数字图像处理直方图均衡化PPT课件
- 格式:ppt
- 大小:1.40 MB
- 文档页数:27
设计题目:直方图均衡化1、直方图的理论基础:(1)直方图概念:灰度直方图表示图像中每种灰度出现的频率。
(2)直方图的作用: 反映一幅图像的灰度分布特性(3)直方图的计算: 式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。
2、设计目的: 产生一幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的目的。
3、直方图均衡化的效果 :1)变换后直方图趋向平坦,灰级减少,灰度合并。
2)原始象含有象素数多的几个灰级间隔被拉大了,压缩的只是象素数少的几个灰度级,实际视觉能够接收的信息量大大地增强了,增加了图象的反差。
同时,也增加了图象的可视粒度。
4、离散情况下的直方图均衡化的算法:A 、列出原始图像的灰度级B 、统计各灰度级的像素数目C 、计算原始图像直方图各灰度级的频数D 、计算累积分布函数F 、应用以下公式计算映射后的输出图像的灰度级,P 为输出图像灰度级的个数,其中INT 为取整符号:G 、用的映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像。
3、源程序代码// cqxhistView.cpp : implementation of the CCqxhistView class#include "stdafx.h"#include "cqxhist.h"#include "cqxhistDoc.h"#include "cqxhistView.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif///////////////////////////////////////////////////////////////////////////// // CCqxhistView1,,1,0,-=L j f j 1,,1,0,-=L j n j 1,,1,0,/)(-==L j n n f P j j f 1,,,1,0,)()(0-==∑=L k j f P f C k j j f ]5.0)()[(min min max ++-=g f C g g INT g i nn r p k k =)(1,,2,1,010-=≤≤l k r kIMPLEMENT_DYNCREATE(CCqxhistView, CView)BEGIN_MESSAGE_MAP(CCqxhistView, CView)//{{AFX_MSG_MAP(CCqxhistView)ON_COMMAND(ID_OPEN_IMAGE, OnOpenImage)ON_COMMAND(ID_HIST_IMAGE, OnHistImage)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CCqxhistView construction/destructionCCqxhistView::CCqxhistView(){// TODO: add construction code here}CCqxhistView::~CCqxhistView(){}BOOL CCqxhistView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}///////////////////////////////////////////////////////////////////////////// // CCqxhistView drawingvoid CCqxhistView::OnDraw(CDC* pDC){CCqxhistDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true) //判断是否加载图像{//获取图像宽和高int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();// 显示图像(具体的参数见CDIB类的该函数说明)m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI); }if(m_bHist==true){//绘制原图像的直方图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(410,nh+20); //(410,nh+20 )是直方图的左上角坐标// 垂直轴pDC->LineTo(410,nh+200);//(410,nh+200 )是直方图的左下角坐标// 水平轴pDC->LineTo(710,nh+200);//(710,nh+200 )是直方图的右下角坐标// 写X轴刻度值str.Format("0");pDC->TextOut(410, nh+200+10, str);str.Format("50");pDC->TextOut(460, nh+200+10, str);str.Format("100");pDC->TextOut(510, nh+200+10, str);str.Format("150");pDC->TextOut(560, nh+200+10, str);str.Format("200");pDC->TextOut(610, nh+200+10, str);str.Format("255");pDC->TextOut(665, nh+200+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(705,nh+200-5);pDC->LineTo(710,nh+200);pDC->LineTo(705,nh+200+5);// 绘制y轴箭头pDC->MoveTo(410,nh+20);pDC->LineTo(405,nh+20+5);pDC->MoveTo(410,nh+20);pDC->LineTo(415,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_yuan[i]>max)max=m_yuan[i];for(i=0;i<256;i++){pDC->MoveTo(410+i,nh+200);pDC->LineTo(410+i,nh+200-(m_yuan[i]*160/max));}}if(m_bHist==true){//绘画直方图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(10,nh+20); //(10,nh+20 )是直方图的左上角坐标// 垂直轴pDC->LineTo(10,nh+200);//(10,nh+200 )是直方图的左下角坐标// 水平轴pDC->LineTo(310,nh+200);//(310,nh+200 )是直方图的右下角坐标// 写X轴刻度值str.Format("0");pDC->TextOut(10, nh+200+10, str);str.Format("50");pDC->TextOut(60, nh+200+10, str);str.Format("100");pDC->TextOut(110, nh+200+10, str);str.Format("150");pDC->TextOut(160, nh+200+10, str);str.Format("200");pDC->TextOut(210, nh+200+10, str);str.Format("255");pDC->TextOut(265, nh+200+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(305,nh+200-5);pDC->LineTo(310,nh+200);pDC->LineTo(305,nh+200+5);// 绘制y轴箭头pDC->MoveTo(10,nh+20);pDC->LineTo(5,nh+20+5);pDC->MoveTo(10,nh+20);pDC->LineTo(15,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_hist[i]>max)max=m_hist[i];for(i=0;i<256;i++){pDC->MoveTo(10+i,nh+200);pDC->LineTo(10+i,nh+200-(m_hist[i]*160/max));}}}///////////////////////////////////////////////////////////////////////////// // CCqxhistView printingBOOL CCqxhistView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CCqxhistView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CCqxhistView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}///////////////////////////////////////////////////////////////////////////// // CCqxhistView diagnostics#ifdef _DEBUGvoid CCqxhistView::AssertValid() const{CView::AssertValid();}void CCqxhistView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CCqxhistDoc* CCqxhistView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CCqxhistDoc)));return (CCqxhistDoc*)m_pDocument;}#endif //_DEBUG/////////////////////////////////////////////////////////////////////////////// CCqxhistView message handlersvoid CCqxhistView::OnOpenImage(){// TODO: Add your command handler code here// TODO: Add your command handler code herestatic char szFilter[]="BMP文件(*.bmp)|*.bmp||"; //定义过滤文件的类型 CFileDialog dlg(TRUE,"bmp",NULL,OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT,szFilter);//定义文件对话框对象 CString filename;int ret=dlg.DoModal(); //运行打开文件对方框if(ret==IDOK){filename=dlg.GetFileName(); //获取所选择图像的路径 m_dib.LoadFromFile(filename); //加载图像if(!m_dib.m_bLoaded) //判断是否加载图像成功{AfxMessageBox("图像打不开");return;}for(int i=0;i<256;i++) //初始化直方图数组{ m_hist[i]=0;m_yuan[i]=0;}m_bHist=false;}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;j<nh;j++)for(int i=0;i<nw;i++){BYTE temp=m_dib.m_pdata[j*nw+i];m_yuan[temp]++;}}Invalidate(1); //刷新屏幕}void CCqxhistView::OnHistImage(){// TODO: Add your command handler code here//功能:实现直方图均衡化////////////////////////////判断图像是否打开,没打开,则弹出提示框并退出函数if(!m_dib.m_bLoaded){AfxMessageBox("图像还打开,请先打开图像!");return;}//获取图像宽和高int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int i,j,k;int count[256]={0};//定义一个数组,用于存放灰度级个数 float p[256];//定义一个数组,用于存放灰度级出现频率//对图像进行直方图均衡化处理for(i=0;i<nh;i++)for(j=0;j<nw;j++){k=m_dib.m_pdata[i*nw+j];//计算灰度级个数count[k]++;}for(k=0;k<256;k++)p[k]=count[k]/(nw*nh*1.0f);float