果蔬采摘机器人末端执行器的结构组成现状分析.docx
- 格式:docx
- 大小:848.44 KB
- 文档页数:17
果蔬采摘机器人末端执行器研究现状
胡皓若;张跃跃;周佳良;陈青;王金鹏
【期刊名称】《中国农机化学报》
【年(卷),期】2024(45)4
【摘要】目前果蔬采摘大多以人工采摘为主,存在效率低、采摘成本大等缺点,同时随着人口老龄化问题的日益严重,劳动力紧缺,制约农业的快速发展。
末端执行器作为果蔬采摘机器人的关键部件,在很大程度上影响着采摘机器人的采摘率和损伤率,对末端执行器的研究具有至关重要的意义。
充分阐述当前国内外果蔬采摘机器人的研究现状。
根据采摘方式和驱动方式的不同对采摘末端执行器进行归纳,总结出采摘过程中致损原因。
通过列举典型采摘末端执行器,分析末端执行器在采摘过程中果实致损的原因;通过对现有采摘机器人末端执行器方案的具体参数对比梳理,提出存在识别定位不准、采摘效率低等问题,并从损伤率、采摘效率等方面对未来末端执行器进行展望。
【总页数】6页(P231-236)
【作者】胡皓若;张跃跃;周佳良;陈青;王金鹏
【作者单位】南京林业大学机械电子工程学院
【正文语种】中文
【中图分类】S225;TP242
【相关文献】
1.采摘机器人末端执行器研究现状与展望
2.果蔬采摘机器人末端执行器的柔顺抓取力控制
3.果蔬采摘机器人末端执行器研究综述
4.果蔬采摘机器人末端执行器研究进展与分析
5.果蔬采摘机器人研究现状与进展分析
因版权原因,仅展示原文概要,查看原文内容请购买。
果树采摘机器人的发展现状及运动学分析专业:机械制造与自动化学生:张长峰指导老师:周威铎完成日期:2013.4.10摘要果园收获作业机械化、自动化是广大果农关注的热点问题。
进行果树采摘机器人研究,不仅对于适应市场需求、降低劳动强度、提高经济效率有着一定的现实意义,而且对于跟踪世界农业新技术、促进我国农业科技进步,加速农业现代化进程有着重大的意义。
果树采摘机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统,它是由机械手固定在履带式移动平台上构成的一类特殊的移动机器人系统。
本文在以自行设计的机器人机械结构为研究对象,对果树采摘机器人的控制系统进行了分析、研究和设计,并对采摘机器人避障技术进行了探讨。
主要工作如下:分析了果树采摘机器人机械结构,介绍了机器人运动学理论,根据自行设计的5自由度机械臂机械特性,采用几何结构算法,建立了果树采摘机器人机械臂的正、逆运动学方程。
关键词:果树采摘机器人,机械结构,运动学分析等等。
ABSTRACTOrchard mechanized and automation harvesting operations have become the hot issue of majority fruit growers concerned.Develop the fruit harvesting robot research not only has a certain degree of practical significance to meet market demand and reduce labor intensity and improve economic efficiency, but also can to track new agricultural technologies of the world. It is important to promote China's agricultural scientific and technological progress, accelerate the agricultural modernization process.Fruit harvesting robot is an