、分子动力学模拟方法分子动力学模拟是一种有效的材料研究方法,能够从微观角度揭示材料的性质和性能。
通过模拟原子和分子的运动,我们可以了解材料的结构变化以及性能特点。
本文采用了经典的动力学理论进行分子动力学模拟,模型参数由实际条件设定。
四、模拟结果与讨论1. 结构特性:通过模拟,我们观察到AlxCoCrFeNi高熵合金的微观结构具有明显的晶格混乱效应,多种元素混合的原子分布相对均匀。
这种混乱的结构对于合金的力学性能有显著影响。
2. 力学性能:通过分子动力学模拟,我们发现随着Al元素含量的增加,合金的强度和硬度有所提高,而延展性则有所降低。
这表明AlxCoCrFeNi高熵合金的力学性能可以通过调整Al的含量来优化。
此外,我们还发现该合金在各种环境下的抗腐蚀性也相当出色。
3. 影响因素:模拟结果表明,合金的力学性能受多种因素影响,包括元素组成、温度、压力等。
其中,元素组成对力学性能的影响最为显著。
此外,温度和压力也会影响合金的微观结构和力学性能。
五、结论本文通过分子动力学模拟的方法,研究了AlxCoCrFeNi高熵合金的力学性能。
结果表明,该合金具有优异的强度、硬度和抗腐蚀性。
高熵合金材料的组织与力学性能分析高熵合金材料(High-entropy alloy materials)是一种由多种原子元素组成的新型合金材料。
相对于传统的合金材料,高熵合金具有许多独特的性能和应用优势。
本文将对高熵合金材料的组织与力学性能进行分析。
一、高熵合金材料的组织结构高熵合金的组织结构是其性能优势的关键所在。
它由多种元素组成,这些元素在原子尺度上均匀分布,形成了一种具有无序的结构。
相对于普通合金材料,高熵合金中的原子排列更加无序,因此具有更高的熵值,即高熵合金。
高熵合金的组织结构对其性能产生了重要影响。
首先,高熵合金中的无序结构使其具有较高的抗腐蚀性能。
由于元素均匀分布,高熵合金能够形成一种密封的表面层,阻止氧化物和其他腐蚀物质的侵蚀。
其次,高熵合金的无序结构使其具有优异的机械性能。
相对于普通合金材料,高熵合金具有更高的屈服强度和延展性。
这是因为无序结构阻碍了位错的移动,从而提高了材料的抗变形能力。
二、高熵合金材料的力学性能分析1.屈服强度和延展性:高熵合金材料的屈服强度通常较高,这是由于材料中多种原子元素的均匀分布阻碍了位错的移动。
而延展性方面,高熵合金通常具有良好的塑性变形能力,可以在受力情况下发生可逆塑性变形。
2.硬度和韧性:高熵合金的硬度通常较高,但韧性较低。
这是由于无序结构限制了微观位错运动的能力。
而高硬度使得高熵合金在耐磨损和耐高温方面具有优势。
3.抗腐蚀性能:高熵合金材料由多种元素组成,能够形成致密的表面氧化层,有效防止氧化和腐蚀的侵蚀。
因此,高熵合金常被应用于极端环境下的腐蚀性工作环境。
4.热稳定性和高温性能:高熵合金材料具有良好的热稳定性和高温强度。
高熵合金经常用于高温环境下的应用,例如航空航天、发电、汽车等领域。
三、高熵合金材料的应用前景高熵合金材料由于其独特的组织结构和优异的性能,具有广泛的应用前景。
在航空航天领域,高熵合金可以用于制造高温引擎涡轮叶片和燃烧室等部件,提高发动机的性能和效率。
《热机械处理Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织及力学性能》一、引言高熵合金是一种新型的合金材料,由多种主要元素组成,其混合焓变化较小,具有优异的力学性能和显微组织。
Al_xCoCrFeNi高熵合金作为一种典型的多元合金体系,其性能受到合金元素含量、热处理工艺等因素的影响。
本文旨在研究热机械处理对Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织和力学性能的影响。
二、实验材料与方法1. 材料制备采用真空电弧熔炼法制备Al_xCoCrFeNi(x=0.1~0.8)高熵合金。
将各元素按照预设比例混合后进行熔炼,确保合金成分均匀。
2. 热机械处理对制备的高熵合金进行热机械处理,包括退火、淬火、冷轧等工艺。
通过调整热处理温度、保温时间等参数,研究不同热处理工艺对合金性能的影响。
3. 显微组织观察利用光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察合金的显微组织,分析合金的相结构、晶粒尺寸及分布等信息。
4. 力学性能测试通过拉伸试验、硬度测试等方法,测定合金的力学性能,包括抗拉强度、屈服强度、延伸率及硬度等指标。
三、结果与讨论1. 显微组织分析(1)相结构分析通过X射线衍射(XRD)和TEM观察,发现Al_xCoCrFeNi 高熵合金在热机械处理后,形成以BCC(体心立方)结构为主的固溶体相。
随着Al含量的增加,合金中会出现一些面心立方(FCC)结构的相。
这些相的形成与合金元素的相互作用及热处理工艺有关。
(2)晶粒尺寸及分布通过OM和SEM观察,发现热机械处理后,Al_xCoCrFeNi 高熵合金的晶粒尺寸得到细化,晶界清晰。
随着Al含量的增加,晶粒尺寸有所减小。
冷轧等工艺对晶粒的细化作用更为显著。
2. 力学性能分析(1)抗拉强度和屈服强度热机械处理后,Al_xCoCrFeNi高熵合金的抗拉强度和屈服强度得到提高。
随着Al含量的增加,合金的抗拉强度和屈服强度呈现先增加后减小的趋势。
《热机械处理Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织及力学性能》篇一热机械处理Al_xCoCrFeNi(x=0.1~0.8)高熵合金的显微组织及力学性能一、引言高熵合金因其多元组成及优异性能而受到广泛的关注与研究。
本文以Al_xCoCrFeNi(x=0.1~0.8)高熵合金为研究对象,探讨其经过热机械处理后的显微组织及力学性能。
通过对该类合金的深入研究,旨在揭示其微观结构与宏观性能之间的关系,为实际应用提供理论依据。
二、材料与方法1. 材料制备采用真空电弧熔炼法制备Al_xCoCrFeNi(x=0.1~0.8)高熵合金。
确保原料纯度,以获得均匀的合金成分。
2. 热机械处理对制备的合金进行热机械处理,包括固溶处理、淬火及回火等过程。
具体参数根据实验需求进行调整。
3. 显微组织观察利用光学显微镜、扫描电子显微镜及透射电子显微镜等手段,观察合金的显微组织,包括晶粒大小、相组成及分布等。
4. 力学性能测试对合金进行硬度、拉伸、冲击等力学性能测试,分析其力学性能与显微组织之间的关系。
三、结果与讨论1. 显微组织分析(1)晶粒大小:随着Al含量的增加,合金的晶粒大小呈现一定的变化趋势。
当x=0.1~0.5时,晶粒逐渐细化;而当x>0.5时,晶粒尺寸相对稳定。
(2)相组成及分布:合金中存在多种相,随着Al含量的变化,各相的组成及分布也会发生变化。
通过扫描电子显微镜及透射电子显微镜观察,可发现不同Al含量下合金的相结构差异。
2. 力学性能分析(1)硬度:随着Al含量的增加,合金的硬度呈现先增加后稳定的趋势。
