潜水作用下土壤水盐运移过程
- 格式:pdf
- 大小:2.68 MB
- 文档页数:12
土壤中的水盐运移过程
土壤中的水盐运移过程是指水分和溶解在其中的盐分在土壤内部的传输和迁移过程。
这个过程对于植物生长和土壤质量具有重要影响。
水分运移:
1. 入渗:降雨或灌溉水从土壤表面渗入土壤,填充孔隙和微细毛管中。
2. 渗透:水分沿着土壤颗粒间的空隙向下渗透,直至达到饱和带或遇到不透水层。
3. 下渗:当饱和带中的水量超过土壤孔隙的容纳能力时,多余的水分向下移动,形成地下水。
4. 上升:由于土壤毛细作用或根系吸力等因素,土壤中的水分可以向上升至根系处供给植物的需求。
盐分运移:
1. 离子扩散:溶解在水中的盐分通过土壤孔隙中的扩散作用向周围的土壤颗粒和水分扩散,使盐分浓度逐渐均匀。
2. 吸附:土壤颗粒表面带有负电荷,可以吸附正电荷的离子,如钠离子和钾离子,减少其在水中的浓度。
3. 根系吸收:植物根系通过渗透作用和离子交换等机制吸收土壤中的盐分,并将之输送至植物体内。
4. 蒸发结盐:当土壤中的水分蒸发时,水分中溶解的盐分会逐渐浓缩,最终形成结晶并沉积在土壤表面。
影响因素:
土壤中水盐运移过程受到多种因素的影响,包括土壤类型、土壤结构、降雨量、温度、植被覆盖等。
不同的土壤类型具有不同的渗透性和保水能力,对水分和盐分的运移有不同的影响。
土壤中的水盐运移过程是一个复杂的系统,涉及到水分的入渗、渗透、下升和上升,以及盐分的扩散、吸附、根系吸收和蒸发结盐等过程。
了解这些过程对于农业生产和土壤保育具有重要意义。
土壤水分驱动下的盐分迁移过程1. 引言1.1 研究背景盐分迁移是土壤盐碱化的重要过程,在土壤和水资源管理中具有重要意义。
随着全球气候变化和人类活动的影响,土壤盐分问题日益严重,给农业生产和生态环境带来了严重挑战。
土壤水分是土壤中盐分迁移的主要驱动力之一,其影响机制及对盐分迁移的影响一直是研究的热点之一。
了解土壤水分对盐分迁移的影响,可以提高土壤水盐管理的效果,减轻土壤盐碱化程度,增加土地可持续利用性。
深入研究土壤水分驱动下的盐分迁移过程,对于提高土壤水盐管理的效果,减轻土壤盐碱化程度,具有重要的理论和实践意义。
本研究旨在探讨土壤水分驱动下的盐分迁移机制及其影响因素,为进一步提高土壤水盐管理的效果提供科学依据。
1.2 研究意义盐分迁移过程是土壤中盐分发生变化并传播的过程,其对土壤质量和农作物生长具有重要的影响。
研究盐分迁移过程的意义在于深入了解盐分在土壤中的行为规律,为有效控制盐分对土壤的危害提供依据。
随着全球气候变化和人类活动的影响,土壤中盐分的含量不断增加,严重影响了土壤的肥力和植被的生长,因此研究盐分迁移过程具有重要的现实意义。
研究盐分迁移过程还可以为解决盐碱地治理、农田排盐和土壤改良等问题提供科学依据,有助于提高土壤的利用率和农作物的产量。
深入研究土壤水分驱动下的盐分迁移过程,对于加强土壤质量保护、提高农田生产力具有深远的意义。
1.3 研究目的研究的目的是通过深入探讨土壤水分驱动下的盐分迁移过程,揭示盐分在土壤中的传输规律及相关影响因素,从而为有效控制土壤盐分积累提供理论依据和科学指导。
具体目标包括:1. 研究土壤水分对盐分迁移的影响机理,揭示土壤水分变化对盐分传输速率的影响规律;2. 分析盐分在土壤中的传输方式,探究不同土壤类型和盐分浓度下盐分的扩散规律;3. 探讨影响盐分迁移过程的因素,包括土壤结构、水分含量、盐分浓度等因素对盐分迁移的影响机制;4. 揭示土壤水分驱动下的盐分迁移机制,探讨盐分在土壤孔隙中的运移路径和规律;5.探讨盐分迁移过程中的模拟和预测方法,研究数值模型和实验方法在盐分迁移过程中的应用及效果。
土壤含水量随深度变化的一般规律1. 土壤含水量的变化规律好啦,咱们今天聊聊土壤含水量的变化规律。
说到这儿,你可能会觉得有点儿枯燥无味,但相信我,这里面的学问可不少呢。
简单来说,土壤的含水量就是土壤里水分的含量,它随土壤深度的变化而变化。
你可以把土壤想象成一个“大海”,而水分就是这个大海里的“海水”。
当你把手伸进土壤的不同深度,你会发现水分的量也会有所不同,就像在海洋里深浅不同的水域,水量差别很大。
1.1 土壤表层的水分咱们从土壤表层说起吧。
一般来说,土壤的表层就是我们最常见的那一层,它可不是什么特别深的层次,大约在几厘米到几十厘米的范围。
这一层的土壤常常受天气影响特别大,比如说雨下得多,这一层就湿漉漉的;要是天气干旱,这一层的土壤也很快就会变干。
可以这么说,表层土壤的含水量跟天气有着密切的关系,就像一个天气预报员,永远跟着气象走。
1.2 土壤深层的水分往下挖,咱们就进入了土壤的深层。
这里的水分就不那么容易受天气变化的影响了。
虽然深层土壤里水分的含量相比表层要稳定得多,但这也意味着它对水分的储存能力更强。
比如说,你往土壤里灌水,表层的土壤很快就会吸收完,但深层土壤则可能需要更长的时间才能充分湿润。
这就像你喝水,前几口可能咕咚咕咚地喝得特别快,但当你喝得越来越多,肚子就慢慢撑起来,吸收就不那么迅速了。
2. 影响因素要想彻底了解土壤含水量的变化规律,还得了解几个影响因素。
首先,就是土壤的类型。
不同的土壤类型,比如沙土、粘土,它们的含水能力可是大不相同的。
沙土就像那种大水坑,水分进得快但也出得快;而粘土则像个大海绵,水分进得慢但留得住。
而且,土壤的结构和孔隙度也对水分的变化有很大影响。
孔隙度大的土壤就能存储更多的水分,深层土壤的水分含量自然也会更高。
2.1 植物的影响再来,植物也是一个重要的因素。
植物的根系能从土壤中吸取水分,它们就像一个个小“水泵”,不停地从土壤里抽水。
特别是在植物生长旺季,它们的“抽水”速度可是非常快的。
土中水的运动规律土中水的运动规律是指水在土壤中的流动和分布的规律。
土壤中的水分运动是一个复杂的过程,受到多个因素的影响,如土壤类型、土壤孔隙度、水力条件、根系活动以及气候等。
通过研究土中水的运动规律,可以更好地理解水分循环和地下水资源的形成与分布,对水文循环模型的建立和水资源管理具有重要意义。
1. 水分下渗规律土壤中的水分主要通过下渗进入深层土壤或地下水层。
下渗规律取决于土壤的孔隙度和渗透性,水分的下渗速率与土壤孔隙度呈正相关关系。
土壤孔隙度越高,水分下渗的速率越快。
此外,土壤质地也影响下渗规律,例如,砂土的渗透性较好,能够较快地将水分下渗到深层。
2. 土壤中水分的传导规律土壤中的毛细现象是水分在土壤中传导的重要机制之一。
毛细现象是由于土壤颗粒表面的毛细管作用引起的。
水分分子在土壤孔隙中通过毛细现象向上运动,这种运动规律被称为上升运动。
毛细现象的主要影响因素包括土壤颗粒间的间隔距离、土壤颗粒表面的湿度和土壤毛细管的直径。
3. 根系对土壤中水分的摄取规律植物根系是水分在土壤中运动的重要因素之一。
根系通过吸收土壤中的水分供给植物的生长和代谢所需。
根系的分布范围和活动水平会影响水分在土壤中的分布和运动规律。
在干旱季节,植物的根系会向深层土壤迁移,从而增加了土壤中水分的储存量。
4. 土壤中水分的蒸发规律土壤中的水分在受到外界环境的作用下会发生蒸发。
土壤中水分的蒸发过程可以通过温度、湿度和风速等因素来描述。
温度越高,湿度越低,风速越大,土壤中的水分蒸发越快。
此外,土壤表面的覆盖物(如植被)也会影响土壤中水分的蒸发规律,植被的存在可以减缓土壤中水分的蒸发速率。
5. 土壤中水分的径流规律当土壤中的水分超过其持水能力时,多余的水分会以径流的形式流出。