integrated system that has multiple functions such as environmental apperceive,dynamic decision making, planning conduct control and implementation. It is a special kind of mobile robot system that the mechanical hand was fixed in the track type mobile platform. This paper was supported by the National “863”Project: “research on fruit harvesting robot’s key technologies”. A self-designed robot mechanical structure was uesd as the study object.Analysis, research and design was progressed for the fruit harvesting robot's control system. The adaptive fuzzy PID controller was composed by PID control method combined with fuzzy logic control method and the controller was used in fruit harvesting robot visual servo control.At the same time the technology of harvesting robot’s control and obstacle avoidance was analysed.The main research contents as follows:the mechanical structure of the fruit harvesting robot was analysed and the theory of robot kinematics was introduced. Based on theself-design 5 degrees of freedom robot manipulator’s mechanical properties, the fruit harvesting robot’s positive and inverse kinematics equations were found using the geometric structure of the algorithm.KEY WORDS: fruit harvesting robot, obstacle avoidance, sensor and so on.目录摘要 (2)ABSTRACT (3)第一章农业采摘机器人的发展及研究现状 (5)1.1 农业采摘机器人的研究意义 (5)1.2 农业采摘机器人的特点 (6)1.3 农业采摘机器人国内外研究进展 (6)第二章农业采摘机器人研究存在的问题与解决方法 (9)2.1 存在的技术难题 (9)2.2 技术难题解决方法 (9)2.3 本设计主要研究内容 (9)第三章果树采摘机器人机械结构 (10)第四章摄像机投影模型.............................. 错误!未定义书签。
