低驱动电压及高的调制效率的电吸收调制器(EAM)信号处理研究(IJIGSP-V4-N4-2)
- 格式:pdf
- 大小:506.09 KB
- 文档页数:8
美科学家采用微型光驱动导线调制大脑电信号方法
佚名
【期刊名称】《新疆交通运输科技》
【年(卷),期】2018(000)003
【摘要】人脑中快速移动的电信号如何产生思想,形成运动甚至产生疾病,至今是一个谜团。
寻找精确、简单的方法来操纵神经元之间电信号,有助于人类对大脑的了解。
美国芝加哥大学研究团队提出采用微型光驱动导线调制大脑电信号的方法发表在《自然·纳米技术》上。
十年前,科学界对于光遗传学技术持怀疑态度,认为这种技术会利用光来操纵神经活动,且必须采用遗传学方法实现,即将一个基因插入一个能够使它响应光的目标细胞中。
【总页数】1页(P5-5)
【正文语种】中文
【中图分类】Q424
【相关文献】
1.一种采用PLM调制方法的LED驱动电路 [J], 毛佳佳;杨依忠;季翔宇;张章;解光军
2.美国科学家培育出3D微型大脑 [J], Scott
3.德、美科学家发现大脑中4个与抑郁症相关的脑区互有关联,有助于改善抑郁症的治疗方法 [J],
4.上海与香港科学家合作研究揭示外界节律性刺激可以调制大脑中神经网络活动的振动频率 [J],
5.美科学家开发大脑植入新方法 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
《AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》篇一AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性AlGaN/GaN MOS(MIS)HEMT中的电子迁移率及Ⅰ-Ⅴ输出特性的研究一、引言AlGaN/GaN 高电子迁移率晶体管(High Electron Mobility Transistor,简称HEMT)作为一种重要的半导体器件,广泛应用于高频、高功率和射频等领域。
其中,电子迁移率及Ⅰ-Ⅴ输出特性是评价HEMT性能的重要指标。
本文将就AlGaN/GaN MOS (Metal-Insulator-Semiconductor HEMT)结构中电子迁移率及Ⅰ-Ⅴ输出特性的相关研究进行详细阐述。
二、AlGaN/GaN MOS HEMT结构及工作原理AlGaN/GaN MOS HEMT是一种利用AlGaN/GaN异质结界面处二维电子气(2DEG)的半导体器件。
其基本结构包括n型GaN沟道层、AlGaN势垒层以及位于AlGaN层上的绝缘层和金属栅极。
在工作过程中,通过栅极电压的控制,实现2DEG的开启与关闭,从而控制电流的传输。
三、电子迁移率的研究电子迁移率是衡量半导体材料中电子运动能力的物理量,对于HEMT器件的性能具有重要影响。
在AlGaN/GaN MOS HEMT中,电子迁移率受到材料质量、界面质量以及外加电场等多种因素的影响。
首先,材料质量是影响电子迁移率的关键因素。
高质量的GaN和AlGaN材料具有较低的缺陷密度,有利于提高电子迁移率。
此外,界面质量也对电子迁移率产生重要影响。
界面处的粗糙度、氧化物层等都会影响2DEG的形成和传输,从而影响电子迁移率。
其次,外加电场对电子迁移率也有显著影响。
在HEMT器件中,通过施加适当的栅极电压,可以调整2DEG的分布和密度,从而优化电子迁移率。
此外,温度也是影响电子迁移率的重要因素。
随着温度的升高,电子迁移率会受到散射机制的影响而降低。
集成式电吸收调制技术分析作者:李锐6来源:《科技资讯》 2014年第24期李锐(长春理工大学电子信息工程学院吉林长春 130022)摘要:将电吸收调制器和分布式反馈激光器进行单片集成的电吸收光调制技术,能大幅度提高激光通信的发射速率。
分析和建立电吸收光调制器的等效电路模型,信号等效电路可以分析电吸收调制器的响应和啁啾等信号特性。
关键词:电光调制电吸收调制啁啾效应中图分类号:TN24 文献标识码:A 文章编号:1672-3791(2014)08(c)-0065-021 激光调制技术分析激光调制的基本原理和电信号相同。