土壤中水分的径流规律受到降雨强度、土壤质地、土壤饱和度和土壤坡度等因素的影响。
降雨强度越大,土壤的饱和度越高,土壤中水分的径流量越大。
综上所述,土中水的运动规律受到多个因素的综合影响。
冻结-冻融过程中水分运移机理
2010-11-10
为研究冻结-冻融过程中水分运移机理,在天山北麓平原通过人为控制潜水不同埋深条件下的模拟试验和田间土壤水分运移观测试验,分析了土壤水势分布和土壤含水量分布特征,发现冻结过程不同潜水埋深条件下的土壤水分运移机理、土壤水与潜水之间的相互转化关系有明显差异.在冻结过程中,潜水浅埋条件下,冻结层下界面与潜水面之间土壤水分运移状态呈上渗型,土壤水向冻结层下界面处运移、积累,同时引起潜水蒸发损耗使潜水位下降,表现出地下水向土壤水转化的基本特征.潜水深埋区,土壤水分运移状态呈上渗-入渗型,同样土壤水向冻结层下界面处运移、积累,同时潜水得到一定的入渗补给并使潜水位上升,表现为土壤水向地下水转化的特征.冻融过程中对于不同潜水埋深,由原来各自的'土壤水分运移状态均逐渐转变为入渗型,形成潜水入渗补给,表现为土壤水向地下水转化的特征.冻融期是土壤水资源、地下水资源形成的重要时期,对于干旱少雨的西北地区而言,冻融水的形成、运移和入渗补给地下水具有重要的生态环境意义.
作者:荆继红韩双平王新忠白铭 JING Jihong HAN Shuangping WANG Xinzhong BAI Ming 作者单位:荆继红,韩双平,JING Jihong,HAN Shuangping(中国地质科学院水文地质环境地质研究所,河北石家庄,050061)
王新忠,白铭,WANG Xinzhong,BAI Ming(新疆第二水文地质工程地质大队,新疆昌吉,831100)
刊名:地球学报 ISTIC PKU英文刊名:ACTA GEOSCIENTICA SINICA 年,卷(期):2007 28(1) 分类号:P9 关键词:冻结冻融土壤
水地下水水分运移机理。
第54卷 第4期 2024年4月中国海洋大学学报P E R I O D I C A L O F O C E A N U N I V E R S I T Y O F C H I N A54(4):106~115A pr .,2024泥质潮滩水盐运移过程电阻率探针高精度监测效果分析❋李明波1,2,张宇丰3,郭秀军3,4❋❋,吴 振1,2,武 斌1,2,马 健1,2,聂佩孝1,2(1.山东省第四地质矿产勘查院,山东潍坊261021;2.山东省地矿局海岸带地质环境保护重点实验室,山东潍坊261021;3.中国海洋大学环境科学与工程学院,山东青岛266100;4.山东省海洋环境地质工程重点实验室,山东青岛266100)摘 要: 本研究在莱州湾泥质潮滩开展测试,量化分析了环状电阻率探针监测沉积物电阻率与孔隙水盐度变化的能力,并使用该技术初步刻画了细粒沉积层中水盐运移过程㊂结果表明,环状电阻率探针监测结果可精细描述沉积物电阻率的分布及变化规律;基于监测结果换算的孔隙水盐度变化比与实际孔隙水盐度变化比存在ʃ10%的误差,环状电阻率探针具有粗略定量分析泥质潮滩水盐运移过程的能力;潮汐循环中泥质潮滩地下水水盐运移过程在涨潮时期,高盐度水体主要补给细粒沉积层的顶部与底部㊂高潮时期间,细粒沉积层顶部与底部的盐分逐步丧失,中部水体盐分累积速率加快㊂退潮时期,细粒沉积层盐分整体丧失,高盐度水体通过渗出面向外释放㊂关键词:环状电极电阻率探针;泥质海岸;水盐运移过程;监测效果;盐度变化比中图法分类号: P 345 文献标志码: A 文章编号: 1672-5174(2024)04-106-10D O I : 10.16441/j.c n k i .h d x b .20230008引用格式: 李明波,张宇丰,郭秀军,等.泥质潮滩水盐运移过程电阻率探针高精度监测效果分析[J ].中国海洋大学学报(自然科学版),2024,54(4):106-115.L i M i n g b o ,Z h a n g Y u f e n g ,G u o X i u j u n ,e t a l .H i g h -p r e c i s i o n m o n i t o r i n g e f f e c t a n a l y s i s o f r e s i s t i v i t y pr o b e i n t h e w a t e r a n d s a l t t r a n s p o r t p r o c e s s i n m u d d y t i d a l f l a t [J ].P e r i o d i c a l o f O c e a n U n i v e r s i t y of C h i n a ,2024,54(4):106-115. ❋ 基金项目:山东省第四地质矿产勘查院科技创新项目(K J 2106);山东省地矿局科技公关项目(K Y 202206);潍坊市财政基金项目(S D G P 370700202102000413);山东省地下水环境保护与修复工程技术研究中心(筹)开放基金项目(201703075-57)资助S u p p o r t e d b y t h e S c i e n c e a n d T e c h n o l o g y I n n o v a t i o n P r o j e c t o f N o .4E x p l o r a t i o n I n s t i t u t e o f G e o l o g ya n d M i n e r a l R e s o u r c e s o f S h a n -d o n g P r o v i n c e (K J 2106);t h e K e y S c i e n t i f i c a n d T e c h n o l o g i c a l R e s e a r c h P r o j e c t ,S h a n d o n g P r o v i n c i a l B u r e a u o f G e o l o g y &Mi n e r a l R e s o u r c e s (K Y 202206);t h e W e i f a n g F i n a n c i a l F u n d P r o j e c t (S D G P 370700202102000413);t h e O p e n F u n d P r o j e c t o f S h a n d o n g Pr o v -i n c e G r o u n d w a t e r E n v i r o n m e n t P r o t e c t i o n a n d R e s t o r a t i o n E n g i n e e r i n g T e c h n o l o g y Re s e a r c h C e n t e r (201703075-57)收稿日期:2023-01-10;修订日期:2023-03-04作者简介:李明波(1986 ),男,高级工程师,研究方向为区域地质调查与矿产勘查㊂E -m a i l :l i m i n g b o @s d d k s y.c o m ❋❋ 通信作者:郭秀军(1972 ),男,教授㊂E -m a i l :g u o j u n qd @o u c .e d u .c n 泥质海岸是世界重要的海岸类型之一,广泛分布于海湾及河流入海区域㊂当前泥质海岸的关注问题集中在滨海湿地土壤盐渍化以及滨海卤水资源可持续开发上㊂厘清泥质海岸表层细粒沉积层中水体与溶质的分布㊁迁移规律,是解决以上环境及资源问题的基础㊂泥质海岸地下水水文过程模型的建立始于21世纪初,至今仍在修改㊁完善㊂当前研究该问题的主要方法包括地球化学分析㊁数值模拟及原位地球物理调查㊂传统研究主要基于地下水常规离子分析㊁氢氧同位素测试等地球化学分析结果,确定泥质海岸多层含水层系统中水㊁盐的来源,以此为基础建立地下水与溶质的补给模型[1-2];随着算法优化,数值模拟与原位水文观测结合的方法开始用于泥质海岸多层含水层中流场㊁溶质分布及变化规律的研究[3-9]㊂马倩㊁常雅雯与郭雪倩将多层含水层系统中各地层视为均质,初步模拟分析了多层含水层系统中流场与溶质的分布演化过程,评价了弱透水层中天窗区对越流补给的影响,量化了海底地下水排泄通量[5-7]㊂X i n 等[8]与X i a o 等[9]模拟了受生物活动影响更为复杂的地下水循环过程㊂证明了生物通道能够显著促进表层沉积物中海水的循环速率;地球物理电学观测是一类新兴的地下水文过程观测方法,S u 等[10]应用此方法分析了潮汐对泥质海岸沉积物电性的影响,并划分了莱州湾滨海含水层系统中的海水入侵通道㊂F u 等[11]基于电阻率层析成像(E l e c -t r i c a l r e s i s i t i v i t y t o m o g r a p h y,E R T )监测结果,建立了泥质海岸多层滨海含水层系统中的水盐运移模型;张宇丰等[12]基于E R T 与水文参数监测结果,讨论了表层细粒沉积层的渗透性差异对海水-潜水卤水交换过程的影响,初步量化了潮汐循环中多层滨海含水层内发生的盐分通量㊂综上可知,当前已有研究更多关注泥质海岸多层滨海含水层系统,并以此建立大尺度的水盐运移模型㊂事实上,潮间带生卤㊁土壤盐渍化及生物活动的区域多集中在表层细粒沉积层中[9,13-15]㊂在蒸发与潮汐循环4期李明波,等:泥质潮滩水盐运移过程电阻率探针高精度监测效果分析作用下,潮间带细粒沉积层中孔隙水盐度维持在较高水平的动态平衡中,每年每平方千米的表层细粒沉积层可为地下卤水资源补给16万m 3大于10波美度的卤水[15]㊂活跃的生物活动产生的通道能够增大表层细粒沉积物的渗透性与异质性,显著加快海水-地下水的交换速率,不仅为潮间带生卤补给浅层卤水资源提供优先路径,还促进了基质中孔隙水与海水等其他水体间的溶质交换,改变基质中孔隙水盐度,影响土壤盐渍化进程[8-9,11-13]㊂准确㊁细致认识细粒沉积层中水盐运移规律是揭示潮滩生卤补给潜水卤水机制与通量的基础,可为滨海地下卤水资源以及生态环境管理提供理论支持,但目前未有研究能够精细描述潮汐循环中细粒沉积层中水盐的运移过程㊂为精细刻画以上过程,要求监测技术对地下介质变化的反应有较高灵敏度,同时具有较高的空间分辨能力㊂由于不同含盐量沉积物存在明显电性差异,电学监测可基于此物理前提对水盐运移过程进行刻画[16-18]㊂电阻率探针技术在垂直方向上具有较高的分辨能力,其还能避免E R T 监测随探测深度增加探测灵敏度下降的缺点㊂目前电阻率探针技术主要应用于海底水土界面划分[19]㊁海洋土蚀积过程监测[20-21]㊁海底浅层气迁移过程监测[22-23]以及土壤盐渍化监测[24],但目前尚未对电阻率探针监测泥质潮滩水盐运移过程的能力进行分析㊂本研究选取莱州湾南岸泥质潮滩为研究区开展工作,分析环状电阻率探针(R i n g e l e c t r o d e r e s i s t i v i t ypr o b e ,R E P )监测潮汐过程表层细粒沉积物中水盐运过程的灵敏度,评价依据孔隙水盐度变化比量化分析孔隙水盐分累积与释放过程的误差,并基于R E P 监测结果初步描述潮汐过程中泥质海岸表层细粒沉积层中的水盐运移过程㊂1 研究区概况研究区位于中国山东省莱州湾南岸的淤泥质海岸㊂该区域地形平缓,平均坡度小于千分之三(<3ɢ),宽阔的潮滩向莱州湾内延伸5~20k m ,平均水平水力梯度1.64%,地下潜水位高程约为-0.8m [25-26]㊂该区域地层自上而下可分为表层细粒沉积层㊁潜水卤水层㊁弱透水层及承压卤水层四层,分别为厚约4~5m 的粘质粉土层;厚约6~8m 的中细砂层;厚5~7m 的粘质粉土层;中砂层与细砂层[26-28]㊂图1 研究区位置㊁工作布设位置及地质钻孔柱状图F i g .1 L o c a t i o n ,w o r k i n g p o i n t a n d g e o l o g i c a l c o l u m n s o f s t u d y ar e a 研究区潮汐属于不规则半日潮,平均潮差约为0.9m ,平均涨潮时间382m i n ,平均落潮时间366m i n㊂莱州湾南岸属暖温带大陆性季风气候,年均降雨量和蒸发量分别为559.5和1936.7m m [26],蒸发作用强烈㊂莱州湾海域自上更新世以来经历了三次海侵与海退,在滨海含水层系统内形成了水平带状分布的三至五层卤水㊂位于顶部的潜水卤水T D S 值在50~140g /L 之间[26,29]㊂2 工作布设与方法2.1R E P 参数设置及电阻率计算方法本研究中使用的环状电极探针总长4m ,数据采集段长3.45m ,24个不锈钢电极环(C 1 C 24)等间距分布,电极极距a 为0.15m ,电极环半径b 为0.03m ,装置示意图与实物图见图2㊂电学测量选用W e n n e r 排列,数据采集时两个供电电极发射电流,形成电场,电701中 国 海 洋 大 学 学 报2024年场大小正相关于供电电极间的距离,环电极探针所测电阻率数据为电场范围内介质整体的电阻率,根据W e n n e r 排列测量原理,有效测量半径为1.5倍的极距,即0.225m ㊂测量仪器为G e o pe n 公司生产的E 60D N 分布式电图2 R E P 监测系统示意图(a )及R E P 探杆实物图(b)F i g .2 S c h e m a t i c d i a g r a m o f R E P m o n i t o r i n gs y s t e m (a )a n d R E P p h y s i c a l ph o t o (b )法仪及多电极智能电缆㊂使用12V 直流电源对测量仪器及主机供电㊂测量供电时长为1s ,电流大小为1A ㊂每次测量分别以C i 与C i +3为供电电极A ㊁B ,以C i +1与C i +2为测量电极M ㊁N (i 为测量次数)㊂测量时记录电位差ΔV i 与电流I i ,基于公式(1)可计算得到细粒沉积层不同深度位置的沉积物电阻率ρi[23]㊂ρi =π2b ΔV iI il n 4a +2πb 4a +πb-1㊂(1)2.2R E P 测量精度验证分别在淡水及海水环境下测试R E P 测量精度㊂使用自来水与自配高盐度水(盐度为30)分别模拟淡水环境与海水环境㊂淡水及海水电阻率分别为23.64与0.251Ω㊃m ㊂使用R E P 测量不同环境中介质电阻率,每类环境中重复试验3组,取三组试验的均值与介质电阻率实测值对比,分析R E P 装置自身的测量误差㊂图3显示了两个R E P (R 1与R 