类球果蔬采摘末端执行器设计及分析付舜;王毅【摘要】根据一般类球果蔬采摘特点,设计了一种基于改进对称双摇杆机构的类球果蔬采摘末端执行器.在ADAMS中建立其虚拟样机,并对其受力关键部位作柔性体处理,得到其运动评估参数的变化曲线,得出该执行器机构运动特性,可知该执行器结构简单、运动关系简易,具有良好的可靠性保证.%According to the general characteristics of spherical fruits and vegetables harvesting, an end-effector based on double-rocker mechanism for picking robot was designed. The virtual prototype was established in the ADAMS and the key parts of stressed were treated as flexible bodies, the motion parameters of the actuator were obtained, and the motion characteristic of the actuator was obtained. It was proved that the actuator had simple structure, simple kinematic relationship and good reliability.【期刊名称】《湖南农业科学》【年(卷),期】2017(000)003【总页数】4页(P16-19)【关键词】类球果蔬;采摘末端执行器;机构设计;ADAMS仿真分析【作者】付舜;王毅【作者单位】重庆理工大学机械工程学院,重庆 400054;重庆理工大学机械工程学院,重庆 400054;重庆大学机械工程学院,重庆 400044【正文语种】中文【中图分类】S225我国是果蔬产业大国,从 1994 年开始,我国果蔬产量开始跃居世界首位,并一直稳步增长。
种果蔬采摘竞赛机器人的设计竞赛机器人的设计是基于高效、精确和自动化的原则,旨在提高果蔬采摘的效率和质量。
下面我将详细介绍这款机器人的设计。
一、机器人的结构和执行机构:1.结构设计:机器人的结构采用轻巧、紧凑的设计,以便在狭小的果蔬园地中自由活动。
机器人的主体部分由高强度、轻质的材料构成,以减少机器人的自身重量,提高机器人的机动性和灵活性。
2.执行机构:机器人配备了多个执行机构,包括机械臂、摄像机、传感器等。
机械臂用于采摘果实,其中的抓取器可以根据不同果蔬的形状和大小进行调整。
摄像机用于监控果蔬的生长情况和位置信息。
传感器用于检测果实的成熟度和质量。
二、机器人的感知和定位系统:1.相机视觉系统:机器人配备了高分辨率的相机,可以获取果实的图像信息。
通过图像处理算法,机器人可以实时识别出果实的位置、大小和成熟度。
2.定位系统:机器人通过激光雷达或GPS等定位技术,确定自身的位置和姿态,以便精确地定位和采摘果实。
三、机器人的控制系统:1.控制算法:机器人采用先进的控制算法,以实现自主操作和快速响应。
通过与相机和传感器的配合,机器人可以实时感知果实的状态和环境的变化,并做出相应的决策。
2.控制器:机器人配备了高性能的控制器,其运行速度和计算能力可以满足机器人复杂的控制需求。
控制器可以根据预设算法和规则,精确地控制机械臂的运动、摄像机的焦距和传感器的灵敏度。
四、机器人的智能决策系统:1.决策算法:机器人配备了智能决策算法,可以根据果蔬的生长情况、成熟度和质量,以及当前的环境条件,进行智能化的决策。
例如,机器人可以根据果蔬的成熟度和质量,决定是否采摘该果实,以及确定采摘的方式和顺序。
2.数据处理和分析:机器人通过处理和分析大量的数据,可以根据历史数据和趋势预测果蔬的生长情况,并提前做出相应的调整和决策。
五、机器人的安全保护系统:1.碰撞检测:机器人配备了碰撞检测传感器,并通过控制系统实时监测机器人周围的环境。
一种水果采摘机器人末端执行器一种水果采摘机器人的末端执行器随着科技的不断进步,机器人技术正在越来越广泛地应用于各种领域。
其中,水果采摘领域也不例外。
