96m下承式简支钢桁梁顶推施工培训
- 格式:pptx
- 大小:6.05 MB
- 文档页数:66
钢桁梁顶推施工技术
李会良
【期刊名称】《中国港湾建设》
【年(卷),期】2009(000)002
【摘要】通过京津高速公路东段第五合同段北环铁路跨线桥工程,以78 m钢桁梁顶推施工工艺为主线,重点介绍了钢桁梁顶推施工的技术准备:钢桁梁拼装平台搭设,临时墩的施工,滑道、导梁制作、安装以及顶推装置和位置的确定,顶推过程控制.施工结果表明,在不干扰既有铁路干线正常运营情况下,顶推施工技术速度快,安全可靠,并且一次成功.
【总页数】3页(P57-59)
【作者】李会良
【作者单位】中交一航局第四工程有限公司,天津,300456
【正文语种】中文
【中图分类】U445.46
【相关文献】
1.浅谈顶推法架设钢桁梁施工中的测量控制--以郑焦城际铁路黄河桥主桥钢桁梁架设为例说明之 [J], 赵燕
2.100 m下承式简支钢桁梁浮托顶推施工技术 [J], 李鹏
3.高速公路钢桁梁顶推及监测施工技术 [J], 姜海东
4.铁路大跨度钢桁梁大型设备预拼装及顶推施工技术探讨 [J], 冯华龙
5.4.3万t钢桁梁长距离多点同步顶推施工技术研究 [J], 王宏毅
因版权原因,仅展示原文概要,查看原文内容请购买。
钢桁架桥梁顶推法施工的控制要点摘要:随着经济的快速发展,上世纪90年代初建设的高速公路已不能满足当下社会发展的要求;目前已建成“五纵十横”的国家高速公路骨架网,大多已进入车辆通行设计饱和阶段,出现交通缓行情况。
江浙沪已在15年前启动改扩建施工,我省也在8年前启动合宁高速的改扩建施工,改扩建高速公路和增设互通出入口是今后相当长一段时间的重要基础工作,其中桥梁的改扩建是高速改扩建的重中之重。
关键词:钢桁架桥梁跨高速顶推施工要点一、工程概况:为改善县城西部区域的内外交通条件,促进西侧区域的经济发展,在县城西侧新增怀宁西互通。
怀宁西互通采用A型单喇叭互通,其中互通区A匝道在AK1+454.3处采用1-70m简支钢桁架桥跨越G50沪渝高速;满足G50沪渝高速远期四改八方案实施空间。
桥下净空大于5.5m。
主桥全宽21.1m,跨径为70米钢桁架桥,先拼装、后焊接、再整体顶推的施工工艺,该工法在我省的营运高速施工中尚属首次。
新建钢桁梁桥立面图二、钢桁架桥技术参数(1)主桥下弦杆主桥有两榀钢桁架组成,钢桁架之间间距为20.3m。
(2)主桥上弦杆上弦杆采用箱型断面,高1.0m,宽0.8m,标准段顶板、底板厚24mm,腹板厚32mm,上弦杆节点处断面顶板、底板厚24mm,腹板厚36mm。
(3)腹杆腹杆断面分工字型和箱型两种,普通工字型腹杆宽800mm,高700mm,翼板厚36mm,腹板厚30mm。
(4)下平联横梁横梁间距为2.5m,分为节点横梁和普通横梁两种类型,均采用倒T型断面,横梁高1.4~1.55m,节点横梁腹板厚20mm。
(5)下平联纵梁主桥横向设置3道小纵梁,纵梁间隔 4.8m,纵梁腹板高 600mm,厚 12mm,底板尺寸为440×16mm,纵梁与横梁熔透焊处理。
(6)上平联桁架上平联采用钢管截面,节点横向连接采用φ600×14mm,K型横撑钢管采用500×10mm。
(7)桥面系桥面系采用正交异形板,顶板U肋加劲(厚8mm),U肋间距600mm。
2021.11科学技术创新估算法、经验法,这样在某些情况下会造成计算偏差甚至错误的出现。
例如图6为一建筑的生活给水系统原理图,市政给水管在a 点的变频调速泵入口处的压力为0.15MPa ,水头损失i ab =2.5kPa/m ,i bc =2.0kPa/m ,i bd =1.2kPa/m ,管长L ab =20m ,L bc =40m ,L bd =50m ,且管段bc 和管段bd 所连接卫生器具的类型和数量全部一样,试计算找出最不利配水点。