2)在淡水及海水环境中的测量误差㊂在淡水环境中,R E P 的测量误差区间在ʃ1%之内;在盐度较高的海水环境中,电极受极化影响程度升高,R E P 测量误差区间虽有增大但未超过ʃ3%,约1/2的数据点落在误差区间ʃ1%之内㊂因此R E P 基本能够满足在不同类型地下水环境中开展监测工作的测量精度要求㊂图3 不同环境中两个R E P (R 1与R 2)测量误差图F i g .3 E r r o r d i a gr a m o f t w o R E P m e a s u r e m e n t s (R 1&R 2)i n d i f f e r e n t e n v i r o n m e n t s 8014期李明波,等:泥质潮滩水盐运移过程电阻率探针高精度监测效果分析2.3R E P 原位布设及数据采集方法在距离G 1点80及110m 位置分别布设电阻率探针R 1和R 2,具体点位如图1所示㊂采用旋转贯入的方式将电阻率探针置入沉积物中㊂装置布设完成后需稳定1周再进行测量㊂在单个潮汐循环内的不同潮时(a ㊁b ㊁c 与d 时刻)开展测量工作(测量时刻见图4)㊂a 与d 时刻海水未覆盖潮滩;b 与c 时刻,海水覆盖潮滩㊂每组测量工作总时长约为70s㊂图4 R E P 测量时刻及潮位信息F i g.4 R E P m e a s u r e m e n t t i m e a n d t i d e l e v e l 本研究利用重复测量与互异性测量的方法评估电阻率测量误差[30]㊂在不同潮时的测量工作包含2次顺序测量(重复测量)及1次逆序测量(互异性测量)㊂理论上,供电电极次序互换以及测量电极次序互换不会使某一位置处R E P 测量电阻率数值发生改变㊂在本次原位监测中,重复测量㊁互异性测量结果与三次测量结果均值的误差均在ʃ2.5%之内㊂本次研究最终采用三次测量结果的均值㊂2.4沉积物物理关系泥质潮滩沉积物中黏粒含量较高,表面电导率与孔液电导率会同时影响沉积物电阻率ρ[31]㊂N g u ye n 等人和S h a o 等人提出的阿尔奇公式的变形可分离表面电导率及ρw 对ρ影响,从而建立孔隙水电阻率(ρw )与ρ的关系[32-33]:1ρ=1F 'ρw+b ㊂(2)式中:F '为有效地层因子;b 为表面电导率对ρ的贡献,与流体电导率无关㊂莱州湾南岸泥质潮滩表层沉积物F '为2.5,b 为0.335[12]㊂代入公式(2)可建立ρ与ρw 的关系㊂2.5孔隙水盐度变化换算方法孔隙水盐度S 可依据M a n h e i m 公式(3)[34]由ρw换算得到,ρw 则是基于R E P 测量得到的ρ与沉积物物理关系换算得到:S =k ˑρ-1.0233w㊂(3)孔隙水盐度变化情况由相邻观测时刻的孔隙水盐度变化比(δS )体现,计算公式如下:δS =S t -S 0S 0㊂(4)式中:S 0为前一时刻孔隙水盐度;S t 为后一时刻孔隙水盐度㊂结合公式(3),(4),可将R E P 探测的ρ转化为孔隙水盐度变化比δS R E P :δS R E P =ρ-1.0233w t -ρ-1.0233w 0ρ-1.0233w 0㊂(5)式中:ρw 0为前一时刻ρ换算所得的ρw ;ρw t 为后一时刻ρ换算所得的ρw ㊂3 结果与讨论3.1R E P 探测细粒沉积物电阻率能力评价图5(a )显示了涨潮过程表层细粒沉积物ρ的变化情况㊂距离岸线不同位置的测量结果呈现出相近的分布及变化规律㊂a 时刻,自滩面向深部ρ逐渐降低,在高程-0.825~-2.475m 之间ρ稳定在0.68Ω㊃m 左右㊂在-2.475m 以深区域,由于接近潜水卤水层的顶界,ρ逐步降低;b 时刻,海水淹没潮滩,在高程-0.825m 以浅区域ρ显著降低(由0.82Ω㊃m 降低至0.63Ω㊃m ),在高程-0.825~-2.475m 之间ρ降低幅度较小,但在-2.475m 以深区域ρ降低幅度再次升高㊂图5(b)显示了退潮过程表层细粒沉积物ρ的变化情况㊂退潮过程中ρ整体升高(由0.63Ω㊃m 升高至0.7Ω㊃m ),在细粒沉积层顶部与底部ρ升高趋势显著㊂此外,在R 1测点高程-1.425m 处与R 2测点高程-1.725m 处,分别存在局部ρ显著升高区域㊂R E P 监测结果显示,表层细粒沉积物电阻率随深度加深发生复杂的变化㊂细粒沉积层的浅部与深部易受到海水以及深层卤水的影响,在潮汐循环中ρ出现了更大的波动㊂由于该区域沉积物渗透性普遍较低(10-7~10-6m s -1)[12],细粒沉积层中部的ρ波动幅度较小㊂在相同研究区㊁相同季节中,F u 等人使用E R T 技术观测到表层细粒沉积物ρ的波动范围为0.47~0.91Ω㊃m [11]㊂本次研究中R E P 测量ρ的波动范围(0.54~0.83Ω㊃m )与F u 等人基本一致㊂但R E P 监测结果与E R T 监测数据反演结果相比,前者数据点数量在垂向上更密集(21个v s 4个),垂向分辨率更高,ρ在垂直方向上具有更复杂的分布规律(见图5)㊂这说明虽然E R T 技术在水平方向上具有较高分辨能力,且E R T 与R E P 监测技术均能够准确㊁灵敏的捕捉到介质性质的改变,但在垂直方向上E R T 技术难以捕捉更细致的规901中 国 海 洋 大 学 学 报2024年图5 涨潮过程(a )及退潮过程中表层细粒沉积物电阻率变化规律(b)F i g .5 R e s i s t i v i t y v a r i a t i o n o f s h a l l o w f i n e -g r a i n e d s e d i m e n t s d u r i n g ri s e t i d e (a )a n d e b b t i d e (b )律㊂因此单纯采用E R T 数据对地下水水文过程进行分析时,可能由于数据垂向分辨率较低,难以对水盐运移过程做出精确解释㊂在未来分析泥质潮滩水盐运移过程时,可以采用E R T 与R E P 综合调查的方法,并依据研究尺度以及数据采集所需时长综合确定R E P 电极间距等其他测量参数,以达到调查㊁研究所需的期望分辨率㊂3.2δS R E P 准确度分析将不同潮时R E P 测量的ρ依次代入公式(2)建立的ρ与ρw 关系式中,计算得ρw (见图6)㊂再将相邻时刻的ρw 代入公式(5),计算得到涨潮过程㊁高潮时与退潮过程中的δS R E P (见图7)㊂随后将相邻潮时,各监测点位不同高程处(高程-0.14,-1.14及-2.14m )孔隙水样品实测盐度(S )代入公式(4),计算得到涨潮过程与退潮过程中实测孔隙水盐度变化比δS P (见图7)㊂最后将涨潮过程与退潮过程中的δS P 与相近高程范围内的三个δS R E P 数据均值δ S R E P 做对比(见图7,9),分析δS R E P 的准确度㊂图7显示,在不同高程位置处,δS P 与δS R E P 的数值大小基本一致㊂图8显示了δS P 与δ S R E P 数据关于δ S R E P =δS P 的拟合情况㊂其中R 2为0.9297,因此δ S RE P 能够基本准确反映孔隙水盐度的实际变化情况㊂图6 涨潮过程(a )及退潮过程(b )中沉积物电阻率ρ换算孔隙水电阻率ρw 的结果F i g .6 R e s u l t s o f c o n v e r t i n g ρi n t o ρw d u r i n g r i s e t i d e (a )a n d e b b t i d e (b )0114期李明波,等:泥质潮滩水盐运移过程电阻率探针高精度监测效果分析图7 潮汐过程δS R E P ㊁δS P 的对比结果F i g .7 ρw c a l c u l a t i o n r e s u l t s a n d δS R E P ㊁δS P c o m p a r i s o n r e s u l t s d u r i n g t i d a l c y c l e R E P 探测所得ρ经过拟合式与公式(5)转换的δS R E P 与实际的孔隙水盐度变化比(δS P )存在ʃ10%的误差㊂涨潮过程,孔隙水盐度升高,δS R E P 与真实值相比普遍偏小,约为0.9~1倍的δS P ;退潮过程,孔隙水盐度降低,δS R E P 与真实值相比普遍偏大,约为1~1.1倍的δS P ㊂依据以上R E P 探测方法及数据处理方法所得孔隙水盐度变化比,在定量分析孔隙水盐分释放与累积过程方面具有较高的可信程度㊂结合装置测量精度验证结果可知,造成这种误差的因素有多种,包括装置自身误差(ʃ3%),测量误差(ʃ2.5%)以及依据沉积物物理关系将ρ换算为ρw 所产生的误差㊂当进行区域孔隙水盐通量计算,特别是涉及大范围区域盐通量量化分析时(例如潮滩生卤产生盐分总量评价㊁滨海卤水111中 国 海 洋 大 学 学 报2024年资源盐分开采总量评价等),为避免产生较大误差,可结合原位实测孔隙水盐度变化,修正基于R E P 测量值计算的δS R E P㊂图8 δS P 与δ S R E P 的关系及误差区间F i g .8 R e l a t i o n s h i p b e t w e e n δS P a n d δ S R E P an d e r r o r i n t e r v a l 3.3基于R E P 探测结果的泥质潮滩细粒沉积层中水盐运移过程评价当前研究认为,泥质潮滩中分别存在细粒沉积层的盐分累积区和盐分释放区,各区域分布范围在短期内不会随潮位升降发生明显改变㊂潮汐过程中,潮滩大部分区域细粒沉积层深部的等效水头高于浅部,这意味着泥质潮滩大部分区域以地下水排泄释放盐分为主[6-7];在泥质潮滩局部存在高渗透性区域(10-4~10-5m /s),例如生物活动产生的洞穴集群分布区,在该区域主要发生高盐度海水与地下卤水的交换,当海水淹没滩面后,细粒沉积层将接受大量盐分补给[8-9,11-12]㊂周期性发生的风暴潮作用与旱季强烈的蒸发作用是细粒沉积层中孔隙水盐分再分配的重要因素[12,26]㊂然而本次调查研究结果显示(见图7),在细粒沉积物垂向渗透系数(10-6~10-7m /s)较低的区域内,高盐度海水与地下卤水仍能够在涨潮阶段补给细粒沉积层,补给的盐分会在退潮过程中释放㊂这意味着潮汐即为调控细粒沉积层中水盐再分配的重要因素,泥质潮滩中各区域均会随潮汐涨落发生盐分的累积与释放,其水盐运移过程如下㊂涨潮过程中(见图7(a )㊁(a ')),细粒沉积层累积盐分,其顶㊁底部盐分累积量较高㊂由滩面向细粒沉积层顶部补给的盐分主要来自蒸发盐的溶解下渗㊂上涨的海水携带滩面蒸发浓缩的盐分,通过表层沉积物中密集分布的生物通道向细粒沉积层中运移[9,12-13,26];从细粒沉积层底部向其内部补给的盐分主要来自越流的地下卤水㊂该区域浅层卤水水位高程高于细粒沉积层底面,具有微承压水性质㊂随潮位升高,浅层地下水水位随之升高,进一步促进了卤水自细粒沉积层底部向其内部补给[7]㊂对比细粒沉积层顶部与底部区域的ρw与δS R E P 可知,涨潮期间细粒沉积层中的盐分更多来自滩面的高盐度水体㊂高潮时期间(见图7(b )㊁(b ')),细粒沉积层顶㊁底部从累积盐分转变为释放盐分,沉积层中部区域开始快速累积盐分㊂在本阶段内,在滩面累积的蒸发盐被海水溶解稀释,海水盐度逐步降低㊂受此影响,细粒沉积层顶部孔隙水盐分通过滩面向海水中释放,另一部分盐分向细粒沉积层中部运移;地下卤水水位在本阶段持续升高但盐度降低,受此影响,细粒沉积层底部的盐分开始向卤水层中释放,另有一部分盐分在竖直向上的流场驱动下向细粒沉积层中部运移[6-7]㊂退潮过程中(见图7(c )㊁(c ')),细粒沉积层整体丧失盐分,其顶㊁底部的盐分释放速率小幅度升高,而中部区域盐分释放速率显著提升㊂随着潮位下降,海水从滩面快速退去,渗出面在潮滩范围内大面积发育,同样在竖直向上的流场驱动下,大量高盐度孔隙水通过潮滩渗出面向外排泄[5,12]㊂与已建立的水盐运移过程模型相比[6-9,11-12],本研究刻画的潮汐作用下泥质潮滩细粒沉积层水盐运移模型更符合实际情况㊂其体现在泥质潮滩各个区域中的孔隙水盐度不会随时间变化而无限制升高或降低,而在本研究刻画的水盐运移模型中,不同深度细粒沉积层中孔隙水普遍经历了盐分累积与丧失过程(见图7)㊂这主要得益于R E P 监测技术较高的时空分辨率㊂4 结论本研究基于原位测试结果,分析了R E P 监测技术对泥质潮滩细粒沉积物中孔隙水盐度变化的分辨能力,初步细致刻画了泥质潮滩细粒沉积层中水盐运移过程,所得主要结论如下:(1)R E P 监测结果能够准确反映泥质潮滩沉积物电阻率随潮汐涨落的变化㊂R E P 技术比E R T 技术拥有更高的垂向分辨能力,可捕捉到更细致的垂向电阻率分布及变化规律㊂将E R T 与R E P 监测技术结合可实现区域水盐运移过程精细刻画㊂(2)δS R E P 与δS P 存在ʃ10%的误差㊂造成该误差的原因包括系统自身误差,测量误差以及依据沉积物物理关系将R E P 测量的ρ换算为ρw 所产生的误差㊂虽然以上误差的存在对粗略定量分析细粒沉积层中水2114期李明波,等:泥质潮滩水盐运移过程电阻率探针高精度监测效果分析盐运移过程的影响不大㊂但应用该方法量化分析大范围区域的地下水盐通量时,需结合实测孔隙水盐度变化,修正基于R E P测量值计算所得δS R E P㊂(3)潮汐循环中细粒沉积层内水盐运移过程如下:涨潮时期为细粒沉积层顶㊁底部累积盐分的主要阶段㊂高盐度水体分别通过滩面入渗及浅层卤水越流的途径向细粒沉积层中补给;在高潮时期间,受盐度降低的海水与卤水影响,细粒沉积层顶㊁底部的盐分开始逐步丧失,但沉积层中部孔隙水盐分累积速率加快;退潮时期为细粒沉积层盐分丧失阶段,在竖直向上的地下水流场驱动下,高盐度水体通过潮滩渗出面向外释放㊂参考文献:[1] W o o d W W,S a n f o r d W E,H a b s h i A R S A.S o u r c e o f s o l u t e s t o t h e c o a s t a l s a b k h a o f A b u D h a b i[J].G e o l o g i c a l S o c i e t y o f A m e r i c aB u l l e t i n,2002,114(3):259-268.[2] H u s s a i n M,A l-S h a i b a n i A,A l-R a m a d a n K,e t a l.G e o c h e m i s t r ya n d i s o t o p i c a n a l y s i s o fb r i n e s i n t h ec o a s t a l s a b k h a s,E a s t e r n r e-g i o n,K i n gd o m o f S a u d i A r a b i a[J].J o u r n a l o f A r i d E n v i r o n me n t s, 2020,178:104142.