水果采摘机器人的末端执行器是实现采摘水果的关键部分,它能够通过精确的操作,快速、高效地完成水果采摘任务。
一、末端执行器的设计水果采摘机器人的末端执行器一般采用机械手或机器人手臂的设计。
它通常由多个关节组成,具有高度的灵活性和操作性。
末端执行器可以通过感应器来感知水果的位置和形状,并通过复杂的算法来确定最佳的采摘路径。
二、末端执行器的操作流程1、感应水果:末端执行器使用感应器来探测水果的位置和形状。
这些感应器可以是光学相机、红外相机或深度相机等。
通过对采集到的图像进行处理和分析,可以确定水果的精确位置和大小。
2、路径规划:一旦确定了水果的位置,末端执行器将通过复杂的算法计算出最佳的采摘路径。
这些算法通常考虑多种因素,如机械手的灵活性、水果的位置和形状等。
3、采摘水果:在规划好路径后,末端执行器将开始执行采摘操作。
它可以使用夹持器或剪刀等工具来抓住或切断水果的茎干。
在采摘过程中,末端执行器需要保证水果不受损伤,同时也要保证机械手的操作安全。
4、放置水果:一旦采摘完成,末端执行器将把水果放置到指定的位置。
这个位置可以是篮子、箱子或其他容器。
放置过程中,末端执行器需要保证水果的稳定性和整齐性,以便后续的处理和运输。
三、末端执行器的优势1、高效性:末端执行器可以快速、准确地完成采摘任务,大大提高了采摘效率。
2、准确性:通过感应器和算法的配合,末端执行器可以精确地定位水果的位置和形状,从而保证采摘的准确性。
水果采摘机器人末端执行器的研究进展随着现代农业技术的不断发展,自动化和机器人技术在农业生产中的应用越来越广泛。
其中,水果采摘机器人在提高生产效率、降低劳动成本、提升水果质量等方面具有明显优势。
然而,采摘水果的精度和效率在很大程度上取决于机器人末端执行器的设计和功能。
《采摘机器人末端执行器设计与抓取特性研究》一、引言随着科技的进步和农业现代化的推进,采摘机器人成为了提高农业生产效率和减少人工成本的重要工具。
而末端执行器作为采摘机器人的核心部分,其设计和抓取特性直接影响着机器人的工作效率和准确性。
因此,对采摘机器人末端执行器设计与抓取特性的研究具有重要的现实意义。
二、采摘机器人末端执行器设计1. 设计要求与目标采摘机器人末端执行器设计需满足以下要求:适应不同形状和大小的果实,确保抓取的稳定性和准确性,同时要保证轻便、耐用和低能耗。
设计目标是通过精确的机械结构和智能控制系统,实现自动化、高效化的果实采摘。
2. 结构设计末端执行器主要由夹持机构、驱动机构和控制机构三部分组成。
夹持机构负责与果实接触并实现夹持动作,驱动机构提供夹持动作的动力,控制机构则负责整个执行器的控制与协调。
其中,夹持机构的设计是关键,需根据果实的形状和大小进行定制化设计。
3. 材料选择执行器的材料选择需考虑其强度、耐磨性、耐腐蚀性以及轻量化等因素。
常用的材料包括高强度合金、工程塑料等。
此外,为保证执行器的耐用性,还需对关键部件进行表面处理,如喷涂防腐漆等。
三、抓取特性研究1. 抓取稳定性研究抓取稳定性是评价末端执行器性能的重要指标。
通过优化夹持机构的结构和材料,以及合理设置夹持力的大小和方向,可提高抓取的稳定性。
此外,还可通过引入视觉系统和力觉传感器,实现精确的定位和力控制,进一步提高抓取的稳定性。
2. 抓取速度与效率研究为提高采摘机器人的工作效率,需对末端执行器的抓取速度与效率进行研究。
通过优化驱动机构的传动方式和控制策略,可实现更快的夹持动作和更高的工作效率。
同时,结合智能控制算法,可实现多任务并行处理和优化调度,进一步提高机器人的工作效率。
四、实验与分析为验证设计的合理性和抓取特性的有效性,我们进行了大量的实验和分析。
实验结果表明,优化后的末端执行器能够适应不同形状和大小的果实,具有较高的抓取稳定性和工作效率。
农业作为我国重要的经济产业支柱,其发展的道路上存在着众多的问题。