当x=0.5左右时,合金的硬度达到最大值。
(2)拉伸性能:通过对合金进行拉伸测试,发现其抗拉强度、屈服强度及延伸率等指标均随Al含量的变化而变化。
在适当的Al含量下,合金的拉伸性能达到最优。
(3)冲击性能:Al含量对合金的冲击性能也有一定影响。
适量Al的加入有助于提高合金的冲击韧性。
第 1 期第 220-230 页材料工程Vol.52Jan. 2024Journal of Materials EngineeringNo.1pp.220-230第 52 卷2024 年 1 月激光增材制造Al x CoCrFeNi 高熵合金的组织与性能Microstructure and properties of Al x CoCrFeNi high entropy alloys fabricated by laser additive manufacturing于丽莹1,王晨1,2,朱礼龙1,张华1,黄海亮1,阮晶晶1,张尚洲1,江亮1,周鑫1*(1 烟台大学 精准材料高等研究院,山东 烟台 264005;2 中南大学 粉末冶金国家重点实验室,长沙410083)YU Liying 1,WANG Chen 1,2,ZHU Lilong 1,ZHANG Hua 1,HUANG Hailiang 1,RUAN Jingjing 1,ZHANG Shangzhou 1,JIANG Liang 1,ZHOU Xin 1*(1 Institute for Advanced Studies in Precision Materials ,Yantai University ,Yantai 264005,Shandong ,China ;2 State Key Laboratory of PowderMetallurgy ,Central South University ,Changsha 410083,China )摘要:为了研究Al 含量对FeCoCrNi 合金组织性能的影响,采用多路送粉激光熔覆设备高通量制备Al x CoCrFeNi 高熵合金(0≤x ≤0.9),通过X 射线衍射仪、金相显微镜、扫描电子显微镜、电子探针和显微硬度计测试合金的相组成、显微组织结构、成分和硬度。
结果表明:随着Al 含量的增加,Al x CoCrFeNi 高熵合金由单一FCC 相(x ≤0.35)转变为FCC+BCC 双相结构(0.35<x <0.85),最后转变为单一BCC 结构(x ≥0.85)。
《CoCrFeNiCu系高熵合金的组织和力学性能》一、引言随着现代工业技术的飞速发展,合金材料因其优异的性能被广泛应用于各种工程领域。
高熵合金作为一种新型合金材料,由于其独特的多主元结构,展现出了优异的力学性能和良好的抗腐蚀性。
CoCrFeNiCu系高熵合金作为其中的一种典型代表,其组织和力学性能的研究具有重要的理论意义和实际应用价值。
本文将主要对CoCrFeNiCu系高熵合金的组织结构和力学性能进行详细的阐述。
二、CoCrFeNiCu系高熵合金的组织结构CoCrFeNiCu系高熵合金是一种由钴(Co)、铬(Cr)、铁(Fe)、镍(Ni)和铜(Cu)五种主要元素组成的合金。
这种合金具有较高的熵值,从而形成了一种固溶体结构。
由于多元的组成,合金在凝固过程中会产生多种元素间的相互作用,导致形成复杂的相结构。
首先,该合金的组织结构主要表现在其固溶体相的构成上。
在室温下,这种合金主要由体心立方(BCC)和面心立方(FCC)两种固溶体相组成。
这两种相的比例和分布情况将直接影响合金的力学性能。
其次,除了固溶体相外,该合金还可能存在一些其他相,如碳化物、金属间化合物等。
这些相的存在会进一步影响合金的整体性能。
因此,对这些相的形成条件和性质进行研究,对于理解和控制合金的微观组织具有重要意义。
三、CoCrFeNiCu系高熵合金的力学性能CoCrFeNiCu系高熵合金的力学性能主要体现在其硬度、强度、塑性和韧性等方面。
这种合金的硬度较高,具有较好的耐磨性,这得益于其固溶体相的硬度和稳定性。
同时,由于多元的组成和复杂的相结构,该合金具有较高的强度。
此外,该合金还具有良好的塑性和韧性。
这主要得益于其固溶体相的均匀分布和良好的界面结合。
在受到外力作用时,合金能够有效地吸收和分散能量,从而表现出较好的塑性和韧性。
四、影响CoCrFeNiCu系高熵合金力学性能的因素影响CoCrFeNiCu系高熵合金力学性能的因素主要包括成分、温度、热处理等。
《Al0.1CoCrFeNiTiX高熵合金的应变率和温度力学性能研究》一、引言高熵合金作为一种新型的金属材料,因其独特的物理和化学性质,近年来受到了广泛的关注。
Al0.1CoCrFeNiTiX高熵合金作为其中的一种,其优异的力学性能、良好的耐腐蚀性和高温稳定性等特点,使其在航空、航天、生物医疗和能源等领域具有广阔的应用前景。
本文以Al0.1CoCrFeNiTiX高熵合金为研究对象,重点探讨了其应变率和温度对其力学性能的影响。
二、材料与方法1. 材料制备Al0.1CoCrFeNiTiX高熵合金采用真空电弧熔炼法制备,确保合金成分的均匀性和纯度。
熔炼后的合金经过轧制、退火等工艺处理,以获得所需的力学性能。
2. 实验方法(1)力学性能测试:采用拉伸试验机对合金进行力学性能测试,分别在不同的应变率和温度条件下进行测试。
(2)显微组织观察:采用光学显微镜和电子显微镜观察合金的显微组织,包括相组成、晶粒大小等。
(3)硬度测试:采用硬度计对合金进行硬度测试,以评估其硬度变化。
三、结果与讨论1. 应变率对力学性能的影响实验结果表明,随着应变率的增加,Al0.1CoCrFeNiTiX高熵合金的屈服强度和抗拉强度均有所提高。
这主要是因为高应变率下,合金中的位错运动加快,使得材料内部的硬化效应增强。
同时,高应变率下合金的延伸率有所降低,表明其塑性变形能力受到一定程度的限制。
2. 温度对力学性能的影响在温度对Al0.1CoCrFeNiTiX高熵合金力学性能的影响实验中,我们发现随着温度的升高,合金的屈服强度和抗拉强度均有所降低。
这主要是由于高温下,材料的原子活动性增强,导致位错运动更加容易,从而降低了材料的硬化效应。
然而,在一定温度范围内,合金仍能保持良好的延伸率,表明其仍具有一定的塑性变形能力。
3. 显微组织与力学性能的关系通过显微组织观察发现,Al0.1CoCrFeNiTiX高熵合金具有多相共存的特点,这有利于提高其力学性能。
Al_xCoCrFeNiCu_2高熵合金的组织结构及力学性能丁婷婷;张伟强;付华萌【期刊名称】《功能材料》【年(卷),期】2015(46)B06【摘要】采用真空电弧熔炼技术制备出不同Al含量的AlxCo Cr Fe Ni Cu2的高熵合金,研究Al含量对该高熵合金的微观组织及力学性能的影响。
结果表明,该铸态高熵合金合金具有简单的bcc相固溶体结构及fcc相固溶体结构。
AlxCo Cr Fe Ni Cu2(x=1,2和3)合金中fcc相固溶体的含量在增加;当x=4,5时,合金中bcc相固溶体的含量增加。
