小波变换去噪论文__本科毕设论文
- 格式:doc
- 大小:1.47 MB
- 文档页数:37
摘要小波变换是一种新型的数学分析工具,是80年代后期迅速发展起来的新兴学科。
小波变换具有多分辨率的特点,在时域和频域都具有表征信号局部特征能力,适合分析非平稳信号,可以由粗及精地逐步观察信号。
小波分析的理论和方法在信号处理、图像处理、语音处理、模式识别、量子物理等领域得到越来越广泛的应用,它被认为是近年来在工具及方法上的重大突破。
信号的采集与传输过程中,不可避免会受到大量噪声信号的干扰,对信号进行去噪,提取出原始信号是一个重要的课题。
那么究竟应该如何从含噪声的信号中提取出原始的信号,这就成了最重要的问题。
经过长期的探索与努力、实验仿真,对比于加窗傅里叶对信号去噪,提取原始信号的方法,终于找到了一种全新的信号处理方法——小波分析。
它将信号中各种不同的频率成分分解到互不重叠的频带上,为信号滤波、信噪分离和特征提取提供了有效途径,特别在信号去噪方面显出了独特的优势。
本文从小波变换的定义和信号与噪声的不同特性出发,在对比分析了各种去噪方法的优缺点基础上,运用了对小波分解系数进行阈值化的方法来对一维信号去噪,该方法对去除一维平稳信号含有的白噪声有非常满意的效果,具有有效性和通用性,能提高信号的信噪比。
与此同时,本文还补充介绍了强制消噪处理、默认阈值处理、给定软阈值处理等对信号消噪的方法。
在对含噪信号运用阈值进行消噪的过程中,对比了用不同分解层数进行处理的去噪效果。
本文采用的是用传感器采集的微弱生物信号。
生物信号通常是噪声背景小的低频信号,而噪声信号通常集中在信号的高频部分。
因此,应用小波分解,把信号分解成不同频率的波形信号,并对高频波进行相关的处理,处理后的高频信号在和分离出的低频信号进行重构,竟而,就得到了含少量噪声的原始信号。
而且,随着分解层数的不同,小波去噪的效果也是不同的。
并对此进行了深入的分析。
关键词:小波变换;声信号;默认阈值处理;降噪小波重构The signal denoising based on wavelet transformQING Xue-zhenAbstractWavelet transform is a new-style mathematic analysis tool. Itis a new subjectwhich was rapidly developed inlate 1980s. The wavelet transform has the characteristicof multi-analysis and the ability to analyse partial characteristic both in the time domainand the frequency range, so it is suitable to analyze non-steady state signal and observesignal gradually from coarse to fine. The method has been used in many domains suchas signal processing, image processing, pronunciation distinction, pattern recognition,quantum physics and so on. It is considered as a great breakthrough of tools andmethods recently.It is inevitable to be interfered by a large amount of noise signal in the process of signal gathering and transmission. It’s a main topic to deniose and extract originalsignal.How should contain the noise signal from the original signal, which became a most important problem. After a long period of exploration and efforts, experimental simulation, compared to add window Fourier to signal denoising, extraction method of original signal, finally found a new signal processing method, wavelet analysis. It will signal in different frequency components of the decomposition into non-overlapping band, signal-to-noise ratio (SNR) for signal filtering, feature extraction separation and provides effective ways, especially in the aspect of signal denoising show a unique advantage.This article from the definition of wavelet transform and the different characteristics of signal and noise, the comparison and analysis the advantages and disadvantages of various denoising method, based on the use of the wavelet decomposition coefficient method for one-dimensional signal threshold denoising, the method for denoising the white noise of one dimensional steady signal contains a very satisfactory results, with the effectiveness and generality, can improve the SNR of signal. At the same time, this paper adds the compulsory treatment, the default threshold denoising, given the soft threshold processing method for signal de-noising. On noise signal using the threshold de-noising, compared with different decomposition layers for processing the denoising effect.This article USES the sensor with a weak biological signal acquisition. Biological signal is usually low frequency signal of background noise, the noise signal is usually focused on the highfrequency part of signal. Wavelet decomposition, therefore, the signal is decomposed into different frequency waveform signal, and the high frequency wave are related to processing, processing of high frequency signal in low frequency signal and isolated refactoring, unexpectedly and, get the original signal containing a small amount of noise. And as the number of decomposition layers, wavelet denoising effects are also different. And carried on the thorough analysis.Key words: wavelet transform; pronunciation signal;The default threshold processing;wavelet reconstruction目录1 绪论 (1)1.1 研究背景 (1)1.2 小波分析的研究现状 (3)1.3 本文研究的内容 (3)2 小波分析概述 (5)2.1 小波分析的定义 (5)2.2 小波变化的时、频局部性 (6)2.3 小波去噪常用的算法 (7)3 实验仿真 (8)3.1 一维小波去噪原理 (8)3.1.1 小波降噪的两个准则 (8)3.1.2 小波分析用于降噪的步骤 (8)3.1.3小波去噪的基本模型 (8)3.2基于阈值对生物信号消噪的运行结果 (10)4 结论 (13)4.1 本文工作总结 (13)4.2 小波分析的发展前景 (13)参考文献 (15)附录 (17)致谢 (18)1 绪论1.1 研究背景自从1822年傅里叶(Fourier)提出非周期信号分解概念以来,傅里叶变换一直是信号处理领域中应用最广泛的分析手段和方法,傅里叶变换是一种纯频域的分析方法,在时域无任何定位性,即不能提供任何局部时间段上的频率信息。
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要随着多媒体技术的飞速发展,图像信息越来越重要,但是图像在获取、传输、和存储的各个细节中会受到影响,导致最终的图像不可避免的存在各种质量下降问题,我们需要的是高分辨率的图像,对有噪声的图像进行去噪处理有很重要的意义。
本文主要阐述的是基于小波变换的图像阈值去噪方法。
小波变换是一种信号处理技术,可以在时域和频域上显示信号。
小波变换可以将一个信号分解为代表不同频带的多个尺度,通过小波变换,可以确定信号在每个尺度上的时频特征,这样的属性可以用来消除噪声。
基于阈值的图像去噪方法被科学家Donoho和Johnstone提出了,基于阈值的去噪方法可以采用硬阈值或软阈值函数,它易实现且具有良好的效果。
在本文中,采用了不同的噪声,不同的阈值,不同的阈值函数进行分析与相比较。