按光源和调制技术的关系,分为内调制和外调制两种。
内调制是调制信号对光源本身直接调制,以调制信号改变激光器的振荡参数,通过偏置电流的变化改变激光器输出特性以实现调制,加载信号是在激光振荡过程中进行的。
采用内调制技术具有、体积小,结构简单、成本低,容易实现等优点,但它的频带利用率较低,因其特殊的啁啾效应,内调制的速率很难超过Gbps,不能满足高速率光通信系统的需要。
外调制是指激光光束直接发射在调制器上,用调制信号改变调制器的物理性能,从而使通过调制器的激光束光波的参量发生变化。
外调制器根据利用的物理效应不同,可以分为声光、热光、磁光、电光调制等。
其中电光调制器按照调制方式又分为强度调制、电吸收调制等。
外调制相对于内调制方式,降低啁啾效应,容易实现高速率光信号的调制。
2 电吸收调制(EAM)EAM(Electro-absorption modulators)是一种损耗调制器,是激光通信系统中重要的器件之一,属于电光调制器的一种。
EAM容易与激光器集成在一起,制作成体积小、结构紧凑的单片集成器件,并且需要的驱动电压也较低。
通过这种激光器和调制器进行单片集成,不仅可以发挥调制器本身的优点,激光器与调制器之间也不需要光耦合的光学器件,并且可以降低损耗,保证了调制器的高效率。
EAM调制器的结构如图1所示。
R o F 系统主要由以下元件组成:光源,光调制器,光放大器和光电探测器。
在射频频率范围超出10GHz 的情况下,通常会采用外调制器。
外调制技术是将射频信号通过一个外部光学调制器调制到光载波上。
光调制器是通过电压或电场的变化最终调控输出光的折射率、吸收率、振幅或相位的器件。
它依据的基本理论是各种不同形式的电光效应、声光效应、磁光效应、Fang-Keldgsh 效应、量子阱Stark 效应、载流子色散效应等。
光调制器主要包括相位调制器(PM )和强度调制器,由于光电探测器的输出电信号直接与入射光强相关,而相位调制和频率调制必须采用外差接收机来解调,在技术上实现比较困难,所以目前光通信中普遍采用的是光强度调制,尤其是在RoF 系统中,需要实现信号的模拟调制,强度调制主要有铌酸锂MZM (LN-MZM )和电吸收调制器EAM 。
MZM因为铌酸锂材料本身非常稳定,有低损耗、使用寿命长、受温度及系统波长影响小等特点,且马赫增德尔调制器可以处理的信号带宽和光功率都较高,具有波长无关调制特性,能够较好地控制调制性能以及调制光强度和相位,可以实现40Gbit/s 以上高数据速率的调制,成为许多先进光调制格式产生的基础。
下图为LN-MZM 结构图其中1DC V 为上臂的直流偏置电压,2DC V 为下臂直流偏置电压,1()v t 为上臂的驱动电压,2()v t 为下臂的驱动电压。
MZM 调制器是由一个铌酸锂的衬底和共面型相位调制器组成。
在这种调制器中,两个分支的相位调制和由基材的电光特性有关,每一个分支的相位变化转换为输出光功率的变化。
MZ 调制器可以看作由两个相位调制器组成。
首先介绍相位调制器。
设输入光场为00()0()j t in E t E e ωϕ+=,其中E 0为输入光场的振幅,00,ωφ为光的频率与初相位。
相位调制器的驱动电压为()cos()DC RF RF V t V V t ωϕ=++,其中DC V 为直流偏置电压,RF V 为驱动电压的振幅,0,RF ωϕ分别为驱动电压频率与初相位。
大位移低电压的静电MEMS驱动器(英文)
明安杰;李铁;周萍;王跃林
【期刊名称】《半导体学报:英文版》
【年(卷),期】2008(29)9
【摘要】制作了一种低驱动电压、位移达100μm的梳齿驱动器.为了增加驱动器的驱动位移,对驱动器的侧向稳定性进行了分析.根据分析结论,提出了一种采用小梳齿间隙,高纵/横向弹性常数比预弯曲支撑梁,无初始交叠、梳齿长度线性递增的梳齿驱动器.根据稳定性以及驱动位移和驱动电压的设计要求设计了驱动器的具体参数,并进行了器件制作.测试表明,器件共振点在573Hz,Q因子为35.88,在100μm位移时驱动电压为71V,与理论计算值相差2.1%.