在城镇化不断推进和人口老龄化现象日益严重以及大量青年人外出务工等的驱动下,农村严重缺乏生产劳动力,而缺乏生产劳动力是农业发展面临的主要问题之一[1]。
目前,我国果蔬等农作物采摘方式以人工采摘方式为主,由于劳动力的不足,大量的人工成本严重影响了果蔬生产效益。
因此,随着国家的发展,农业的发展逐渐从传统农业向智能化、智慧化农业发展,因而在农业生产中普及智能化设备、降低成本、提高工作效率,将成为未来农业发展的必然趋势,研发制造适用于果蔬等农作物采摘的机器人,代替人工进行农业生产,对于推进农业智能化和现代化进程具有重要意义[2]。
1果蔬采摘机器人的作业特性分析
1.1采摘对象多样化,生长环境差异化
果蔬的种类繁多,其大小、形状、颜色、重量以及坚硬度都有很大的差别,对于坚硬度不高的果蔬采摘时容易造成损坏,所以在作业时,采摘机器人需要根据果蔬的大小去调整末端执行器以及控制抓取力度。
由于果蔬的生长受到环境因素的影响很大,而环境也存在着很大的差异性,所以采摘机器人的采摘作业环境也就大不相同,进而对其提出了更高的要求。
采摘机机器末端执行器研究现状分析末端执行器是果蔬采摘机器人的另一重要部件,它的设计通常被认为是机器人的核心技术之一。
一般果蔬的外表比较脆弱,它的形状及生长状况通常复杂。
在机器人采摘过程中果蔬外表发生损伤的原因主要有:①果蔬位置识别或机械臂控制规划有误,导致末端执行器划伤或刺伤果蔬外表;②末端执行器夹持或抓取力过大,压伤果蔬外表;③末端执行器抓持不稳定导致果蔬掉落,与地面或其他坚硬物体接触而碰上外表。
作为采摘机器人的执行装置,末端执行器应根据不同果蔬果实的生物、机械特性及栽培方式,采取不同的专用机构以提高采摘的成功率并减小对果蔬的损伤为主要目标。
一般集成两项功能:①检测果实的位姿,为执行机构提供导航信息;②以适当力度夹持果实或果梗并剪切果柄,完成采摘动作。
在动作上通常包括获取果实和果实与植株分离两部分。
为了安全与高效的完成采摘动作,末端执行器还可能加入吸盘、推杆等附加机构以及各类传感器以完成准确采摘并减小损伤。
1.获取方式获取和分离果实是采摘机器人末端执行器必须实现的两大关键动作,即首先通过抓取、吸入、勾取等一定方式获取果实,再通过扭断、剪切等不同方法完成果实与果梗的分离。
从目前发表的文献来看,获取果实的方式主要归为非夹持类和夹持类两种。
分离果实与果梗的方式有传统的扭断、折断、拉断以及通过剪刀或切刀进行切断,还有新式的热切割方法等。
1.1.直接切断式这类末端执行器一般都是直接剪断果梗,由于其本身不能实现果实的回收,因此剪掉的果实直接落地或者落入事先放置的果箱中。
例如,日本开发的甜椒采摘机器人末端执行器、茄子采摘末端执行器、番茄采摘末端执行器、美国柑橘采摘末端执行器均为此类结构,如下图所示。
1甜椒采摘末端执行器2茄子采摘末端执行器3番茄采摘末端执行器这类末端执行器的结构更能较为简单,适用于植株冠层内枝叶较稀疏,且果实具有一定抗冲击能力的果蔬。
对于果梗较短的植株,往往造成无法剪切或碰上果实的现象,对于冠层空间比较复杂的植株,果实下落过程中很容易被碰上,并且下落的位置也不定,影响果实的回收。
果蔬采摘机器人的研究现状及发展方向随着现代科学技术的发展,人类正在朝着一个机械智能化时代迈进。
越来越多的行业开始导入智能化、自动化的机器,而对于劳动力输入最多的农业自是不甘落后的,早早的将机械利用其中。
为解决农业采摘中的实际问题,果蔬采摘机器人的研究与应用成为一种迫切需要。
综述了国内外果蔬采摘机器人的研究进展与现状,通过分析这些采摘机器人,并在此基础上重点分析了果蔬采摘机器人研究中存在的问题,提出了未来研究开发的技术关键与方向,同时也指明了采摘机器人未来的研究方向。
标签:果蔬采摘;机械手;自动化;研究现状引言随着电子计算机和自动控制技术的迅速发展、农业高新科技的应用和推广,农业机器人已逐步进入到农业生产领域中,并将促进现代农业向着装备机械化、生产智能化的方向发展。