关键词:小波变换;阈值;阈值函数;图像去噪;A b s t r a c tWith the rapid development of multimedia technology and network technology, image information becomes more and more important in people's work, study and life. But the image in the acquisition, transmission, and storage process sections will be affected seriously, which leads to the final image effected by all kinds of inevitable quality problems. but, which we need is the image with clearity and high resolution. Therefore, to deal with the noise of noisy images has very important meaning in practical application and life.There are a lot of methods for image de-noising. This paper mainly describes the image de-noising method based on wavelet transform. It is well known that wavelet transform is a signal processing technique which can display the signals on in both time and frequency domain. In this paper, we use several threshold based on wavelet transform to provide an enhanced approach for eliminating noise.Wavelet transforms can decompose a signal into several scales that represent different frequency band. The position of signal's instantaneous at each scale can be determined approximately by wavelet transform.Such a property can be used to denoise. Threshold-based de-noising method was proposed by Donoho. Threshold-based de-noising method is used hard-threshold or soft-threshold. It is very simple and has good performance. This paper uses the threshold techniques which applied threshold according to each band characteristic of image.In this paper, the results will be analyzed and compared for different noises, different thresholds, different threshold functions. It has a superior performance than traditional image de-noising method.Keyword:Wavelet Transform; Threshold; Threshold Function; Image De-noising第一章绪论1.1研究目的和意义当今各种信息充斥于我们的日常生活中,图像信息成为人类获取信息的重要信息,因为图像具有传输速度快,信息量大等一系列的强势[1]。
傅里叶变换与小波变换在图像去噪中的应用摘要图像去噪是图像处理研究的一个重要话题。
图像在获取和传输的过程中经常要受到噪声的污染。
噪声对图像质量有着非常重要的影响。
所以,必不可免的图像去噪成为图像分析和处理的重要技术。
用传统傅里叶变换对信号去噪的基本思想是对含噪信号进行傅里叶变换后使用低通或带通滤波器滤除噪声频率,然后用逆傅里叶变换恢复信号。
但是傅里叶变换很难将有用信号的高频部分和由噪声引起的高频干扰有效地区分开。
小波分析是傅里叶分析思想方法的发展和延拓,与傅里叶分析密切相关。
而小波阈值去噪方法是众多图象去噪方法中的佼佼者,它利用图象的小波分解后,各个子带图象的不同特性,选取不同的阈值,从而达到较好的去噪效果。
而且与传统的去噪方法相比较,有着无可比拟的优点,成为信号分析的一个强有力的工具,被誉为分析信号的显微镜。
本文概述了傅里叶变化与小波变换去噪的基本原理及其比较。
对常用的几种去噪方法进行了分析。
最后结合理论分析和实验结果。
在实际的图像处理中,实现了小波变换去噪法的处理。
关键词:小波变换,图像去噪,MatlabApplication of image de-noising based on Fouriertransform and wavelet transformABSTRACTImage de-noising is an eternal theme of the image processing research. Image acquisition and transmission process often subject to noise pollution. The noise has a very important impact on image analysis. So, the image de-noising become an important technology for image analysis and processing.The basic idea in the signal de-noising using the traditional Fourier transform is a Fourier transform of the noisy signal using a low-pass or band-pass filter to remove the noise frequency and then inverse Fourier transform signal. But Fourier transform is difficult to be useful to the high frequency part of signal and high frequency noise caused by interference efficiently. Wavelet analysis is a Fourier analysis of the development and continuation of the way of thinking, has been closely related to the Fourier analysis. Wavelet threshold method is the leader in the number of image de-noising method, its use of the wavelet decomposition, the different characteristics of each sub-band image, select a different threshold, so as to achieve better de-noising effect . Following the Fourier transform after momentary frequency analysis tool, has the characteristics of the local nature and multi-resolution analysis in the frequency domain at the same time, not only to meet a variety of de-noising requirements, such as low-pass, Qualcomm, random noise removal, and compared with the traditional de-noising method has unparalleled advantages to become a powerful tool in signal analysis, known as the analytical signal mathematical microscope.This article provides an overview of the basic principles of the Fourier transform and wavelet transform de-noising. Several commonly used de-noising method are analyzed . Finally, the theoretical analysis and experimental results, discussed the factors that affect the de-noising performance in a complete de-noising algorithm. In practical image processing, the processing of the wavelet transform de-noising method.KEY WORDS: wavelet transform, image de-noising, Matlab目录摘要 (I)ABSTRACT (II)第一章绪论 ................................................ - 1 -1.1 课题研究背景和意义 ................................. - 1 -1.2 图像与噪声 ......................................... - 2 -1.2.1图像噪声描述及分类............................ - 2 -1.2.2图像去噪...................................... - 2 -1.2.3图像去噪的评价标准............................ - 3 -1.3 小波分析在图像处理中的应用 ......................... - 4 -1.4 本论文主要工作和结构安排 .......................... - 4 - 第二章傅里叶变换 .......................................... - 5 -2.1傅里叶变换的发展.................................... - 5 -2.1.1傅里叶变换的提出.............................. - 5 -2.1.2傅里叶变换意义................................ - 5 -2.1.3傅里叶变换定义................................ - 5 -2.2傅里叶变换.......................................... - 6 -2.3傅里叶变换的应用.................................... - 7 - 第三章小波变换理论基础 .................................... - 8 -3.1小波的产生.......................................... - 8 -3.1.1小波变换的背景及意义.......................... - 8 -3.1.2小波发展简史[7] ................................ - 8 -3.2小波图像去噪技术的国内外研究现状和研究热点.......... - 9 -3.3小波变换理论....................................... - 10 -3.3.1从傅里叶变换到小波变换....................... - 10 -3.3.2小波变换..................................... - 12 - 第四章图像去噪法分析 ..................................... - 14 -4.1传统去噪法分析..................................... - 14 -4.1.1空域去噪法................................... - 14 -4.1.2 频域低通滤波法[14] ........................... - 15 -4.2基于小波变换的图像去噪技术......................... - 16 -4.2.1小波图像去噪................................. - 17 -4.2.2小波去噪几种方法............................. - 17 - 第五章基于Matlab的图像去噪及仿真 ........................ - 20 -5.1小波阈值去噪概述................................... - 20 -5.1.1阈值去噪简述................................. - 20 -5.1.2小波阈值去噪方法............................. - 20 -5.2基于MATLAB的小波去噪函数简介...................... - 22 -5.3小波去噪与常用去噪方法的对比试验................... - 23 -5.3.1图像系统中的常见噪声......................... - 23 -5.3.2几种去噪常用方法对比......................... - 24 -5.3.3结果对比与分析............................... - 26 - 第六章设计总结及展望 ..................................... - 28 - 参考文献 .................................................. - 29 - 致谢 .................................................... - 31 - 附录 ..................................................... - 32 -第1章绪论随着计算机、通信和科学技术的迅猛发展,人们现在己经步入信息生活时代,小到家庭生活中的数字电视、电视电话,大到生产、医疗、艺术、军事、航天等离不开图像信息,图像与人类生活的关系越来越密切图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源和利用信息的重要手段。
小波去噪的方法范文小波去噪是一种常用的信号去噪方法,其原理是通过小波变换将信号分解成不同尺度的小波系数,然后根据信号的特点对小波系数进行处理,最后再合成得到去噪后的信号。
小波去噪方法具有多尺度分析的特点,能更好地提取信号的局部特征,因此在信号处理领域广泛应用。
小波去噪方法的基本流程如下:1.通过小波变换将信号分解成不同尺度的小波系数。
小波变换是一种多尺度分析的方法,能够将信号分解成低频部分和高频部分。
小波系数表示了信号在不同尺度上的能量分布情况,可以用来描述信号的局部特征。
2.对小波系数进行阈值处理。
在小波变换后的小波系数中,高频部分通常包含了噪声的能量,而低频部分则包含了信号的主要能量。
因此,可以通过对高频部分的小波系数进行阈值处理来去除噪声。
常用的阈值处理方法有硬阈值法和软阈值法。
-硬阈值法是通过设定一个阈值,将小于该阈值的小波系数置零,将大于该阈值的小波系数保留。
这种方法适用于信号的噪声为稀疏脉冲的情况。
-软阈值法是通过设定一个阈值,对小于该阈值的小波系数进行衰减,将大于该阈值的小波系数保留。
这种方法适用于信号的噪声呈高斯分布的情况。
3.对处理后的小波系数进行逆变换,将其合成为去噪后的信号。
通过逆小波变换将处理后的小波系数合成为时域信号,得到去噪后的信号。
小波去噪方法有很多变种和改进,下面介绍一些常用的小波去噪方法:1.小波阈值去噪:该方法是将小波系数进行阈值处理,根据小波阈值去噪的思想对小波系数进行处理,然后将处理后的小波系数进行逆变换得到去噪后的信号。
2.双阈值小波去噪:该方法是在小波阈值去噪的基础上引入了两个不同的阈值,一个用于处理噪声,一个用于保留信号的细节信息。
通过设定不同的阈值,可以更好地平衡去噪效果和信号特征的保留。
3.消除噪声对称小波去噪:该方法是在小波阈值去噪的基础上,通过设定不同的小波基函数,利用小波变换的对称性质,将噪声系数线性消除,从而提高了去噪效果。
4.重构优化的小波去噪:该方法在小波阈值去噪的基础上,引入了重构优化的思想,即通过调整小波系数的阈值来优化去噪的效果。
完整版)小波变换图像去噪MATLAB实现本论文旨在研究数字图像的滤波去噪问题,以提高图像质量。
数字图像处理(Digital Image Processing。
DIP)是指用计算机辅助技术对图像信号进行处理的过程。
DIP技术在医疗、艺术、军事、航天等图像处理领域都有着十分广泛的应用。
然而,图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
因此,通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数Ψ(x)来构造,Ψ(x)称为母小波,或者叫做基本小波。
一组小波基函数,{Ψa,b(x)},可以通过缩放和平移基本小波来生成。
当a=2j和b=ia的情况下,一维小波基函数序列定义为Ψi,j(x)=2-j2Ψ2-jx-1.函数f(x)以小波Ψ(x)为基的连续小波变换定义为函数f(x)和Ψa,b(x)的内积。
在频域上有Ψa,b(x)=ae-jωΨ(aω)。
因此,本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
当绝对值|a|减小时,小波函数在时域的宽度会减小,但在频域的宽度会增大,同时窗口中心会向|ω|增大的方向移动。
这说明连续小波的局部变化是不同的,高频时分辨率高,低频时分辨率低,这是小波变换相对于___变换的优势之一。
总的来说,小波变换具有更好的时频窗口特性。
噪声是指妨碍人或相关传感器理解或分析图像信息的各种因素。
噪声通常是不可预测的随机信号。
由于噪声在图像输入、采集、处理和输出的各个环节中都会影响,特别是在输入和采集中,噪声会影响整个图像处理过程,因此抑制噪声已成为图像处理中非常重要的一步。
基于小波变换的图像去噪技术研究近年来,随着计算机和智能手机的普及和发展,数字图像成为了人们生活中不可或缺的一部分。
但是,由于图像的获取、存储、传输等过程中都会导致噪声的产生,噪声使得图像的质量受到了很大的影响。
因此,提高图像的质量,减少图像中的噪声成为了图像处理中一个重要的问题。
其中,图像去噪技术成为了当前研究的热点之一。
小波变换技术是一种经典的图像去噪算法,本文将着重研究基于小波变换的图像去噪技术。
一、常见的图像噪声首先,我们需要了解图像中常见的噪声类型。
图像噪声可以分为两类:加性噪声和乘性噪声。
常见的加性噪声有高斯噪声、椒盐噪声、泊松噪声等。
乘性噪声主要有伽马噪声、指数噪声等。
在图像处理中,最常见的是高斯噪声和椒盐噪声。
二、小波变换原理小波变换是一种非线性信号分析工具,其具有良好的时域和频域分析能力。
小波分析是一种特别适用于非平稳信号的分析方法,它将非平稳信号分解成不同频率的子信号进行分析,从而更好的理解信号的特征。
小波变换可分为离散小波变换(DWT)和连续小波变换(CWT)两种。
DWT是基于Mallat算法,其中,由于小波基函数的局域性与多分辨率性质,它可以通过反复细分与平滑处理,来实现图像分解和重构。
DWT的优势在于计算复杂度低,且具有良好的时间和频率分辨率,因此被广泛应用于图像处理的不同领域。
三、基于小波变换的图像去噪算法基于小波变换的图像去噪算法是指使用小波变换对含有噪声的图像进行处理,从而得到无噪声的图像的一种方法。
经过小波变换后,图像可以被分解为多个不同的频率子带图像。
由于噪声在不同频率下具有不同的特性,因此可以通过对不同频率下的子图像进行处理来消除噪声。
具体实现步骤如下:1. 将原始图像进行小波变换,得到包含多个子图像的不同频率子带图像。
2. 选择合适的阈值准则对每个子带图像的小波系数进行阈值处理,去掉较小的系数,保留较大的系数。
3. 将处理后的小波系数进行逆小波变换,得到去噪后的图像。
⼩波阈值去噪及MATLAB仿真_毕业论⽂哈尔滨⼯业⼤学华德应⽤技术学院毕业设计(论⽂)毕业论⽂⼩波阈值去噪及MATLAB仿真摘要⼩波分析理论是⼀种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得⼩波分析⾮常适合于时—频分析,借助时—频局部分析特性,⼩波分析理论已经成为信号去噪中的⼀种重要的⼯具。
利⽤⼩波⽅法去噪,是⼩波分析应⽤于实际的重要⽅⾯。
⼩波去噪的关键是如何选择阈值和如何利⽤阈值来处理⼩波系数,通过对⼩波阈值化去噪的原理介绍,运⽤MATLAB 中的⼩波⼯具箱,对⼀个含噪信号进⾏阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。
本⽂设计了⼏种⼩波去噪⽅法,其中的阈值去噪的⽅法是⼀种实现简单、效果较好的⼩波去噪⽅法。