如图所示,管段ac 和管段ad 的阀门、卫生器具类型和数量完全一致,故说明这两段管道的局部水头损失是相同的,所以仅计算各自对应的沿程水头损失即可,大者即为最不利配水点。
在设计过程中,设计人员往往图省事,或者根据自己的经验,会挑选管道线路最长的那一段为最不利管段,则此管段的末端一定是最不利配水点。
上图中管线最长者为管段ad ,因此认为d 点是所求最不利配水点。
为了验证经验法是否正确,下面按照计算法进行计算验证:给水管道沿程水头损失按下式(1)[3]计算:h=i ·L (1)式中h-沿程水头损失,kPa/m ;I-管道单位长度水头损失,kPa/m ;L-管道长度,m 。
管段ab 的沿程水头损失管段bc 的沿程水头损失管段bd 的沿程水头损失管段ab 为公共管道,那么显然h ab +h bc >h ab +h bd ,管段ac 为最不利管段,故c 点为最不利配水点。
造成设计人员经验法出现错误的原因是忽略了管段bc 和管段bd 的单位长度水头损失是有差别的,这证明这两段管道的管材是不同的,或是相同管材的使用时间有着较大差别,导致管道的单位长度水头损失不一样。
仅仅简单认为管段长度长的那条管道水头损失一定大就草草下了结论,这样在下一步计算变频调速泵扬程时会偏小,进而造成c 点的水压不足,给用户用水的安全性和使用舒适程度上带来不便。
综上所述,笔者对建筑给水系统设计计算过程中的一些计算要点进行了简要阐述、实例分析和总结归纳,希望能为工程设计人员在日常工作中遇到类似问题时带来一些思考和启发。
解析重载铁路128m下承式简支钢桁梁桥施工技术李伟超发布时间:2021-10-29T06:29:26.579Z 来源:《基层建设》2021年第22期作者:李伟超[导读] 钢桁梁桥施工技术是现阶段我国工程项目中比较常见的一种施工技术,在保证工程项目施工质量和结构稳定性方面具有重要的作用中国建筑土木建设有限公司北京市 100000摘要:。
重载铁路是现阶段我国铁路运输的主要形式之一,随着经济的发展,重载铁路会在我国的经济发展和交通运输中发挥越来越重要的作用。
本文以重载铁路工程为主要研究对象,着重对重载铁路128m下承式简支钢桁梁桥施工技术进行了研究和分析。
关键词:重载铁路;施工技术;钢桁梁桥前言:现代科学技术水平的不断提高,使得我国的工程项目建设能够克服许多地势险要地区的施工条件,完成高难度的施工任务。
在这种背景下,越来越多的大跨度钢桥被应用到地势险要的铁路工程当中,对保障铁路工程的稳定性和安全起到了重要的作用。
对重载铁路128m下承式简支钢桁梁桥施工技术进行分析,能够为我国铁路工程的施工建设提供借鉴的经验。
一、重载铁路与钢桁梁桥施工技术(一)重载铁路重载铁路是主要用于运输原材料的铁路类型,能够利用大轴重货车或总重大的汽车来实现大量的原材料运输,节省货物运输时间和成本。
基于重载铁路的主要功能和价值,其在设计和施工中需要达到严格的施工技术标准,才能够保证重载铁路的运输安全。
重载铁路最初诞生于20世纪20年代的美国,我国的重载铁路起步较晚,但在现阶段的发展中已经取得了较为明显的成果,大秦铁路、山西中南部铁路通道等都是我国重载铁路的主要代表,在加强城市联系、促进城市和社会的发展中发挥着重要的作用[1]。
(二)钢桁梁桥钢桁梁桥从实质上来说,是一种结构的受力方式,能够通过空腹化的钢板桥梁结构形式,依据弯矩和剪力等,采用纵向联结系和横向联结系的方式,达到构建桥梁结构,保证桥梁结构稳定性的目的[2]。
钢桁梁桥主要由主桁、联结系和桥面系构成,按照主桁支承方式的不同,可以将其分为简支钢桁梁桥、连续钢桁梁桥和悬臂钢桁梁桥三种;按照桥面位置不同,可以将其分为上承式钢桁梁桥和下承式钢桁梁桥两种。
中南部铁路通道96m跨钢桁梁安装过程计算2011年11月一、工程概况计算依据:2.1、基本数据《钢桁梁施工图设计图》《铁路桥梁钢结构设计规范》TB10002.2-2005 中华人民共和国铁道部;二、钢桁梁安装方案图一施工总布置图钢桁梁安装采用顶推方案架设。