【总页数】5页(P1703-1707)
【关键词】梳齿驱动器;侧向稳定性;MEMS
【作者】明安杰;李铁;周萍;王跃林
【作者单位】中国科学院上海微系统与信息技术研究所,传感技术联合国家重点实验室,微系统技术国家级重点实验室;中国科学院研究生院,北京100049
【正文语种】中文
【中图分类】TM402
【相关文献】
1.低压大位移静电微驱动器驱动机理分析 [J], 田文超;陈志强;贾建援
2.硅基大位移低驱动电压静电微驱动器变形分析 [J], 田文超;贾建援
3.一种MEMS压电大位移驱动器设计分析 [J], 唐玉娟;杨忠;司海飞
4.大位移、低电压驱动MEMS静电梳齿驱动器的设计与研究 [J], 李海军;杨拥军
5.大位移MEMS静电梳齿驱动器的设计及制作 [J], 明安杰;李铁;王跃林
因版权原因,仅展示原文概要,查看原文内容请购买。
《AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性》篇一AlGaN-GaN MOS(MIS)HEMT中电子迁移率及Ⅰ-Ⅴ输出特性AlGaN/GaN MOS(MIS)HEMT中电子迁移率及I-V输出特性的研究一、引言在当代的半导体器件领域中,AlGaN/GaN HEMT(高电子迁移率晶体管)因其在高频率、高功率及高温条件下的优秀性能,已被广泛运用于各种高频微波器件、集成电路以及高效率功率转换电路等众多领域。
随着科技的发展,MOS(金属氧化物半导体)结构被引入HEMT器件中,形成了AlGaN/GaN MOS(MIS)HEMT 结构,其性能的进一步优化和提升成为了研究的热点。
本文将重点探讨AlGaN/GaN MOS(MIS)HEMT中的电子迁移率以及I-V输出特性。
二、电子迁移率的研究电子迁移率是半导体材料中电子运动能力的重要参数,对于理解HEMT器件的电学性能具有至关重要的作用。
在AlGaN/GaN MOS(MIS)HEMT中,电子迁移率受多种因素影响,包括材料的质量、界面状态、温度以及电磁场强度等。
首先,材料的品质是决定电子迁移率的基础。
高纯度、无缺陷的晶体结构可以为电子提供更多的可移动空间和较低的散射机会,从而提高电子迁移率。
其次,界面状态对电子迁移率也有重要影响。
在AlGaN/GaN界面处,应尽可能减少界面态密度和表面粗糙度,以降低对电子的散射。
此外,温度对电子迁移率的影响也不能忽视。
在高温环境下,电子散射会增强,导致电子迁移率降低。
而电磁场强度则能通过影响电子的能量分布和运动轨迹来影响其迁移率。
三、I-V输出特性的研究I-V输出特性是描述半导体器件电流与电压关系的特性曲线,对于评估HEMT器件的性能具有重要价值。
在AlGaN/GaN MOS(MIS)HEMT中,I-V输出特性主要受电子迁移率、栅极电压、源漏电压以及器件结构等因素的影响。
当源漏电压一定时,I-V输出特性主要由栅极电压控制。
第 21 卷 第 12 期2023 年 12 月Vol.21,No.12Dec.,2023太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information TechnologyInGaAs/InAlAs光电导太赫兹发射天线的制备与表征陈益航1,杨延召2,张桂铭2,徐建星1,苏向斌1,王天放1,余红光1,石建美1,吴斌2,杨成奥1,张宇1,徐应强1,倪海桥1,牛智川1(1.中国科学院半导体研究所,北京100083;2.中国电子科技集团公司第四十一研究所,山东青岛266555)摘要:光电导天线作为太赫兹时域光谱仪产生与探测太赫兹辐射的关键部件,具有重要的科研与工业价值。
本文采用分子束外延(MBE)方法制备InGaAs/InAlAs超晶格作为1 550 nm光电导天线的光吸收材料,使用原子力显微镜、光致发光、高分辨X射线衍射等方式验证了材料的高生长质量;通过优化制备条件得到了侧面平整的台面结构光电导天线。
制备的光电导太赫兹发射天线在太赫兹时域光谱系统中实现了4.5 THz的频谱宽度,动态范围为45 dB。
关键词:太赫兹时域光谱仪;光电导天线;分子束外延;InGaAs/InAlAs超晶格中图分类号:TN405.98+.4文献标志码:A doi:10.11805/TKYDA2022204Fabrication and characterization of InGaAs/InAlAs photoconductiveterahertz transmitting antennaCHEN Yihang1,YANG Yanzhao2,ZHANG Guiming2,XU Jianxing1,SU Xiangbin1,WANG Tianfang1,YU Hongguang1,SHI Jianmei1,WU Bin2,YANG Cheng'ao1,ZHANG Yu1,XU Yingqiang1,NI Haiqiao1,NIU Zhichuan1(1.Institute of Semiconductors,Chinese Academy of Science,Beijing 100083,China;2.The 41st Institute of China Electronic Technology Group Corporation,Qingdao Shandong 266555,China)AbstractAbstract::Photoconductive antennas are of great scientific and industrial value as the key components for generating and detecting terahertz radiation in terahertz time-domain spectrometers. Inthis