[3] M a Q,L i H,W a n g X,e t a l.E s t i m a t i o n o f s e a w a t e r-g r o u n d w a t e re x c h a n g e r a t e:c a s e s t u d y i n a t i d a lf l a t w i t h a l a rg e-s c a l e s e e p a g ef a c e(L a i z h o u B a y,C h i n a)[J].H y d r og e o l o g y J o u r n a l,2015,23(2):265-275.[4] H o u L,L i H,Z h e n g C,e t a l.S e a w a t e r-g r o u n d w a t e r E x c h a n g e i na S i l t y T i d a l F l a t i n t h e S o u t h C o a s t o f L a i z h o u B a y,C h i n a[J]. J o u r n a l o f C o a s t a l R e s e a r c h,2016,74:136-148.[5]马倩.地下水 海水相互交换量化研究[D].北京:中国地质大学,2016.M a Q,2016.Q u a n t i f y i n g S e a w a t e r-g r o u n d w a t e r E x c h a n g e R a t e s:C a s e S t u d i e s i n M u d d y T i d a l F l a t a n d S a n d y B e a c h i n L a i z h o u B a y[D].B e i j i n g:C h i n a U n i v e r s i t y o f G e o s c i e n c e s,2016.[6]常雅雯.莱州湾南岸泥质潮滩海水 地下水交换量化研究[D].北京:中国地质大学,2018.C h a n g Y W.Q u a n t i t a t i v e S t u d y o n S e a w a t e r a n d G r o u n d w a t e r E x-c h a n g e R a t e i n M u d d y T i d a l F l a t i n S o u t h C o a s t o f L a i z h o u B a y,C h i n a[D].B e i j i n g:C h i n a U n i v e r s i t y o f G e o s c i e n c e s,2018.[7]郭雪倩.莱州湾青乡剖面海水 地下水相互交换数值模拟研究[D].北京:中国地质大学,2018.G u o X Q.N u m e r i c a l S i m u l a t i o n o f S e a w a t e r-G r o u n d w a t e r e x-c h a n g e i n Q i n g x i a n g P r o f i l e o f L a i z h o u B a y,C h i n a[D].B e i j i n g:C h i n a U n i v e r s i t y o f G e o s c i e n c e s,2018.[8] X i n P,J i n G,L i L,e t a l.E f f e c t s o f c r a b b u r r o w s o n p o r e w a t e rf l o w s i n s a l t m a r s h e s[J].A d v a n c e s i n W a t e r R e s o u r c e s,2009,32(3):439-449.[9] X i a o K,W i l s o n A M,L i H,e t a l.C r a b b u r r o w s a s p r e f e r e n t i a lf l o w c o n d u i t s f o rg r o u n d w a t e r f l o w a n d t r a n s p o r t i n s a l t m a r sh e s:A m o d e l i n g s t u d y[J].A d v a n c e s i n W a t e r R e s o u r c e s,d o i:10. 1016/j.a d v w a t r e s.2019.103408.[10]S u Q,X u X,L i u W,e t a l.E f f e c t o f t i d e s o n t h e s t r a t i g r a p h i c r e-s i s t a n c e o f t h e S o u t h C o a s t o f t h e L a i z h o u B a y[J].J o u r n a l o f W a-t e r R e s o u r c e&P r o t e c t i o n,2017,9(6):590-600.[11]F u T,Z h a n g Y,X u X,e t a l.A s s e s s m e n t o f s u b m a r i n e g r o u n d w-a t e r d i s c h a r g e i n t h e i n t e r t i d a l z o n e o f L a i z h o u B a y,C h i n a,u s i n ge l e c t r i c a l r e s i s t i v i t y t o m o g r a p h y[J].E s t u a r i n e C o a s t a l a n d S h e l fS c i e n c e,2020,245(4):106972.[12]张宇丰.潮汐作用下莱州湾南岸泥质潮滩多层含水层水盐运移过程研究[D].青岛:中国海洋大学,2021.Z h a n g Y F.P r o c e s s o f W a t e r a n d S a l t T r a n s p o r t U n d e r T i d a lE f f e c t s i n M u l t i-L a y e r A q u i f e r s o f M u d d y T i d a lF l a t s i n t h e S o u t hC o a s t o f L a i z h o u B a y[D].Q i n g d a o:O c e a n U n i v e r s i t y o f C h i n a,2021.