合金的硬度随着Al元素的增加而提高。
制备出的5种合金中Al4Co Cr Fe Ni Cu2硬度值最高。
Al3Co Cr Fe Ni Cu2高熵合金具有较高的屈服强度和断裂强度。
【总页数】4页(P128-131)【关键词】高熵合金;微观组织;强度;塑性【作者】丁婷婷;张伟强;付华萌【作者单位】沈阳理工大学材料科学与工程学院;中科院沈阳金属研究所【正文语种】中文【中图分类】TG135【相关文献】1.冷轧对 Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响 [J], 王重;林万明;马胜国;杨慧君;梁红玉;乔珺威2.AlCoCrNiSix高熵合金微观组织结构与力学性能 [J], 刘恕骞;黄维刚3.Alx CoCrFeNiCu2高熵合金的组织结构及力学性能 [J], 丁婷婷;张伟强;付华萌4.热处理对Al0.5CoCrFeNiB-0.2高熵合金组织结构及力学性能的影响 [J], 唐群华;蔡建宾;吴桂芬;戴品强5.Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响 [J], 陶继闯; 卢一平因版权原因,仅展示原文概要,查看原文内容请购买。
AlCrFeMoSi_(x)高熵合金的显微组织和性能研究郝雪卉;齐明洋;李学军;刘文阁;张娣;战艳虎;王长征【期刊名称】《聊城大学学报(自然科学版)》【年(卷),期】2024(37)1【摘要】采用非自耗真空电弧熔炼法制备了AlCrFeMo和AlCrFeMoSi x高熵合金,通过X射线衍射仪、扫描电子显微镜、显微硬度计及电化学测试系统等技术,研究了Si的加入对AlCrFeMo高熵合金的显微组织和性能的影响。
结果表明:加入Si 元素后,AlCrFeMo高熵合金相结构由单一体心立方(BCC1)结构转变为由BCC1和BCC2组成的双相结构,且形成了少量的Cr_(5)Si_(3)和Mo_(3)Si。
这是因为Si元素不仅是BCC相形成元素,也因为其与金属元素间高的负混合焓促进硅化物的形成;Si添加也使AlCrFeMoSi x高熵合金的显微组织转变为枝晶组织加片层状组织。
这些变化引起的第二相强化作用、晶界强化作用以及Si原子的固溶强化作用使AlCrFeMoSi x合金的硬度由394 HV升高到549 HV。
同时,混合组织间电位差使合金表面发生严重的电偶腐蚀,导致AlCrFeMoSi x高熵合金的腐蚀电流密度由1.71×10^(-8)增加至5.54×10^(-8)A/cm^(2)。
【总页数】8页(P62-69)【作者】郝雪卉;齐明洋;李学军;刘文阁;张娣;战艳虎;王长征【作者单位】聊城大学材料科学与工程学院【正文语种】中文【中图分类】TG139【相关文献】1.机械合金化和真空热压烧结FeCoCrNiMn高熵合金的显微组织和力学性能(英文)2.CoCrFeNiW_(x)高熵合金黏结剂对WC硬质合金显微组织和力学性能的影响3.(CuMnNi)_(100-x)Al_(x)高熵铜合金的显微组织、力学与摩擦学性能研究4.AlxFeNiSiTi高熵合金的显微组织与力学性能研究因版权原因,仅展示原文概要,查看原文内容请购买。
Journal of Alloys and Compounds 509 (2011) 5641–5645Contents lists available at ScienceDirectJournal of Alloys andCompoundsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j a l l c omMicrostructure and property of AlTiCrFeNiCu high-entropy alloyJin-Hong Pi a ,b ,Ye Pan a ,∗,Lu Zhang a ,Hui Zhang a ,caSchool of Material Science and Engineering,Southeast University,Jiangsu Key Laboratory of Advanced Metallic Materials,Nanjing 211189,China bSchool of Material Engineering,Nanjing Institute of Technology,Nanjing 211167,China cSchool of Material Science and Engineering,AnHui University of Technology,Maanshan 243002,Chinaa r t i c l e i n f o Article history:Received 9January 2011Received in revised form 18February 2011Accepted 18February 2011Available online 26 February 2011Keywords:High entropy alloy MicrostructureCompressive fracturea b s t r a c tIn this study,an AlTiCrFeNiCu high entropy alloy (HEA)was synthesized by vacuum arc furnace in high-purity argon atmosphere.The heat resistance of this HEA was investigated by using a differential scanning calorimeter (DSC)and a chamber type electric resistance furnace.The results showed that the microstruc-ture of the as cast HEA treated at 500◦C was almost unchanged,which consisted of two kinds of BCC solid solution phases and small amount Fe 2Ti.The hardness of AlTiCrFeNiCu HEA increased with treating tem-perature to a maximum value at 950◦C.It is found that,the content of Cu,Ni and Al decreased badly in the surface of as cast AlTiCrFeNiCu after immersed in the water solution of 5%HCl for 7days.The compressive fracture strength of as cast AlTiCrFeNiCu HEA was 1219MPa.The high compressive strength may owe to the solid solution strengthening from multi elements.