首先,施工钢桁梁顶推滑道,安装滑块(位置为钢桁梁节点位置,前期作为钢桁梁拼装抄垫垫块,后期作为钢桁梁顶推滑块)。
在垫块上拼装钢桁梁,安装钢桁梁顶推设备。
施工采用连续千斤顶拖拉钢绞线,从112#墩拖拉至111#墩。
钢桁梁起顶,进行体系转换,钢桁梁从滑块转换到正式支座上,完成钢桁梁架设。
三、钢桁梁安装计算钢桁梁安装计算采用有限元分析软件进行分析计算,分为269个节点,713个单元。
通过分步安装计算来完成钢桁梁顶推计算,在计算的过程中未考虑由于施工支架变形引起的变化。
钢桁梁杆件主要应力取值:弦杆[200Mpa],腹杆杆[200Mpa]安装工况计算:一)工况1计算结果(在支架上拼装)二)工况2计算结果(顶推一个节间)工况3、顶推2个节间26.1t两侧上临时支墩,其中左侧钢桁梁位于临时支墩中心位置,右侧钢桁梁刚上临时支墩,两侧未支撑。
两侧上临时支墩,其中左侧钢桁梁位于临时支墩中心位置,右侧钢桁梁刚上临时支墩,两侧同时支撑。
在支架B上钢桁梁位置不变,支架C上钢桁梁支撑位置后移1个节间。
撑在E0节点,支架C上支撑E8/6’/4’/2’/0’,侧支撑在E2节点,支架C上支撑E6’/4’/2’/0’,侧支撑在E2节点,支架C上支撑E6’/4’/2’/0’,右侧支撑在E4节点,支架C上支撑E4’/2’/0’,右侧支撑在E6节点,支架C上支撑E2’,准备上支架A侧支撑在E6节点,支架C上支撑E2’,E0节点上支架A,钢桁梁顶推到位。
一)滑道梁A、D、E验算滑道梁的计算采用允许应力法进行。
滑道梁采用Q345B钢材,全焊接截面。
截面如下:滑道梁横截面(单位:mm)截面特性(单位:mm级)为了简化计算,将滑道梁的受力简化为简支梁来计算,其各阶段的内力。
1-64米钢桁梁顶推浮托法架设施工技术陈松江(上海外建建设咨询监理有限公司)一、工程概况上海市浦东铁路金汇港桥河道宽95m,规划等级为Ⅳ级航道,通航净高为7.0m,通航净宽为60m,该桥设计采用1-64m下承式(双线)钢桁梁跨越,主跨长度65.1m,两侧主桁中心距设计为10m,主桥高度为11m,节间为8m,总重约为370T(不含支座)。
二、顶推浮托的施工原理顶推浮托法架梁,关键是钢桁梁先在岸上桥墩顶的膺架上拼装完毕,将钢桁架一端置于浮船的高托支架上,然后在一定的千斤顶推动力作用下,使钢桁架能在由滑船(滑动棍轴平车)组成的滑道装置上,以较小的磨擦稳定通过浮托向前移动,就位后落梁,更换支座。
三、顶推浮托的四大系统顶推浮托法架设钢桁梁的施工设施共分四大系统,即岸上滑道系统、水上浮运支托系统、顶推纵移系统及方向控制系统。
岸上滑道系统:分上、下滑道,下滑道设在膺架(军用便梁)上,采用枕木和2根P43钢轨铺设;上滑道用型钢加工成滑船(滑动棍轴平车),上、下滑道之间设置Φ90的辊轴。
上滑道安装于钢桁梁的下弦杆节点处。
水上浮运支托系统:采用15个中-60型浮箱组拼成浮船,浮船平台上安装托架,托架采用“六五”式军用墩杆件拼装。
采用水泵对浮箱注、排水,以完成装卸梁及浮运过程中的标高调整。
顶推纵移系统:由两套顶推设备(液压千斤顶、夹轨器、辊轴小车)、油泵及控制柜组成。
由夹轨器夹紧下滑道钢轨形成顶推反力台座。
方向控制系统:钢桁梁浮运的方向控制采用4台电动锚机,设置在浮船平台的四角上,钢丝绳的终端分别固定在两岸的四个地垄上。
四、顶推浮托法施工顺序用顶推浮托法架设钢桁梁的主要施工内容是:膺架上纵移梁船进位托梁顶推浮运钢桁梁就位及撤船。
施工步骤如下:第一步:纵移梁浮运前选定前后两个支点,在膺架上将钢桁梁顶推纵移。
使钢桁梁前支点移至一墩顶,后支点悬出,准备装船。
第二步:将浮船注入全部压仓水后,移至钢桁梁下,将浮船托架上支点中心在钢梁节点处对位后排水,使船体上浮将梁托起,并将托架与钢梁下弦捆扎牢固。