关键词:⼩波变换;去噪;阈值-I-哈尔滨⼯业⼤学华德应⽤技术学院毕业设计(论⽂)AbstractWavelet analysis theory is a new theory of signal process and it has good localization in both frequency and time do-mains.It makes the wavelet analysis suitable for time-frequency analysis.Wavelet analysis has played a particularly impor-tant role in denoising,due to the fact that it has the property of time- frequency analysis. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory.In this paper,the method of Wavelet Analysis is analyzed.and the method of threshold denoising is a good method of easy realization and effective to reduce the noise.Keywords:Wavelet analysis;denoising;threshold-II-哈尔滨⼯业⼤学华德应⽤技术学院毕业设计(论⽂)⽬录摘要........................................................................................................................... I Abstract ........................................................................................................................ I I第1章绪论 (1)1.1 研究背景和意义 (1)1.2 国内外研究历史和现状 (2)1.3 本⽂研究内容 (3)第2章⼩波变换的基本理论 (4)2.1 傅⽴叶变换 (5)2.2 加窗傅⽴叶变换 (5)2.3 ⼩波变换 (6)2.3.1 连续⼩波变换 (7)2.3.2 离散⼩波变换 (8)2.4 多分辨分析 (10)本章⼩结 (11)第3章经典噪声类型及去噪⽅法 (12)3.1 经典噪声类型 (12)3.2 常⽤滤波器 (15)3.2.1 线性滤波器 (15)3.2.2 均值滤波器 (15)3.2.3 顺序统计滤波器 (16)3.2.4 其他滤波器 (16)3.3 经典去噪⽅法 (16)-III-哈尔滨⼯业⼤学华德应⽤技术学院毕业设计(论⽂)3.4 Matlab⼯具 (18)3.4.1 Matlab 发展历程 (18)3.4.2 Matlab 简介 (18)本章⼩结 (19)第四章⼩波阈值去噪及MATLAB仿真 (19)4.1 ⼩波阈值去噪概述 (19)4.1.1 ⼩波阈值去噪⽅法 (20)4.1.2 图像质量评价标准 (21)4.2 基于MATLAB的⼩波去噪函数简介 (21)4.3⼩波去噪对⽐试验 (23)本章⼩结 (28)结论 (29)致谢 (29)附录1 译⽂ (31)附录2 英⽂参考资料 (32)-IV-哈尔滨⼯业⼤学华德应⽤技术学院毕业设计(论⽂)-V-第1章绪论1.1 研究背景和意义随着计算机技术的飞速发展,数字图像处理技术获得了飞速的发展。
基于小波变换的图像去噪姓名:兰昆伟学号:********指导老师:***专业:电子信息工程课题背景及意义人类传递信息的主要媒介是语音和图像。
据统计,在人类接收的信息中,听觉信息占20%,视觉信息占60%…。
其中图像信息以其信息量大,传输速度快,作用距离远等一系列优点成为人类获取信息的重要来源和利用信息的重要手段。
一幅图像所包含的信息量和直观性是声音、文字所无法比拟的。
然而,图像在生成和传输的过程中会受到各种噪声的干扰,图像的质量会受到损害,这对图像后续更高层次的处理是十分不利的。
因此,在图像的预处理阶段,很有必要对图像进行去噪,这样可以提高图像的信噪比,突出图像的期望特征。
图像噪声的主要来源有三个方面:一是敏感元器件内部产生的高斯噪声。
这是由于器件中的电子随机热运动而造成的电子噪声,这类噪声很早就被人们成功的建模并研究。
一般用零均值高斯白噪声来表征。
二是光电转换过程中的泊松噪声。
这类噪声是由光的统计本质和图像传感器中光电转换过程引起的,在弱光情况下,影响更为严重。
常用只有泊松密度分布的随机变量作为这类噪声的模型。
三是感光过程中产生的颗粒噪声。
在显微镜下检查可发现,照片上光滑细致的影调,在微观上呈现的是随机的颗粒性质。
对于多数应用,颗粒噪声用高斯过程(白噪声)作为有效模型。
小波变换具有良好的时频局部化性质,为解决这一问题提供了良好的工具。
随着小波理论的不断发展完善,其良好的时频特性使其在图像去噪领域中得到了广泛的应用。
理论和实验证明,信号与噪声在小波域有着不同的传播特性,信号的小波变换模极大值将随尺度的增大而增大或不变,而噪声的小波变换模极大值将随尺度的增大而减小,充分利用这些特点,在小波变换域中能十分有效地把信号和噪声区别开来。
因此,基于小波变换的去噪方法能够在噪声剔除的同时保护图像信号边缘,具有很好的应用前景和极大的发展潜力。
发展历程及现状为克服傅立叶分析不能同时作时频局部化分析的缺点,1964年,Gabor提出了窗口傅立叶变换,1910年Haar提出最早的Haar小波规范正交基,开辟了通往小波的道路。
基于小波变换的噪声消除算法研究在电工和电子技术实验中,需要对各种参数进行测量,但由于电磁噪声的存在直接影响了测量的结果,有时甚至会将有用信号完全淹没而导致测量失败。
本文以小波变换为基础,对消除测量信号中的白噪声方法进行了研究,以求达到合理消除白噪声的目的。
1小波消噪的原理一般地,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信号。
所以消噪过程主要进行以下处理:首先对原始信号进行小波分解,则噪声部分在电工和电子技术实验中,需要对各种参数进行测量,但由于电磁噪声的存在直接影响了测量的结果,有时甚至会将有用信号完全淹没而导致测量失败。
本文以小波变换为基础,对消除测量信号中的白噪声方法进行了研究,以求达到合理消除白噪声的目的。
1 小波消噪的原理一般地,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信号。
所以消噪过程主要进行以下处理:首先对原始信号进行小波分解,则噪声部分通常包含在高频系数中;然后对小波分解的高频系数以门限阈值等形式进行量化处理;最后再对信号重构即可达到消噪的目的。
对信号消噪实质上是抑制信号中的无用部分,恢复信号中有用部分的过程。
设一个含噪声的一维信号的模型可以表示成如下形式:s(i)=f(i)+σ·e(i), i=0,1,…,n-1其中,f(i)为真实信号,e(i)为噪声,s(i)为含噪声的信号。
一般来说,一维信号的降噪过程可分为一维信号的小波分解,小波分解高频系数的阈值量化处理和一维小波的重构3个步骤。
小波能够消噪主要由于小波变换具有如下特点:低熵性小波系数的稀疏分布,使图像处理后的熵降低。
多分辨特性由于采用了多分辨的方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等,可以在不同分辨率下根据信号和噪声的分布来去除噪声。
去相关性小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噤。
基函数选择更灵活小波变换可以灵活选择基函数,也可以根据信号特点和降噪要求选择多带小波、小波包等,对不同的场合,可以选择不同的小波基函数。
摘要小波变换归属于数学领域的调和函数的范畴,是调和分析几十年来的一个突破性进展,并且在很多科技领域内得到了广泛应用。
本文旨在探讨小波变换理论,并结合专业中的地震信号去噪展开研究。
论文以小波变换为核心,首先介绍了论文研究的目的、意义及主要研究内容,由此引出了小波变换理论,并对其原理做了详细阐述。
这不仅包括连续小波,离散小波,多分辨率分析方法还包括与传统傅氏变换等的对比,从而在理论上明确其性能特点的优越性。
本文选定了小波阈值去噪方法。
由此结合给定的信号应用matlab 进行处理,并通过对比处理结果为本文后面的处理工作选定合适的参数。
从所做例子来看,小波阈值处理达到了很好的去噪效果。
论文应用matlab 模拟微地震信号,结合小波阈值去噪方法对微地震信号进行了处理。
在文中给出了信号的原始模拟信号,加噪信号及处理后的效果图,从图中可以看出,小波阈值去噪完成了模拟微地震信号的去噪处理。
另外,对实际的微地震资料进行了试处理,达到了去噪的目的。
关键词:小波变换;去噪;微地震;分解;重构ABSTRACTThe wavelet transform attributables to the mathematical field of harmonic function areas, it’s a breakthrough progress, and in many areas of science and technology has been widely used. This study aims to explore wavelet transform theory, and the combination of professional study of seismic signal de-noising.Papers to wavelet transform at the core, first of all, on paper the purpose of thestudy, the significance and major research content, which leads to the wavelettransform theory, and its principles expounded in detail.This includes not only thecontinuous wavelet, wavelet, multire solution analysis methods include traditional Fourier transform contrast, in theory, clear the superiority of its performance characteristics. The paper selected through comparative study of wavelet de-noising threshold method.This combination of a given signal processing applications matlab,and by comparing the results of this paper to the back of the appropriate handling of