【1】果蔬采摘是农业生产中季节性强、劳动强度大、作业要求高的一个重要环节,研究和开发果蔬采摘的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬的品质,以及满足作物生长的实时性要求等方面都有着重要的意义。
果蔬采摘机器人的研究现状:国际上,一些以日本和美国为代表的发达国家,已经从20世纪80年代开始研究采摘机器人,并取得了一些成果。
而我国直到20 世纪90 年代,中国才开始研究果蔬采摘机器人,而且相对于其他发达国家,中国的研究工作具有起步晚,发展慢,投资少的特点。
哪怕在改革开放之后,我国加大对于这个方面的研究,但是所取得效果仍旧不明显,使得果蔬采摘自动化技术长期处于基础研发的阶段。
我国对采摘机器人的研究始于20世纪90年代中期,虽然与发达国家还有很大的差距,但是在不少院校和研究学者的努力下也取得了一些进展【2】。
中国农业大学的汤修映等人研制了一个6自由度黄瓜采摘机器人,该机器人基于RGB三基色模型的G分量【3】来进行图像分割,在特征提取后确定黄瓜的采摘点。
同时提出了新的适合自动化采摘的斜栅网架式黄瓜栽培模式。
孙明等为苹果采摘机器人开发了一套果实识别视觉系统,并研究成功了一种使二值图像的像素分割正确率大于80%的彩色图像处理技术。
采摘机器人欠驱动末端抓手设计与分析摘要:农业是国家经济的基础,其中,果蔬产业占据着农业的重要地位。
我国是果蔬的产出大国,果蔬需求量增加使得果蔬产业对劳动力的需求也增加。
在果蔬的生产过程中,最重要的是采摘步骤。
然而,传统的人工采摘模式已经远远不能满足,加上农村劳动力的流失,果蔬业面临着十分严峻的难题。
因此,发展果蔬采摘机器人是十分必要的,不仅能够代替人力劳动,减少用工成本,还能提高采摘效率,对于果蔬产业的发展具有重要意义。
关键词:果蔬采摘;末端抓手;绳传动;欠驱动1.总体方案确定1.1明确抓取目标果蔬的种类繁多,形状大小各不相同,需要所设计的采摘机器人末端抓手具备较佳的适应性。
本课题以苹果和黄瓜这两个最常见的水果和蔬菜为采摘机器人欠驱动末端抓手的夹取目标,通过对它们的几何特性和形状进行分析来得到机器人末端抓手的夹取条件、基本参数、驱动方式和结构形式。
虽然不同品种的西红柿和黄瓜的形状大小和质量不同,但总体来说,苹果类似于球体,黄瓜类似于长圆柱体,其截面都类似圆形。
由表可知,苹果的平均直径为100mm,平均质量为180g;黄瓜的平均直径为45mm,平均质量为145g。
本课题所设计的采摘机器人末端抓手将以苹果和黄瓜直径与质量的平均值为参考。
1.2各类采摘机器人末端执行器比较1.2.1吸入式末端执行器吸入式末端执行器是通过吸盘、吸筒等,采用负压的原理来抓取果实,对果实表皮的损伤较小,响应比较快。
但是,抓持力有限,仅适用于球状的单颗果蔬,如苹果、番茄、草莓等。
1.2.2两指夹持式末端执行器两指夹持式末端执行器通常是采用两片夹板组成夹持机构,对果实进行两个在同一直线、相反方向的夹持力的夹取,稳定夹取后,用切刀将果杆剪切以得到果实。
这种类型的采摘机器人末端执行器可以夹取的果实体积范围较大,但是容易出现夹持力不在质心上,夹持不稳定的情况。
1.2.3指节式仿人手末端执行器指节式仿人手末端执行器是模仿人手的结构,多根手指,多个指节,采用连杆传动或腱绳传动,可以实现欠驱动方式,提高灵活性和简便性,可以对不同形态的物体进行捏取、包络抓取等不同的动作,通用性更强。
果蔬采摘机器人的文献综述摘要介绍了国内外果蔬采摘机器人的类型和特点,综述了国内外果蔬采摘机器人的研究进展,总结了果蔬采摘机器人的特点,归纳了果蔬采摘机器人研究中的关键问题并分析了典型的果蔬采摘机器人的机械结构及控制系统的过程机理等,比较了果蔬采摘机器人的动力源系统。
在此基础上,对果蔬采摘机器人的研究前景进行了展望。