© 2011 Elsevier B.V. All rights reserved.1.IntroductionThe conventional design concept of new alloy systems has one element as their principal constituent and other minor elements as their constituents for the enhancement of properties and perfor-mances.This design concept has a limit of the number of alloys that can be developed.To avoid this limitation,a new alloy system which is called “high-entropy alloy (HEA)”is firstly proposed by professor Ye et al.[1–3].A HEA was originally defined as an alloy composed of at least five principal elements in equimolar or near equimolar ratios.The content of each major constituent is greater than 5at%and less than 35at%.Due to the high entropy mixing effect,HEAs likely consist of random solid solutions,nano-structure even amor-phous during solidification instead of inter-metallic compounds or complex phases [4–9].The HEAs usually have high hardness and strength,good thermal stability and good corrosion resistance [10].A new HEA,AlTiCrFeNiCu was prepared to investigate the microstructure and properties.2.Materials and methodsTo provide reference data for further research in the field of HEAs and possible application of these alloys,a HEA with a nominal chemical composition of AlTi-CrFeNiCu was prepared by vacuum arc melting with electromagnetic stir from a mixture of pure bulk metals (purity better than 99wt%)in high-purity argon atmo-sphere and solidified in a water-cooled copper mould.The alloy was then reversed and re-melted 4times to assure chemical homogeneity.The solidified ingots were about 30mm in diameter and 10mm in thickness.The samples cut from the ingot∗Corresponding author.Tel.:+862552090681.E-mail address:panye@ (Y.Pan).were heated to 500–1070◦C for 4h,and then cooled slowly in furnace.Hardness measurements,phase identification,compression test,corrosion observation and microstructure analyses were then carried out on the as cast and heat treated speci-mens.The crystal structure was identified by X-ray diffraction (XRD,D/Max2500V)using Cu K ␣radiation.The microstructure examination and composition analyses of elements were carried out by scanning electron microscope (SEM,JEOL JSM-6360LV)equipped with energy dispersive spectrometry (EDS,GENESIS2000XMS60).Room-temperature compressive properties of samples were carried on materials testing machine (Instron MTS569).The heating behavior of the alloy was measured in a Net-zsch 404DSC with an alumina container under flowing purified argon at a heating rate of 10K s −1.3.Results and discussion 3.1.Microstructure characterizationFig.1shows the XRD patterns of the as cast AlTiCrFeNiCu.From Fig.1,two BCC phases and one order phase Fe 2Ti were observed in this alloy.Fig.2shows the microstructure characteristic of the as cast AlTiCrFeNiCu.Only three phases were