[13] M a ría d e l P i l a r A l v a r e z,C a r o l E,M a r i o A.H e r nán d e z,e t a l.G r o u n d w a t e r d y n a m i c,t e m p e r a t u r e a n d s a l i n i t y r e s p o n s e t o t h et i d e i n P a t a g o n i a n m a r s h e s:O b s e r v a t i o n s o n a c o a s t a l w e t l a n d i n S a n J o séG u l f,A r g e n t i n a[J].J o u r n a l o f S o u t h A m e r i c a n E a r t hS c i e n c e s,d o i:10.1016/j.j s a m e s.2015.04.006.[14]丛旭日.莱州湾蟹类群落结构以及三疣梭子蟹营养生态位的研究[D].上海:上海海洋大学,2015.C o n g X.C o m m u n i t y S t r u c t u r e o f C r a b A n d T r o p h i c N i c h e o fP o r t u n u s T r i t u b e r c u l a t u s i n L a i z h o u B a y[D].S h a n g h a i:S h a n g-h a i O c e a n U n i v e r s i t y,2015.[15]邹祖光,张东生,谭志容.山东省地下卤水资源及开发利用现状分析[J].地质调查与研究,2008,31(3):2014-221.Z o u Z G,Z h a n g D S,T a n Z R.G r o u n d b r i n e r e s o u r c e a n d i t s e x-p l o i t a t i o n i n s h a n d o n g p r o v i n c e[J].G e o l o g i c a l S u r v e y a n d R e-s e a r c h,2008,31(3):214-221.[16] D i m o v a N T,S w a r z e n s k i P W,D u l a i o v a H,e t a l.U t i l i z i n g m u l-t i c h a n n e l e l e c t r i c a l r e s i s t i v i t y m e t h o d s t o e x a m i n e t h e d y n a m i c s o f t h e f r e s h w a t e r-s e a w a t e r i n t e r f a c e i n t w o H a w a i i a n g r o u n d w a t e r s y s t e m s[J].J o u r n a l o f G e o p h y s i c a l R e s e a r c h:O c e a n s,2012, 117(C2):007509.[17]J o h n s o n C D,S w a r z e n s k i P W,R i c h a r d s o n C M,e t a l.G r o u n d-t r u t h i n g e l e c t r i c a l r e s i s t i v i t y m e t h o d s i n s u p p o r t o f s u b m a r i n eg r o u n d w a t e r d i s c h a r g e s t u d i e s:E x a m p l e s f r o m H a w a i i,W a s h i n g-t o n,a n d C a l i f o r n i a[J].J o u r n a l o f E n v i r o n m e n t a l&E n g i n e e r i n gG e o p h y s i c s,2015,20(1):81-87.[18]Z h a n g Y,W u J,Z h a n g K,e t a l.A n a l y s i s o f s e a s o n a l d i f f e r e n c e si n t i d a l l y i n f l u e n c e d g r o u n d w a t e r d i s c h a r g e p r o c e s s e s i n s a n d y t i d-a l f l a t s:A c a s e s t u d y o f S h i l a o r e n B e a c h,Q i n g d a o,C h i n a[J].J o u r n a l o f H y d r o l o g y,2021,603:127128[19]C a s s e n M,A b a d i e S,M o r i c h o n D.A m e t h o d b a s e d o n e l e c t r i c a lc o nd u c t i v i t y me a s u r e m e n t t o m o n i t o r l o c a l d e p t h c h a n g e s i n t h es u r f z o n e a n d i n d e p t h s o i l r e s p o n s e t o t h e w a v e a c t i o n[J].C o a s t-a l E n g i n e e r i n g,2004,4:2302-2313.[20]夏欣.基于电阻率测量的海床蚀积过程原位监测技术研究[D].青岛:中国海洋大学,2009.X i a X.I n-S i t u M o n i t o r i n g T e c h n o l o g y S t u d y o f S e a b e d E r o s i o na n d D e p o s i t i o n P r o c e s s B a e s d o n R e s i s t i v i t y M e t h o d[D].Q i n g d-a o:O c e a n U n i v e r s i t y o f C h i n a,2009.[21]J i a Y,L i H,M e n g X,e t a l.D e p o s i t i o n-m o n i t o r i n g t e c h n o l o g y i na n e s t u a r i a l e n v i r o n m e n t u s i n g a n e l e c t r i c a l-r e s i s t i v i t y m e t h o d[J].311中国海洋大学学报2024年J o u r n a l o f C o a s t a l R e s e a r c h,2012,28(4):860-867.