c[256]={0};float sum=0.0;int ngray[256];//新的灰度级for(k=0;k<256;k++)//计算累积频率{sum+=p[k];c[k]=sum;ngray[k]=(int)(255.0*c[k]+0.5);}for(i=0;i<nh;i++)for(j=0;j<nw;j++){k=m_dib.m_pdata[i*nw+j];m_dib.m_pdata[i*nw+j]=ngray[k];}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;j<nh;j++)for(int i=0;i<nw;i++){BYTE temp=m_dib.m_pdata[j*nw+i];m_hist[temp]++;}}//将修改的m_pdata的数据赋值给m_pDIBData,以显示修改的结果m_dib.UpdateData();m_bHist=true;//将修改的m_pdata的数据赋值给m_pDIBData,以显示修改的结果 m_dib.UpdateData();//刷新屏幕Invalidate();}4、实验结果C++编程结果:。
C语⾔数字图像处理之直⽅图均衡化本⽂实例为⼤家分享了C语⾔直⽅图均衡化的具体代码,供⼤家参考,具体内容如下原理直⽅图均衡化(Histogram Equalization) ⼜称直⽅图平坦化,实质上是对图像进⾏⾮线性拉伸,重新分配图像象元值,使⼀定灰度范围内象元值的数量⼤致相等。
这样,原来直⽅图中间的峰顶部分对⽐度得到增强,⽽两侧的⾕底部分对⽐度降低,输出图像的直⽅图是⼀个较平的分段直⽅图:如果输出数据分段值较⼩的话,会产⽣粗略分类的视觉效果。
直⽅图是表⽰数字图像中每⼀灰度出现频率的统计关系。
直⽅图能给出图像灰度范围、每个灰度的频度和灰度的分布、整幅图像的平均明暗和对⽐度等概貌性描述。
灰度直⽅图是灰度级的函数, 反映的是图像中具有该灰度级像素的个数, 其横坐标是灰度级r, 纵坐标是该灰度级出现的频率( 即像素的个数) pr( r) , 整个坐标系描述的是图像灰度级的分布情况, 由此可以看出图像的灰度分布特性, 即若⼤部分像素集中在低灰度区域, 图像呈现暗的特性; 若像素集中在⾼灰度区域, 图像呈现亮的特性。
灰度数字图像是每个像素只有⼀个采样颜⾊的图像。
这类图像通常显⽰为从最暗⿊⾊到最亮的⽩⾊的灰度。
灰度图像与⿊⽩图像不同,在计算机图像领域中⿊⽩图像只有⿊⽩实现流程:1)统计每个灰度级像素点的个数2)计算灰度分布密度3)计算累计直⽅图分布4)累计分布取整,保存计算出来的灰度映射关系处理图⽚规格800*600 8位灰度单通道原图直⽅图均衡化分析:本次实验中,我故意把原图调暗,进⾏直⽅图均衡化后可以明显感受到整幅图像亮度增⼤了,⽽且某些细节⽅⾯更加突出。
出现问题最初进⾏直⽅图均衡化时,输出结果如下:经分析,是没有对数组初始化置零导致的。
Hist数组是进⾏⼀个统计像素点个数的数组,最初倘若不置零,结果必然毫⽆意义。
故⽽添加数组内存置零的操作:经测试,问题解决。
附代码#include <stdio.h>#include <stdlib.h>#include <memory.h>#define height 600#define width 800typedef unsigned char BYTE; // 定义BYTE类型,占1个字节int main(void){FILE *fp = NULL;//BYTE Pic[height][width];BYTE *ptr;BYTE **Pic = new BYTE *[height];for (int i = 0; i != height; ++i){Pic[i] = new BYTE[width];}fp = fopen("weiminglake_huidu.raw", "rb");ptr = (BYTE*)malloc(width * height * sizeof(BYTE));//创建内存for (int i = 0; i < height; i++){for (int j = 0; j < width; j++){fread(ptr, 1, 1, fp);Pic[i][j] = *ptr; // 把图像输⼊到2维数组中,变成矩阵型式ptr++;}}fclose(fp);int hist[256];float fpHist[256];float eqHistTemp[256];int eqHist[256];int size = height *width;int i, j;memset(&hist, 0x00, sizeof(int) * 256);memset(&fpHist, 0x00, sizeof(float) * 256);memset(&eqHistTemp, 0x00, sizeof(float) * 256);for (i = 0; i < height; i++) //计算差分矩阵直⽅图直⽅图统计每个灰度级像素点的个数{for (j = 0; j < width; j++){unsigned char GrayIndex = Pic[i][j];hist[GrayIndex] ++;}}for (i = 0; i< 256; i++) // 计算灰度分布密度{fpHist[i] = (float)hist[i] / (float)size;}for (i = 0; i< 256; i++) // 计算累计直⽅图分布{if (i == 0){eqHistTemp[i] = fpHist[i];}else{eqHistTemp[i] = eqHistTemp[i - 1] + fpHist[i];}}//累计分布取整,保存计算出来的灰度映射关系for (i = 0; i< 256; i++){eqHist[i] = (int)(255.0 * eqHistTemp[i] + 0.5);}for (i = 0; i < height; i++) //进⾏灰度映射均衡化{for (j = 0; j < width; j++){unsigned char GrayIndex = Pic[i][j];Pic[i][j] = eqHist[GrayIndex];}}fp = fopen("output.raw", "wb");for (i = 0; i < height; i++){for (j = 0; j < width; j++){fwrite(&Pic[i][j], 1, 1, fp);}}fclose(fp);return 0;}以上就是本⽂的全部内容,希望对⼤家的学习有所帮助,也希望⼤家多多⽀持。