observed in Fig.2,which is consistent with the result of Fig.1.According to the Gibbs phase rule,the maximum number of equilibrium phases in a C component system at constant pressure is P =C +1(here,C is the number of components,and P is the num-ber of phase).When the alloy is solidified under non-equilibrium condition,P >C +1.Hence,in the non-equilibrium solidified AlTiCr-FeNiCu alloy,the maximum equilibrium number allowed by the Gibbs phase rule could be 7.While the total number of phases in this research is 3,it is far less than 7.As we know,Gibbs free energy difference ( G l −s )between liquid and solidified phase means the driving force of solidification.In a supercooled alloying liquid,the less G l −s means the more stable. G can be calculated0925-8388/$–see front matter © 2011 Elsevier B.V. All rights reserved.doi:10.1016/j.jallcom.2011.02.1085642J.-H.Pi et al./Journal of Alloys and Compounds 509 (2011) 5641–5645102030405060708090050100150200○○○□□□□♦ Fe 2Ti BCC1○ BCC2♦I n t e n s i t y (C P S )2θ♦♦♦♦♦♦♦♦Fig.1.XRD patterns of as cast AlTiCrFeNiCu high-entropy alloy.by(1) G = H −T S where T is the temperature value, H is the forming enthalpy,and S is mixing entropy.And in this paper,the values for the G , H and S are actual value,not absolute value.Since the value of S is positive,and the value of H is usually negative,the value of H* S can be used to evaluate the driving force of solidification.The more negative value of H* S means the more huge driving force.For six principal element solid solution alloy, S can be calculated byS l −solidsolution=−Rni =1c i ln c i(2)Here, S l −solid solution is the entropy of mixing change fromthe liquid to the solid solution.R is the ideal gas constant,R =8.314J/(mol K),c i is the atomic fraction of the i th component.By Eq.(2), S l −solid solution =1.72R .Considering the effect of atomicsize, S l −solid solution can be also represented by:S l −solidsolution=−Rn n =1c iln c i r 3i −lnn i =1c i r 3i(3)where r i is the radius for the i th atom.By Eq.(3),the value of S l −solid solution for AlTiCrFeNiCu HEA is 1.81R .It is close to the value calculated by Eq.(2).For convenience,the value of S l −solid solution can be calculated by Eq.(2)approximately.The large value of S l −solid solution ,the more negative value of H* S might be,the less G l −s accordingly.The mixing entropy change is so small in the course of inter-metallic compound formation that S l −intermetallic compound can be considered to be 0[11].The value of H* S for inter-metallic compounds is close to 0consequently.Accordingly,the Gibbs free energy of mixing of the solid solution AlTiCrFeNiCu alloy is much smaller than that of inter-metallic compounds.That is why the main composing phases are two BCC crystals.Since the contribution from mixing entropy is very small in the course of inter-metallic compound formation,the mixing entropy contribution to the free energy term can be neglected,and the mix-ing enthalpy ( H mix ,actual value)become the main factor affecting the forming tendency and stability of inter-metallic compounds.The less value of H mix ,the more stable it is. H mix can be calcu-lated as follow [12]: H mix =n i =1,i /=j˝ij c i c j =4ni =1,i /=jH mix i −j c i c j(4)where H mix i −jis the mixing enthalpy of atomic pairs between the i th and j th elements.c i and c j are the atomic fraction of the i th andj th component,respectively.The values of H mix i −j can be obtained from reference [13].Additionally,the factors affecting the formation of solid solu-tions and compounds also involve chemical bond,difference of electro negativity,electron concentration,dimension of atom,andFig.2.Microstructure characteristic of the as cast AlTiCrFeNiCu high-entropy alloy:(a)×100;(b)×1000.Table 1Calculated value of H mix ,and H h for intermetallic compounds.Intermetallic compounds H mix H h Intermetallic compounds H mix H h Intermetallic compounds H mix H h CuAl −1.00 3.24Cr2Al −8.89 3.03NiAl −22.00 3.66CuAl2−0.89 3.88Cr5Al8−9.47 5.13NiAl3−16.50 5.13Cu12Al9−0.98 2.98Cr4Al9−8.52 5.75Ni3Fe −1.50 5.97Cu3Al2−0.96 2.89CrAl4−6.40 6.49NiFe3−1.50 6.02Cu9Al4−0.85 2.66Cr2Al11−5.21 6.76Ti3Al −22.50 3.55Al3Fe −8.258.24CrAl7−4.38 6.91TiAl −30.00 4.22Al5Fe2−8.988.23CrFe −1.00 6.69Al2Ti −26.70 6.24Al2Fe −9.788.18Ni2Cr −6.22 6.84Al3Ti −22.50 6.35AlFe −11.007.54Ni3Al −16.50 2.52Fe2Ti−15.105.04Al2Fe9−6.55 4.66Ni2Al3−21.10 4.29Al6Fe−5.398.21Ni5Al3−20.602.95J.-H.Pi et al./Journal of Alloys and Compounds 509 (2011) 5641–56455643Fig.3.Microstructures of heat-treated AlTiCrFeNiCu high-entropy alloy:(a)500◦C;(b)720◦C;(c)800◦C;(d)950◦C;(e)1030◦C;(f)1070◦C.50060070080090010001100440460480500520540560580600620H a r d n e s s /H VTemperature/°CFig.4.Hardness of heat-treated AlTiCrFeNiCu HEA.so on.Among these factors,vacancy forming enthalpy ( H h ,actual value)is an important pound is more inclined to form with2004006008001000-20246810↑ heat evolution D S C /(m W /m g )Temp. /°CFig.5.DSC curves of the as cast AlTiCrFeNiCu HEA.Fig.6.Morphological characteristic of the eroded AlTiCrFeNiCu alloy.less H h value [12]. H h can be calculated as follow:H i −j h =(1−f i j ) H f −iIV +f ij V i V j5/6H f −jIV(5)where f i j =(1−C S j )[1+8(C S i )2(1−C S i )2]=C S i [1+8(C S i )2(C S j )2](6)C Si =x i V 2/3i x i V 2/3i+x j V 2/3j(7)C S j =x j V 2/3j x i V 2/3i+x j V 2/3j(8)Here H f −iIV and H f −jIV are the vacancy forming enthalpy for the i th and j th pure element,respectively.V i and V j are the molar volumes of element i and j ,respectively.x i and x j are the atomic fraction of5644J.