关键词:引言随着电子计算机和自动控制技术的发展、农业高新科技的应用和推广,农业机器人已逐步进入到农业生产领域中,并将促进现代农业向着装备机械化、生产智能化的方向发展。
果蔬采摘是农业生产中季节性强、劳动强度大、作业要求高的一个重要环节,使用人工采摘不仅效率低、劳动量大,而且对果蔬也造成了一定量的损害。
研究和开发果蔬采摘的智能机器人技术对于解放劳动力、提高生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着很重要的意义。
并且,随着我国农业从业者的减少和老龄化趋势的不断加大,果蔬采摘机器人的开发利用具有巨大的经济效益和广阔的市场前景。
第1章果蔬采摘机器人的发展现状1.1 果蔬采摘机器人的特点工业领域是机器人技术的传统应用领域,工业机器人处于可控制的人工环境内,并以均匀材质、确定的尺寸和形状的物体为操作对象,目前已经得到了相当成熟的应用,而采摘机器人工作在高度非结构化的复杂环境下,作业对象是有生命力的新鲜水果或蔬菜。
同工业机器人相比,果蔬采摘机器人具有以下特点:1、作业环境的非结构性。
由于农作物随着时间和空间而变化,工作环境是变化的、未知的,是开放性的。
作物生长环境除受地形条件的约束外,还直接受季节、天气等自然条件的影响。
这就要求采摘机器人不仅要具有与生物体柔性相适应的处理功能,而且还要能够顺应变化的自然环境,在视觉、触觉、多传感器融合等知识推理和判断等方面具有相当的智能。
2、采摘对象的娇嫩性和复杂性。
果实具有软弱易伤的特性,其形状复杂,生长发育程度各异;而且采摘对象大多被植物的枝叶所遮盖,增大了视觉定位的难度,是采摘速度和成功率降低,同时也对机械手的避障提出了更高的要求。
采摘机机器末端执行器研究现状分析
末端执行器是果蔬采摘机器人的另一重要部件,它的设计通常被认为是机器人的核心技术之一。
一般果蔬的外表比较脆弱,它的形状及生长状况通常复杂。
在机器人采摘过程中果蔬外表发生损伤的原因主要有:①果蔬位置识别或机械臂控制规划有误,导致末端执行器划伤或刺伤果蔬外表;②末端执行器夹持或抓取力过大,压伤果蔬外表;
③末端执行器抓持不稳定导致果蔬掉落,与地面或其他坚硬物体接触而碰上外表。
作为采摘机器人的执行装置,末端执行器应根据不同果蔬果实的生物、机械特性及栽培方式,采取不同的专用机构以提高采摘的成功率并减小对果蔬的损伤为主要目标。
一般集成两项功能:①检测果实的位姿,为执行机构提供导航信息;②以适当力度夹持果实或果梗并剪切果柄,完成采摘动作。
在动作上通常包括获取果实和果实与植株分离两部分。
为了安全与高效的完成采摘动作,末端执行器还可能加入吸盘、推杆等附加机构以及各类传感器以完成准确采摘并减小损伤。
1.获取方式
获取和分离果实是采摘机器人末端执行器必须实现的两大关键动作,即首先通过抓取、吸入、勾取等一定方式获取果实,再通过扭断、剪切等不同方法完成果实与果梗的分离。
从目前发表的文献来看,获取果实的方式主要归为非夹持类和夹持类两种。
分离果实与果梗的方式有传统的扭断、折断、拉断以及通过剪刀或切刀进行切断,还有新式的热切割方法等。
1.1.直接切断式
这类末端执行器一般都是直接剪断果梗,由于其本身不能实现果实的回收,因此剪掉的果实直接落地或者落入事先放置的果箱中。
例如,日本开发的甜椒采摘机器人末端执行器、茄子采摘末端执行器、番茄采摘末端执行器、美国柑橘采摘末端执行器均为此类结构,如下图所示。
1甜椒采摘末端执行器
2茄子采摘末端执行器
3番茄采摘末端执行器
这类末端执行器的结构更能较为简单,适用于植株冠层内枝叶较稀疏,且果实具有一定抗冲击能力的果蔬。
对于果梗较短的植株,往往造成无法剪切或碰上果实的现象,对于冠层空间比较复杂的植株,果实下落过程中很容易被碰上,并且下落的位置也不定,影响果实的回收。
1.2 吸入式
这类非夹持类末端执行器主要是通过真空系统将果实吸入末端执行器内,再通过切断、扭断等方式分离果实和果梗。