the selected parameters. From doing example, wavelet thresholding to deal with a very good de-noising effect. Papers matlab simulated micro-seismic signal applications, wavelet de-noising threshold with this method micro-seismic signal processing. In this paper the original analog signal, the signal plus noise and the effects of treatment plans, as can be seen from Fig, wavelet de-noising threshold completed micro-seismic signal de-noising analog processing.Key words: wavelet;de-noising;micro-seismic;decompose;compose目录第 1 章前言 (1)1.1 小波分析的发展状况 (1)1.2 小波分析的应用研究 (2)1.3 本文主要研究内容及成果 (3)第 2 章微地震监测原理及信号特征 (4)2.1 微地震监测原理 (4)2.1.1 裂缝尖端效应和漏泄效应 (5)2.1.2 混合破裂机制 (5)2.2 微地震信号的特征 (6)2.2.1 微地震的波场 (6)2.2.2 微地震信号的频谱 (7)2.2.3 微震的强度 (7)第 3 章小波变换基本理论 (8)3.1 傅里叶变换 (8)3.2 小波变换原理 (10)3.2.1 连续小波变换的定义 (10)3.2.2 小波变换的条件 (11)3.2.3 时频的分析窗口 (12)3.2.4 连续小波变换的逆变换公式 (13)3.3 离散小波变换 (14)第 4 章基于小波的阈值去噪方法 (16)4.1 小波阈值去噪的主要理论依据 (16)4.2 小波阈值处理方法 (17)4.3 小波阈值去噪方法的具体步骤 (17)4.4 matlab小波变换的相关函数 (19)第 5 章模拟微地震信号以及实际信号小波去噪 (22)5.1 模拟微地震信号去噪 (22)5.2 实际微地震数据处理 (25)5.3 总结 (28)第 6 章结论 (30)致谢 (31)参考文献 (32)第 1 章前言1.1 小波分析的发展状况小波变换归属于数学领域的调和函数的范畴,是调和分析几十年来的一个突破性进展,并且在信号处理、图像处理、量子场论、地震勘探、重磁勘探、语音识别与合成、雷达、CT 成像、天体识别、机器视觉和机械故障诊断与监控、分形以及数字电视等科技领域内得到了广泛应用。
BI YE SHE JI(20 届)基于小波变换的信号去噪预处理的仿真设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月III摘要各种脑疾患和系统疾患问题的增多和严重化,使脑科学成为21世纪挑战性的研究。
大脑电生理信号是反映大脑活动状态的重要信号,有效地分析脑电信号,对于脑科学研究和脑部疾病的临床诊断具有重要意义。
但是脑电信号非常微弱,一般均埋没在强烈的背景噪声之下,因此,如何有效去除噪声成了脑电信号分析的前提与重要环节。
小波变换是信号分析和特征提取的重要工具,它在时域和频域同时具有良好的局部化性质。
本文主要完成以下工作:(1)利用传统的叠加平均法对信号进行去噪处理,(2)利用小波分解与重构法对信号进行去噪处理,(3)将以上去噪方法的MATLAB仿真验证结果进行分析比较。
结果表明:本文提出的小波变换方法在脑电信号消噪中具有良好的效果。
关键词:脑电信号,去噪,叠加平均,小波变换IIIAbstractThe various kinds of brain illness and illness of neural system and social aging make brain science become the most challenging research in the 21st century. The brain electrophysiological signals contain a lot of important information about the physiological states and functional activities of brain. It is significant for brain science research and brain illness diagnosis to analyze EEG effectively. But EEG isvery faint and is always buried in the strong noise. So it is the precondition and an important work to reject the noise from EEG effectively for EEG signal analysis.The wavelet transform, which produces a good local representation of the signal in both time and frequency domain, provides an important tool in signal analysis and feature extraction. The main research work of this paper based on wavelet transform could be summarized as the following aspects: (1) the use of traditional overlay average signal denoising, (2) the use of wavelet decomposition and reconstruction of the signal denoising, (3) above Denoising MATLAB simulation results were analyzed and compared. The results showed that: the proposed wavelet transform method has good effect in the EEG signal denoising.Keywords:EEG, noise rejection, average method, wavelet transformIII目录摘要 (I)ABSTRACT ................................................................................................................ I I 目录 ......................................................................................................................... I II 第一章绪论 ........................................................................................................ - 1 -1.1 研究的目的与意义 .................................................................................... - 1 -1.2研究现状 ..................................................................................................... - 1 -1.3 研究的内容 ................................................................................................ - 6 - 第二章小波变换理论 .......................................................................................... - 7 -2.1从傅里叶级数到小波变换 ......................................................................... - 7 -2.2小波变换技术 ............................................................................................. - 9 -2.2.1 连续小波变换 ................................................................................ - 10 -2.2.2 离散小波变换 ................................................................................ - 13 -2.2.3 多分辨率分析 ................................................................................ - 15 -2. 3 常用小波函数 ......................................................................................... - 17 - 第三章小波变换去噪处理 .................................................................................. - 22 -3.1 EEG............................................................................................................ - 22 -3.2小波滤波原理 ........................................................................................... - 23 -3.3基于小波变换的信号去噪 ....................................................................... - 24 - 结论 .................................................................................................................... - 27 - 参考文献 ................................................................................................................ - 29 - 致谢 ....................................................................................................................... ..30III第一章绪论1.1 研究的目的与意义大脑电生理信号是反映大脑活动状态的重要信号,有效地分析脑电信号,对于脑科学研究和脑部疾病的临床诊断具有非常重要的意义[1]。