-H.Pi et al./Journal of Alloys and Compounds509 (2011) 5641–5645Fig.7.The surface chemical compositions of the erode AlTiCrFeNiCu alloy.2004006008001000120014000.40.60.81.01.21.41.61.8Strain/%S t r e s s /M P aFig.8.Stress-strain curve of the as cast AlTiCrFeNiCu high-entropy alloy.the i th component,respectively.All needed parameters for calcu-lating H h can be obtained from reference [12].The calculated values of H mix ,and H h for inter-metallic com-pounds are shown in Table 1.From Table 1,inter-metallic compounds with small value of both H mix and H h at the same time are compounds of Ni–Al systems,Ti–Al systems and Fe–Ti systems.Ti and Al are relatively large in atomic size,which reduces the ability to diffuse,reducing the forming chance of Ti–Al inter-metallic compounds.The differ-ence of radius between Ti and Fe is larger than that of Al and Ni,resulting larger interstice for atoms diffuse.Hence,the Ti–Fe sys-tem inter-metallic compounds form prior to the Ti–Al and Al–Ni system inter-metallic compounds.That is why only small amount Fe 2Ti was detected,no any other inter-metallic compounds was found in as cast AlTiCrFeNiCu HEA.3.2.Thermal stabilityFig.3shows the variation in microstructure of AlTiCrFeNiCu HEA after heat treated at different temperature for four hours.The hard-ness of AlTiCrFeNiCu HEA after heat treated was indicated in Fig.4shows the corresponding variation in hardness.The result of DSC test is show in Fig.5.From Figs.2and 3,AlTiCrFeNiCu HEA shows good thermal resis-tance due to stable microstructure under 500◦C.The stability of AlTiCrFeNiCu HEA can be explained by Fig.5.It is known that exothermic peaks or endothermic peaks emerge in the DSC curve when new phase precipitates or phase transformation occurs.There is no obvious peak in this DSC curve below 500◦C.The unique good thermal stability may contribute to the very small value of H* S .Additionally,the existence of multi-principal elements can restrict the diffusion of atoms.The hardness of AlTiCrFeNiCu HEA increased with treating temperature to a maximum value at 950◦C.It may contribute to the increased amount of the white phase in microstruc-tures.Subsequent hardness drop may contributeto the coarser microstructures.As we known,most internal stresses can be relived after treated at high to 950◦C for four hours.So,AlTiCrFeNiCu HEA heat-treated at 950◦C for four hours has the highest hardness and less internal stresses,leading it suitable for high temperature applications.Fig.9.Fractographic feature of the as cast AlTiCrFeNiCu high-entropy alloy:(a)×500;(b)magnification of zone 1in figure a;(c)magnification of zone 2in figure a.J.-H.Pi et al./Journal of Alloys and Compounds509 (2011) 5641–564556453.3.Chemical stabilityFig.6shows the morphological characteristic of AlTiCrFeNiCu HEA after immersed in the water solution of5%HCl for7days.As observed in Fig.7,the main loss element from AlTiCrFeNiCu HEA is Cu,Ni and Al.pressive experimentFig.8depicts the compressive curves of as cast AlTiCrFeNiCu alloy at room temperature.And Fig.9shows the corresponding fractographic feature of the alloy.It can be seen that the as cast AlTiCrFeNiCu HEA shows very high compressive fracture strength,which is high to1219MPa.High compressive strength may owe to the solid solution strengthening from multi elements.Cleavage