如图4所示的柑橘采摘末端执行器结构图,由真空吸盘先吸持住果实向后拉动,同时末端执行器的弹性盖板向前移动,使果实进入笼体内,然后盖板收缩进而保住果实,随后一对割刀合拢切断果梗。
4 柑橘采摘末端执行器
如图5(a)所示比利时开发的苹果采摘机器人末端执行器,设计成漏斗的形状,漏斗内安置摄像机,当有果实进入手爪范围的时候,真空吸引器打开将果实吸入,再通过旋转扭断果梗将果实采摘下来。
图5(b)所示英国开发的苹果采摘机器人末端执行器,由一截管道、两个内置圆环和两个弹簧盖组成,该末端执行器获取果实的原理也是吸入+扭断式,当苹果的位置信息传来之后,真空系统将果实吸入,再扭断果梗采摘下苹果。
(a)(b)
图5 苹果采摘末端执行器
还有吸入+勾取的方式来获取果实等等。
吸入式的末端执行器硬件设计简单,工作原理类似,对于果实娇嫩、果梗柔弱细长的草莓等果实,采取吸入加勾取比夹持的获取方式更可行,但这类末端执行器对果实个体尺寸差异适应能力较差动作速度较慢,稳定性不高,而且相邻的未成熟的果实也容易被一同吸入和采摘下来。
1.3 夹持类
这类末端执行器其夹持器通常由带有真空吸引器和数目不等的
手指构成。
按手爪的个数可分为两指和多指型,目前大多数果蔬采摘机器人末端执行器为两指,也有一些三指和四指的末端执行器,用于外形不规则或较大的果实。
因此,一般情况下,对于形状较为规格,尺寸和质量部太大的果实,应首选较少手指进行抓持。
1.3.1 两指夹持
如图6所示,日本东京大学乔俊(Jun Qiao)等人开发设计的甜椒采摘机器人末端执行器,该末端执行器具有两个瘦长形的手指,长度为160mm,厚度和宽度分别只有1mm和10mm。
两个手指组成的手爪抓住果柄的过程由依靠一个凸轮的瞬时针旋转运动进行张开和夹紧动作,凸轮的旋转运动由一个步进电机进行驱动,凸轮为椭圆形,旋转90度后手爪就完成一次张开或夹紧的过程。
图6 日本的甜椒采摘机器人末端执行器
.中国农业大学张凯良等人设计了草莓采摘机器人,其机械原理如图7所示,该末端执行器的夹持机构主要有机械爪及其附属部件构成。
丝杠与内螺纹管通过螺纹连接,由电机带动丝杠旋转,从而螺纹管进行前后运动,进而带动两根手指做闭合或张开动作,完成对果实的获取。
在两手指的内侧上装有橡胶垫,增加了缓冲,可使末端执行
器更可靠地夹持,同时,在靠近手指根部的位置安装了一对间距可调的机械触点,作为机械爪夹持力度的反馈装置。
可见,该末端执行器的夹持装置获取果实的精确性、可靠性以及对果实的保护程度明显要好于日本的甜椒采摘机器人末端执行器。
1.手指
2.内螺纹管
3.丝杠
4.电机
图7 机械爪机构示意图
刘继展等研制了番茄采摘机器人末端执行器(图8),由于番茄的成串生长增加了真空吸盘装置,避免了采摘时将相邻的未成熟果实一同夹持。
真空吸盘装置由真空发生设备、真空检测控制元件、吸盘和连接附件组成。
采用小型压缩气罐为气源,采用适应曲面及不平整工件、具有良好缓冲性能的真空波纹吸盘由真空软管、接头等附件连接组成末端执行器的真空系统。
真空波纹吸盘固定于齿轮的前端,通过齿轮齿条传动带动吸盘前进和后退,并与真空系统相配合,完成吸住并拉动果实的任务。
采用两指夹持机构,如图9所示,手指指面设计成圆弧并贴有5mm厚的橡胶,增强了夹持的可靠性。
手指夹持机构由直流伺服电机驱动,通过锥齿轮的传动,带动具有左旋和右旋两段螺纹的双向螺杆传动,使与之组成螺旋副的两手指产生平行相对运动,从而合拢或
松开,完成对番茄果实的夹持。
1.手指
2.真空波纹吸盘
3.双向螺杆4、8、11.直流伺服电动机
5.激光聚焦透镜
6.齿条
7.外壳9、10.锥齿轮12.齿轮
图8 番茄采摘机器人末端执行器主体结构示意图
图9 手指尺寸及吸盘行程
马履中等研制的苹果采摘机器人末端执行器的夹持机构如图10所示,气缸的活塞杆通过销轴与两手指后端滑槽的高副连接,最终把导杆的直线运动转化成两手指绕转轴的摆动,从而组成滑槽导杆机构,。