基于小波变换的图像去噪算法研究图像去噪是图像处理领域中非常重要的研究方向。
噪声是由于图像传感器、传输媒介、储存介质等外界因素影响而引起的。
由于噪声对图像质量的影响,它在很多应用中都是不可避免的。
因此如何减少或者消除图像中的噪声,一直是学者们研究的重点。
本文主要针对基于小波变换的图像去噪算法展开讨论。
一、小波变换简介小波变换是现代信号处理领域中的一种重要的分析工具,它能够将信号分解成不同尺度的频带信号。
相对于傅里叶变换来说,小波变换不仅能够表达信号的频域特征,还能够表达信号的时域特征。
因此,在图像处理领域,小波变换常常被用于图像的去噪和压缩等处理。
二、小波去噪算法小波去噪算法是小波变换在图像去噪领域中最重要的应用之一。
首先,需要对图像进行小波分解,得到不同的频带信号。
然后,通过对各个频带信号进行阈值处理,将其分别压缩和去除噪声。
最后,通过小波反变换将处理后的频带信号合并成一张图像。
对于一张图像,小波分解可以分为多层,每一层都可以分解成LL(低低)、LH(低高)、HL(高低)和HH(高高)四个频带信号。
其中LL分量对应于较高的尺度,LH、HL分量对应于较低的尺度,HH分量对应于最低的尺度。
在小波去噪算法中,对于每一个小波分解的频带信号,需要进行阈值处理。
这里,我们可以采用硬阈值和软阈值两种方法进行处理。
硬阈值:对于每一个小波分解的频带信号,在取绝对值之后,用一个阈值t来削弱那些幅值小于t的频率系数,从而减少图像中的噪声。
强度小于t的信号将被压缩到零。
大于t的信号则不受影响。
软阈值:与硬阈值不同,软阈值将信号幅度减小一个值。
对于每一个小波分解的频带信号,在取绝对值之后,将整个信号减少一个固定的值,从而减少图像中的噪声。
最后,通过对处理后的频带信号进行小波反变换,将处理后的低频部分和高频部分合并成为一张图像。
通过这种方法,我们可以在尽可能保留图像细节的同时,将图像中的噪声去除。
三、小波去噪算法的优缺点小波去噪算法是一种非常经典的图像去噪方法,其优点主要有以下几个方面:1. 小波变换能够将信号分解成不同尺度的频带,因此可以同时对图像的时域和频域特征进行处理。
基于小波变换的信号去噪技术研究近年来,信号处理技术在各个领域中扮演着越来越重要的角色。
在传统的信号处理方法中,一般利用滤波器等手段进行去噪处理。
然而,这种方法存在很多不足,例如难以处理多变的噪声,也容易出现误判等问题。
随着小波变换技术的不断发展,基于小波变换的信号去噪技术正逐渐成为一种有效的替代方法。
小波变换在信号处理中具有许多优点,能够有效地提取信号中的特征,并将其与噪声分开进行处理。
本文将会对基于小波变换的信号去噪技术进行详细探讨。
一、小波变换简介小波变换是一种最近20年内发展起来的新型信号分析方法,它具有许多传统傅里叶变换所不具备的特性。
小波变换可以将信号分成低频和高频两部分进行处理,这种能够提供更加细致的信号分解能力,使得信号的特征更加明显。
此外,小波变换还能够适应信号的现实特性,更好地适用于一些特定的应用。
二、小波去噪方法小波去噪方法是基于小波变换所开发而来的,其主要思路是通过多级小波变换将原始信号分解成不同尺度下的子带信号,再通过对每个分解出来的子带信号进行阈值处理,从而实现对信号噪声的去除。
具体地,小波去噪方法可分为以下三个步骤:(1)小波分解将原始信号进行多级小波分解,得到不同尺度下的子带信号。
(2)阈值处理对每个子带信号进行阈值处理,去除低于一定阈值的信息,降低噪声对原始信号的影响。
(3)小波重构将处理后的信号进行多级小波重构,得到去噪后的信号。
三、小波去噪算法小波去噪算法是指通过运用小波变换理论,将原信号去除其中混杂的噪声,实现信号的准确重构的一种算法。
其中最常用的算法分别有软阈值、硬阈值和连续小波变换。
1. 软阈值算法软阈值算法是指将小于某一特定阈值的绝对值的所有系数设为零,大于这一阈值的系数变成更小的数。
这种方法在去噪量得到充分保证的同时,可以让最终信号更加平滑。
2. 硬阈值算法硬阈值算法是指将所有绝对值小于某特定阈值的系数取零,即对所有小于固定阈值的系数进行直接处理。
这种方法相对MSE的处理方法容易使得处理后的信号比较平稳,但同时误差较大。
本科毕业设计(论文)基于小波变换的脑电信号去噪方法燕山大学毕业设计(论文)任务书:表题黑体小三号字,内容五号字,行距18磅。
(此行文字阅后删除)摘要摘要脑电信号(EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,其中包含了大量的生理和病理信息,并可以用许多特征量来描述其特征信号。
通过脑电分析来认识脑的活动是一种有效的无创手段。
人体脑电信号非常微弱,为了提高脑电信号的性能和检测效率,必须对脑电信号进行去噪处理。
小波理论的形成是数学家、物理学家和工程师们多学科共同努力的结果,现在小波分析正运用在众多自然科学领域,已经成为当前最强有力的分析工具之一,而且还在继续蓬勃向前发展着。
研究小波的新理论、新方法以及新应用具有重要的理论意义和实用价值。
在噪声中如何准确地检测到信号一直是信号处理领域所关心的内容,小波变换由于具有良好的时频局部化特性,能够对各种时变信号进行有效的分解,从而较好地将信号与噪声加以分离,获得满意的去噪效果。
本文对小波分析在脑电信号去噪中的应用进行了较为深入研究和讨论。
本文首先介绍了小波基本理论和基于传统小波分析的信号去噪原理以及几种常用的方法。
在几种方法中,因小波闭值去噪法,原理简单易行,效果较好且是本文研究的其他几种小波分析方法去噪处理的基础,所以本文在基于MATLAB实验平台上选取实验效果较好的小波函数,在不同阐值和阐值函数的情况下对这种方法做了较为详细地脑电信号去噪比较研究。
小波变换是一种信号的时间一尺度分析方法,具有多分辨率分析的特点,对信号具有自适应性。
本文提出了一种基于正交小波变换的脑电信号去噪方法。
试验表明,该方法具有很好的有效性。
关键词:脑电信号;小波变换;去噪燕山大学本科生毕业设计(论文)AbstractThe Electroencephalograph (EEG) is the total reflenction of brain nerve cells,through the electric signal record electrode from scalp.It contains a great deal of physiology and pathologic information, and we can use many characteristics quantity to describe its specificity. EEG analysis is an effective noninvasive approach for us to understand the mechanism of brain activity.The EEG signal is one of mini-voltage.In order to improve the performance of EEG and increase the measure efficiency,we must eliminate the noise in EEG.The theory of the wavelet originates with mathematicians, physicists and engineers together, and now,the wavelet analysis is very popular in many fields of science as one of the most efficient tool to analysis or deal the problem, furthermore, it will still progress forward in the future. To study the new theory, methods and applications of wavelets is of great theoretical significance and practical value.Estimating the original signals from noise has always been an important part in the field of signal processing. Because of it's fine time-frequency localization characteristic, wavelet transform can effectively discriminate signals from noise and achieves pretty good performance.This paper chiefly studying the application of wavelet analysisin EEG signalde noising.Firstly ,this paper introduce the theory of wavelet and principle of signal denoising based on wavelet, and then studying several denoising methods. Because threshold denoising has simple algorithm and good denoising result, moreover it is the base of other denoising methods discussed in this paper, this paper make a comparison study of EEG signal denoising based on MATLAB platform, using diferent threshold functions and threshold value,but using one wavelet function.Wavelet transform is a kind of analytical