steps and small deformation areas were observed on the fracture surface.The rough facets in the fracture surface indicate its poor ductility.4.ConclusionsIn this study,an AlTiCrFeNiCu HEA was prepared by vacuum arc furnace,which consisted of two BCC solid solution phases and a small amount of Fe2Ti.This alloy has the stable microstructure under500◦C,and has the maximum value of hardness at950◦C. For this alloy,Cu,Ni and Al may lose badly when immersed in the water solution of5%HCl for7days.It was also found that the compressive fracture strength of as cast AlTiCrFeNiCu HEA is1219MPa due to the solid solution strengthening from multi elements.References[1]J.W.Yeh,S.K.Chen,S.J.Lin,et al.,Nanostructured high-entropy alloys withmultiple principal elements:novel alloy design concepts and outcomes,J.Adv.Mater.6(2004)299–303.[2]J.M.Wu,S.J.Lin,J.W.Yeh,et al.,Adhesive wear behavior of Al x CoCrCuFeNihigh-entropy alloys as a function of aluminum content,J.Wear261(2006) 513–519.[3]T.T.Shun,Y.C.Du,Age hardening of the Al0.3CoCrFeNiC0.1high entropy alloy,J.Alloys Compd.478(2009)269–272.[4]F.J.Wang,Y.Zhang,Effect of Co addition on crystal structure and mechanicalproperties of Ti0.5CrFeNiAlCo high entropy alloy,J.Mater.Sci.Eng.A496(2008) 214–216.[5]K.B.Zhang,Z.Y.Fu,J.Y.Zhang,et al.,Microstructure and mechanical propertiesof CoCrFeNiTiAl x high-entropy alloys,J.Mater.Sci.Eng.A508(2009)214–219;V.Dolique,A.L.Thomann,P.Brault,et al.,Complex structure/composition rela-tionship in thinfilms of AlCoCrCuFeNi high entropy alloy,J.Mater.Chem.Phys.117(2009)142–147.[6]C.W.Tsai,Y.L.Chen,M.H.Tsai,et al.,Deformation and annealing behaviors ofhigh-entropy alloy Al0.5CoCrCuFeNi,J.Alloys Compd.486(2009)427–435. [7]C.Y.Hsu,T.S.Sheu,J.W.Yeh,et al.,Effect of iron content on wear behavior ofAlCoCrFexMo0.5Ni high-entropy alloys,J.Wear268(2010)653–659.[8]Y.Y.Chen,T.Du,U.D.Hung,et al.,Microstructure and electrochemical proper-ties of high entropy alloys–a comparison with type-304stainless steel,J.Corros.Sci.9(2005)2257–2279.[9]Y.J.Zhou,Y.Zhang,Y.L.Wang,et al.,Microstructure and compressive propertiesof multicomponent Al x(TiVCrMnFeCoNiCu)100−x high-entropy alloys,J.Mater.Sci.Eng.A454–455(2007)260–264.[10]T.K.Chen,M.S.Wong,Thermal stability of hard transparent AlxCoCrCuFeNioxide thinfilms,J.Surf.Coat.Technol.203(2008)495–500.[11]A.M.Li,X.Y.Zhang,Thermodynamic analysis of the simple microstructure ofAlCrFeNiCu high-entropy alloy with multi-principal elements,J.Acta Metall.Sin.(Engl.Lett.)3(2009)219–224.[12]B.W.Zhang,W.Y.Hu,X.L.Shu,Theory of Embedded Atom Method and its Appli-cation to Materials Science—Atomic Scale Materials Design Theory,first ed., Hunan University Publishing Company,ChangSha,2002(in Chinese).[13]A.Takeuchi,A.Inoue,Classification of bulk metallic glasses by atomic size dif-ference,heat of mixing and period of constituent elements and its application to characterization of the main alloying element,J.Mater.Trans.12(2005) 2817–2829.。