paper, Molecular Beam Epitaxy(MBE) is utilized to prepare InGaAs/InAlAs superlattices as light-absorbing materials for 1 550 nm photoconductive antennas. The high growth quality of the materials isverified by Atomic Force Microscopy(AFM), Photoluminescence(PL), and high-resolution X-raydiffraction. The mesa-structured photoconductive antenna with flat sides is obtained by optimizing thepreparation conditions. The fabricated photoconductive terahertz transmitting antenna achieves aspectral width of 4.5 THz in a terahertz time-domain spectroscopy system with a dynamic range of 45 dB.KeywordsKeywords::terahertz time-domain spectrometer;photoconductive antenna;Molecular Beam Epitaxy;InGaAs/InAlAs superlattices太赫兹时域光谱基于超短太赫兹脉冲的相干时间分辨探测原理工作,是重要的材料分析检测技术,也是开展太赫兹频段科学研究的关键平台[1]。
MZ调制器光纤通信系统中基于半导体激光器实现信号加载的方式有两种:内调制和外调制。
内调制方式是通过直接调制半导体激光器的驱动电流而实现信号的加载。
但在内调制过程中,由于半导体激光器注入电流的变化会导致其激活区载流子浓度的变化,进而导致输出光脉冲频率的变化,即产生频率“啁啾”现象。
啁啾光脉冲在光纤中传输时,光纤的色散必然导致光脉冲的展宽,因而最终导致系统传输性能的恶化。
而外调制方式由于将信号的加载过程和激光的产生过程相分离,可以有效地降低频谱啁啾的产生,进而可以较大程度地提升系统的传输性能。
目前主要有3种传统的光调制器:直接调制分布反馈半导体激光器(DFB-LD)、电吸收外部调制(EAM),包括集成在DFB-LD芯片上的电吸收调制器和LiNbO3马赫曾德尔(mach zehnder)外部调制器。
这些调制器的应用领域是由他们各自的带宽、啁啾脉冲和波长相关性所决定的。
前两种方式不适合高速系统,LiNbO3马赫曾德尔调制器可以生成高速、低啁啾的传输信号,而且特性与波长没有关系,被认为是40Gbps WDM传输系统的最佳选择。
现代光纤通信普遍采用干涉和电吸收两种外调制方式。
高速长途通信中最常用的是LiNbO3(铌酸锂)马赫曾德尔(MZ)外调制器,它具有很多优势:采用行波电极,可获得较高的工作频率;调制信号的频率啁啾非常小;性能的波长依赖很小;光损耗较低;电光系数高;适用于多种码型等。
、MZ 调制器是基于马赫曾德干涉原理的电光调制器,其结构图如图1所示。
它由两个LiNbO 3相位调制器、两个Y 分支波导和相应的驱动电极组成。
两个相位调制器借助LiNbO 3晶体的电光效应实现光的相位调制,两个Y 分支波导完成分合光功能,驱动电极提供实现电光效应所需的驱动电压。
从连续波激光器发出的光载波信号进入调制器后,高速数据流以驱动电压的方式加载到光载波信号上完成对光信号的调制。
到达调制器的光载波信号被分成两束振幅和频率完全相同的光分别通过Y 方向上的上下支路进行传输。
电吸收调制器原理电吸收调制器(Electro-Absorption Modulator,简称EAM)是一种常用于光通信系统中的光电器件,用于调制光信号的强度。
它的工作原理是利用外加电场改变半导体材料的吸收特性,从而改变光信号的强度。
下面我将详细介绍电吸收调制器的工作原理及其实现方式。
一、电吸收调制器的工作原理:电吸收调制器是基于半导体的调制器件,它的核心部分是一个具有量子阱(Quantum Well)结构的材料。
量子阱是指在正常的半导体材料中,通过在两个宽禁带材料之间插入一个窄禁带材料形成,以增加能带间隔,从而限制电子和空穴的运动。
电吸收调制器的工作原理是通过外加电场改变量子阱结构材料的带隙(bandgap),从而实现光信号的强度调制。
当没有外加电场时,量子阱中的电子和空穴被束缚在窄禁带材料中,不能被吸收。
而当外加电场增大时,带隙变窄,电子空穴对被激发到宽禁带材料中,光信号通过材料时会被材料吸收,从而改变光信号的强度。
反之,当外加电场减小或为零时,带隙增大,电子空穴对回到窄禁带材料中,光信号可以完全穿过材料,不会被吸收。
二、电吸收调制器的实现方式:电吸收调制器的实现方式主要包括吸收型(Absorption-Type)和反射型(Reflection-Type)两种。
1. 吸收型电吸收调制器:吸收型调制器是通过改变材料的吸收特性来调制光信号。
常见的材料有多量子阱(MQW)、量子阱渐变膜(QQW)和窄带隙半导体材料。
它的特点是吸收窗口宽,光信号传输损耗大。
其工作原理是在外加电场作用下,所产生的电子空穴对与外界入射光子相互作用,使光子被吸收。
与此同时,在外加电场的作用下,电子空穴对的自由载流子浓度发生变化,从而改变了材料的吸收特性。
2. 反射型电吸收调制器:反射型调制器是通过改变材料的反射特性来调制光信号。
它是在吸收型调制器的基础上发展而来的,通过在反射镜前、后各增加一层半导体材料,形成腔反射器。
当外加电压变化时,腔反射器中的电场分布发生变化,从而改变反射特性。