tool in time-scale domain.It has the feature of multi-resolution analysis and the adaptaion characteristic for signal.A noise rejection method with positive-join wavelet transform was燕山大学本科生毕业设计(论文)proposed here.Experiments show that the proposed method has good efficiency. Key words:EEG;wavelet transform;noise rejection摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1引言 (1)1.2小波变换的背景 (2)1.3信号处理的背景 (4)1.4脑电信号去噪 (5)第2章小波变换 (6)2.1时频分析方法 (6)2.1.1 短时傅立叶变换(STFT) (6)2.1.2 Wigner-Ville 分布 (8)2.1.3 小波变换的思想 (9)2.2连续小波基函数 (11)2.3小波变换 (12)2.3.1 连续小波变换 (12)2.3.2 离散小波变换 (13)2.3.3 二进小波变换 (14)2.4多分辨率分析与离散小波快速算法 (14)2.4.1 多分辨率分析 (14)2.4.2 离散小波变换的快速算法 (16)2.5M ALLAT 的快速算法 (17)2.6本章小结 (18)第3章基于小波变换去噪方法的研究 (19)3.1经典的滤波去噪方法 (19)3.2基于小波变换模极大值去噪方法的研究 (20)3.2.1 小波变换模极大值的定义 (20)3.2.2 模极大值随着尺度的变化规律 (21)3.2.3 一种新的子波域滤波算法 (24)3.3小波阈值去噪方法的研究 (26)3.3.1 小波阈值去噪处理的方法 (26)3.3.2 软阈值的选择方法 (28)3.3.3 噪声在小波分解下的特性 (29)3.3.4 小波函数的选择 (30)3.4利用小波包进行信号消噪处理 (34)3.4.1 小波包变换的基本原理 (34)3.4.2 小波包的定义 (35)3.4.3 运用小波包消噪 (36)3.5本章小结 (37)第四章脑电信号去噪 (37)4.1脑电信号 (37)4.1.1 脑电信号背景 (37)4.1.2 脑电信号的特征与采集 (38)4.1.3 脑电信号预处理 (41)4.2小波去噪的MATLAB仿真 (44)4.2.1 Matlab的小波分析 (44)4.2.2 Matlab仿真去噪 (45)4.3本章小结 (49)结论 (49)参考文献 (50)致谢 (51)附录1 (51)附录2 (51)第1章绪论第1章绪论1.1引言脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。
基于小波变换的去噪摘要:本文说明小波变换的基本原理,实现小波分解与重构的Mallat 算法以及利用小波变换去除信号噪声的方法和原理,并在Matlab 环境下进行了仿真。
关键词:小波变换; 多分辨分析; Mallat 算法; 消噪;1.引言由于信号在产生、传输和检测过程中,不可避免地会受到不同程度噪声的影响,特别是小信号,干扰显得尤为明显,因此在信号处理过程中,最重要的就是消除信号中的噪声。
对此,傅立叶分析是一种经典方法,但其无法同时描述和定位信号在时间和频率上的突变部,而小波变换具有多分辨率的特点,能表征信号局部特征,因此在信号处理中有着重要的应用。
本文主要介绍小波变换理论和去噪原理及方法,并通过MATLAB 仿真实现信号噪声消除。
2.小波变换记()t ψ,总假设()t ψ是能量有限的,即()()R L t 2∈ψ。
通过对()t ψ作平移,伸缩可以得到一族小波函数,其中a 称为尺度因子或伸缩因子,b 称为平移因子,()⎭⎬⎫⎩⎨⎧∈>⎪⎭⎫⎝⎛-=R b a a b t a t b a ,0|1,ψψ所以小波函数()t ψ又被称作为母小波。
这族函数中每一个都有规范化的函数()1,==t b a ψψ。
设()()R L t f 2∈,则()t f 的连续小波变换定义为()t f 与()t b a ,ψ的内积()()()()()()()dt a b t t f ab a Wf t t f b a Wf b a ⎪⎭⎫ ⎝⎛-==⎰∞+∞-*,1,,,ψψ 从中可以看出小波变换也是一种积分变换,它将单变量的函数()t f 变换成时频平面上的二元函数()b a Wf ,。
从时频分析来看,小波变换将信号()t f 的每个瞬态分量映射到时频平面上的位置正好对应于分量的频率和发生的时间,而函数()b a Wf ,在()b a ,处的值反映了在时刻b 频率为a1的分量的有关信息。
由()b a Wf ,到原始信号()t f ,称为逆变换或重构。
本科生毕业设计(申请学士学位)论文题目小波变换在果品图像去噪中的应用目录摘要 (1)Abstract (1)1 绪论 (2)1.1选题背景和意义 (2)1.2果品图像去噪的研究现状 (2)1.3论文主要内容和组织结构 (3)2小波变换的基本理论 (3)2.1 连续小波变换 (3)2.2 离散小波变换 (4)2.3 Mallat 算法 (4)3 基于小波变换的果品图像去噪 (6)3.1 图像去噪的基本原理 (6)3.2 阈值函数的改进 (6)3.2.1 常见的阈值函数 (6)3.2.2 改进的阈值函数 (7)3.3 图像去噪新算法描述 (7)4 应用研究 (8)4.1 图像去噪质量的评价方法 (8)4.1.1 主观评价方法 (8)4.1.2 客观评价方法 (9)4.2 研究方法 (9)4.3 实验结果与数据分析 (10)5 结束语 (12)参考文献 (12)附录1 算法源代码 (14)附录2 图像来源与实验环境 (17)致谢 (18)小波变换在果品图像去噪中的应用摘要:果品图像在获取及传输过程中经常会被噪声污染,极大的影响了人们对图像中细节信息的提取。
图像去噪的目的是在去除绝大部分噪声的同时尽可能的保留图像的细节特征,为后续的处理工作提供方便,因此有必要在对果品图像进行后续处理之前去噪。
小波分析作为一种崭新的分析方法,具有多分辨率特性,在时域和频域上同时具有良好的局部化特性。
实践证明,小波变换是图像处理最强有力的工具,在果品图像去噪有着广泛的应用。
本文详细地介绍了小波变换的基本理论和果品图像去噪的原理,研究和分析了常见的阈值函数,深入探讨了阈值函数的改进办法,提出了一种新的图像去噪方法。
并利用本文方法与传统方法进行了仿真实验,通过实验结果验证了本文算法的可行性和有效性。
关键字:图像去噪;小波变换;阈值函数Application of fruit image denoise based on Wavelet TransformAbstract: Fruit image in access and transmission process will often be noise pollution, greatly influence the people to extract the image detail information. Image denoising is the purpose of for the most part in removing the noise at the same time as far as possible keep the detail of the image features, provide convenience for subsequent processing work, it is necessary before subsequent processing in fruit image denoising. Wavelet analysis as a new analysis method, the multiresolution characteristics, in the time domain and frequency domain at the same time has good localization characteristics. Practice has proved that wavelet transform is the most powerful image processing tools, has been widely used in fruit image denoising.This article in detail introduced the basic theory of wavelet transform and the principle of fruit image denoising, and studies and analyzes the common threshold function, thoroughly discusses improved threshold function method, a new image denoising method is proposed. And using the method with traditional method, the simulation experiment through the experimental results verify the feasibility and effectiveness of this algorithm.Keywords:image denoising; wavelet transform; Threshold function1 绪论1.1选题背景和意义果品分级就是根据果实的大小、色泽、形状、成熟度、病虫害及机械损伤等情况,按照国家规定的分级标准,进行严格的挑选分级。
XXXXX大学学年论文题目基于小波变换的图像去噪算法研究学生XXX指导教师XXX 讲师年级2007级专业系别学院计算机科学与信息工程学院XXXXX大学2010年6月20日论文提要研究小波变换中的图像分解与重构的Mallat算法,阐述正交小波变换中阈值的选取,并进行了实验研究。
图像噪声的存在严重影响了图像的处理效果,图像去噪有利于图像的后续处理。
本文对小波图像去噪方法进行了研究和分析,在总结了以往的阈值去噪经验基础上提出了一种新的阈值估计方法,改进阈值在 BayesShrink 阈值上增加了一个修正因子β,使该阈值更有效的利用了小波系数的空间相关性,在高频带使用较大的阈值去噪,在低频带使用较小的阈值去噪,从而使该阈值在去噪时更有效的区分信号与噪声,使去噪重构图像的信噪比 PSNR 比BayesShrink 阈值高,获得较好的去噪效果;并针对硬阈值函数和软阈值函数的缺点,提出了收缩阈值函数改进方案,该阈值函数能获得比硬阈值函数和软阈值函数更好的去噪效果。
基于小波变换的图像去噪算法研究摘要:图像的压缩有利于图像的传输和储存,本文对静止图像的压缩方法进行了较深入的研究,分析了EZW和SPIHT算法的优缺点,在SPIHT 算法的基础上提出了一种改进的算法,该算法采用了更简单的集合分割与排序策略,对最低频子带采用单独DPCM编码等措施在一定程度上克服了 SPIHT 图像编码算法的不足,提高了编码速度,减少了内存的消耗,提高了图象复原的质量。
并分析了噪声对图像零树编码的影响,针对带有噪声的图像提出了一种多阈值编码方法,该方法将小波阈值去噪和编码相结合,能在编码的同时去除噪声,仿真实验结果表明该算法比EZW的编码效果好,能有效的去除噪声。
关键词:小波变换,图像去噪,阈值,图像编码,嵌入式零树编码一、小波分析的发展小波分析是近年来国际上掀起新潮的一个前沿研究领域,是继Fourier分析的一个突破性进展,它给信号处理领域带来了崭新的思想,提供了强有力的工具,在科技界引起了广泛的关注和高度的重视。
摘要小波变换归属于数学领域的调和函数的范畴,是调和分析几十年来的一个突破性进展,并且在很多科技领域内得到了广泛应用。
本文旨在探讨小波变换理论,并结合专业中的地震信号去噪展开研究。
论文以小波变换为核心,首先介绍了论文研究的目的、意义及主要研究内容,由此引出了小波变换理论,并对其原理做了详细阐述。
这不仅包括连续小波,离散小波,多分辨率分析方法还包括与传统傅氏变换等的对比,从而在理论上明确其性能特点的优越性。
本文选定了小波阈值去噪方法。
由此结合给定的信号应用matlab 进行处理,并通过对比处理结果为本文后面的处理工作选定合适的参数。
从所做例子来看,小波阈值处理达到了很好的去噪效果。
论文应用matlab 模拟微地震信号,结合小波阈值去噪方法对微地震信号进行了处理。
在文中给出了信号的原始模拟信号,加噪信号及处理后的效果图,从图中可以看出,小波阈值去噪完成了模拟微地震信号的去噪处理。
另外,对实际的微地震资料进行了试处理,达到了去噪的目的。
关键词:小波变换;去噪;微地震;分解;重构ABSTRACTThe wavelet transform attributables to the mathematical field of harmonic function areas, it’s a breakthrough progress, and in many areas of science and technology has been widely used. This study aims to explore wavelet transform theory, and the combination of professional study of seismic signal de-noising.Papers to wavelet transform at the core, first of all, on paper the purpose of thestudy, the significance and major research content, which leads to the wavelettransform theory, and its principles expounded in detail.This includes not only thecontinuous wavelet, wavelet, multire solution analysis methods include traditional Fourier transform contrast, in theory, clear the superiority of its performance characteristics. The paper selected through comparative study of wavelet de-noising threshold method.This combination of a given signal processing applications matlab,and by comparing the results of this paper to the back of the appropriate handling of the selected parameters. From doing example, wavelet thresholding to deal with a very good de-noising effect. Papers matlab simulated micro-seismic signal applications, wavelet de-noising threshold with this method micro-seismic signal processing. In this paper the original analog signal, the signal plus noise and the effects of treatment plans, as can be seen from Fig, wavelet de-noising threshold completed micro-seismic signal de-noising analog processing.Key words: wavelet;de-noising;micro-seismic;decompose;compose目录第 1 章前言 (1)1.1 小波分析的发展状况 (1)1.2 小波分析的应用研究 (2)1.3 本文主要研究内容及成果 (3)第 2 章微地震监测原理及信号特征 (4)2.1 微地震监测原理 (4)2.1.1 裂缝尖端效应和漏泄效应 (5)2.1.2 混合破裂机制 (5)2.2 微地震信号的特征 (6)2.2.1 微地震的波场 (6)2.2.2 微地震信号的频谱 (7)2.2.3 微震的强度 (7)第 3 章小波变换基本理论 (8)3.1 傅里叶变换 (8)3.2 小波变换原理 (10)3.2.1 连续小波变换的定义 (10)3.2.2 小波变换的条件 (11)3.2.3 时频的分析窗口 (12)3.2.4 连续小波变换的逆变换公式 (13)3.3 离散小波变换 (14)第 4 章基于小波的阈值去噪方法 (16)4.1 小波阈值去噪的主要理论依据 (16)4.2 小波阈值处理方法 (17)4.3 小波阈值去噪方法的具体步骤 (17)4.4 matlab小波变换的相关函数 (19)第 5 章模拟微地震信号以及实际信号小波去噪 (22)5.1 模拟微地震信号去噪 (22)5.2 实际微地震数据处理 (25)5.3 总结 (28)第 6 章结论 (30)致谢 (31)参考文献 (32)第 1 章前言1.1 小波分析的发展状况小波变换归属于数学领域的调和函数的范畴,是调和分析几十年来的一个突破性进展,并且在信号处理、图像处理、量子场论、地震勘探、重磁勘探、语音识别与合成、雷达、CT 成像、天体识别、机器视觉和机械故障诊断与监控、分形以及数字电视等科技领域内得到了广泛应用。
它保留了Fourier 分析的优点,又弥补了Fourier 分析不能进行多尺度分析的不足,它不仅提供频率域的信息,而且可以进行精细的时频分析。
它被认为是近年来在工具及方法上的重大突破。
Meyer 认为,小波分析思想萌芽于1930 年至1980 年。
20 世纪六十年代,由于工业发展的需要,寻找地下石油成为法国的重大项目。
地下找油的地球物理方法是向地下打炮或发射脉冲波,通过反射的信号分析来描述地下岩石油层分布。
由于地下结构的复杂性,回收的反射信号也就十分复杂,如何从这些反射中提取有用的石油信息是当时无法解决的难题(陈玉东,2006)。
于是在1981 年,法国物理学家Morlet仔细研究了Gabor 变换方法,对Fourier 变换与加窗Fourier 变换的异同、特点及函数构造做了创造性的研究,首次提出了“小波变换”的概念,建立以他的名字命名的Morlet 小波并将其应用于信号处理。
因此,小波分析(Wavelet analysis)这一概念是法国地球物理学家Morlet 于1981年在分析地震数据时基于群论首先提出来的,Morlet 最初提出的是形状不变的小波(Wavelet of constant shape),因为在分析函数(信号)时,加窗傅氏变换并不具有形状不变性。
Morlet 方法所取得的数值分析的成功激发Morlet 本人、法国理论物理学家Grossmann、法国数学家Meyer 等人对小波分析进行深入研究。
如图1-1 所示为窗口Fourier 分析和Morlet 小波。
数学家Meyer 凭借自己深厚的数学功底对Morlet 方法进行了系统性的研究。
1985 年,Meyer 在一维情况下,证明了小波函数的存在性,并与人合作,选择连续小波中的一个离散子集,由它构成n 维空间上平方可积的准完备正交集,接着Meyer 发现由一个对称小构成的正交基。
1986 年,Meyer 与Mallat 合作,引进了多分辨率分析的概念,它的计算方法给出了建立正交小波基的一般方法,导致快速小波算法的实现,并找到了很多正交小波基。
将相应的Mallat 算法有效的应用于图像分解与重构。
与此同时,1988 年,Daubechies 构造了具有有限紧支集的正交小波——Daubechies 小波。
Daubechies 小波不能用解析公式给出,只能通过迭代方法产生,是迭代过程的极限。
正是在Morlet,Grossmann,Mallat,Daubechies 等人的工作和共同努力下,初步建立了小波分析的基本理论。
国外对于小波变换大规模的研究与应用已经有20 多年的经验,我国则是从上世纪90 年代初开始对小波进行相关研究及应用。
近10 多年来国内在小波应用方面取得了很大的成绩并独立研发了小波分析处理软件(薛年喜,2003)。
图1-1 窗口傅氏变换与小波变换1.2 小波分析的应用研究近20年小波在理论分析及实际应用上得到了蓬勃的发展。
它涉及面之广、影响之深、发展之迅速都是空前的。
小波分析是公认的信号信息获取与处理领域的高新技术。
信号与图像处理已经成为当代科学技术工作上的重要部分,其目的是:准确的分析与诊断、编码压缩与量化、快速传递或存储、精确重构等。
从数学上讲,实值函数、光滑的复值函数,比如解析函数及调和函数都是十分重要的函数类,它们的理论和应用研究都比较完善。
相对而言,带奇异性的函数从理论上讲发展较慢,应用方面远远没有光滑函数那么深入。
在实际应用中的绝大多数信号是非平稳的,而带有奇异性的或者不规则的结构往往是信号中最重要的部分。
在图像中,亮度的不连续性往往提供了某一图像的边缘,这恰恰是认识图像最有意义的部分。
在很多分析信号中,如CT 图像、心电图、雷达信号等,人们关注的瞬间现象,如信号的波峰的出现等。
过去常常用傅立叶变换来分析这些奇异性,但由于傅立叶变换是全局性的,它可以描述信号的全面的整体性质,但不适合于寻找奇异性的分布及奇异点的位置所在和奇异程度。
而小波变换特别适于分析处理非平稳信号。
因此,小波分析的应用十分广泛,在数学方面,它已应用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。
在信号分析方面的滤波、去噪、压缩、传递等。
在图像处理方面的图像压缩、分类、识别与诊断等。
医学成像方面的减少B超、CT、核磁共振成像的时间、提高分辨率等。