[22]孙翔.基于电阻率探针技术的近海浅层气扩散过程监测研究[D].青岛:中国海洋大学,2019.S u n X.R e s e a r c h o n M o n i t o r i n g t h e S h a l l o w G a s D i f f u s i o n P r o c e s s i n O f f s h o r e A r e a s B a s e d o n R e s i s t i v i t y P r o b e T e c h n o l o g y[D].Q i n g d a o:O c e a n U n i v e r s i t y o f C h i n a,2019.[23] W u J X,G u o X J,S u n X,e t a l.F l u m e e x p e r i m e n t e v a l u a t i o n o fr e s i s t i v i t y p r o b e s a s a n e w t o o l f o r m o n i t o r i n g g a s m i g r a t i o n i nm u l t i l a y e r e d s e d i m e n t s[J].A p p l i e d O c e a n R e s e a r c h,2020,105: 102415.[24]F u T,Y u H,J i a Y,e t a l.A p p l i c a t i o n o f a n i n s i t u e l e c t r i c a l r e-s i s t i v i t y d e v i c e t o m o n i t o r w a t e r a n d s a l t t r a n s p o r t i n s h a n d o n gc o a s t a l s a l i n e s o i l[J].A r a b i a n J o u r n a l f o r S c i e n c e a nd E n g i ne e r-i n g,2014,40(7),1907-1915.[25] H a n Q,C h e n D,G u o Y,e t a l.S a l t w a t e r-f r e s h w a t e r m i x i n g f l u c-t u a t i o n i n s h a l l o w b e a c h a q u i f e r s[J].E s t u a r i n e C o a s t a l&S h e l f S c i e n c e,2018,207:93-103.[26] G a o M,H o u G,G u o F.C o n c e p t u a l m o d e l o f u n d e r g r o u n d b r i n ef o r m a t i o n i n t h e s i l t y c o a s t o f L a i z h o u B a y,B o h a i S e a,C h i n a[J].J o u r n a l o f C o a s t a l R e s e a r c h,2016,74:157-165. [27]冷莹莹,李祥虎,刘蕾.潍坊市北部天然卤水矿床特征及成因分析[J].成都理工大学学报(自然科学版),2009,36(2),188-194.L e n g Y Y,L i X H,L i u L.C h a r a c t e r i s t i c s a n d g e n e s i s o f t h e n a t-u r a l b r i n e d e p o s i t i n t h e n o r t h o f W e i f a n g,S h a n d o n g,C h i n a[J].J o u r n a l o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y(S c i e n c e&t e c h n o l-o g y E d i t i o n),2009,36(2),188-194.[28]L i u S,T a n g Z,G a o M,e t a l.E v o l u t i o n a r y p r o c e s s o f s a l i n e-w a-t e r i n t r u s i o n i n H o l o c e n e a n d L a t e P l e i s t o c e n e g r o u n d w a t e r i n s o u t h e r n L a i z h o u B a y[J].S c i e n c e o f t h e T o t a l E n v i r o n m e n t, 2017,607-608:586-599.[29] Q i H,M a C,H e Z,e t a l.L i t h i u m a n d i t s i s o t o p e s a s t r a c e r s o fg r o u n d w a t e r s a l i n i z a t i o n:A s t u d y i n t h e s o u t h e r n c o a s t a l p l a i n o fL a i z h o u B a y,C h i n a[J].S c i e n c e o f t h e T o t a l E n v i r o n m e n t,2019, 650:878-890.[30]B i n l e y A,R a m i r e z A,D a i l y W.R e g u l a r i s e d i m a g e r e c o n s t r u c t i o no f n o i s y e l e c t r i c a l r e s i s t a n c e t o m o g r a p h y d a t a[J].U n i v e r s i t y o fM a n c h e s t e r I n s t i t u t e o f S c i e n c e a n d T e c h n o l o g y:M a n c h e s t e r, U K,1995(1):401-410.[31] R e v i l A.E f f e c t i v e c o n d u c t i v i t y a n d p e r m i t t i v i t y o f u n s a t u r a t e dp o r o u s m a t e r i a l s i n t h e f r e q u e n c y r a n g e1m H z-1G H z[J].W a t e rR e s o u r c e s R e s e a r c h,2013,49(1):306-327.[32] N g u y e n F,K e m n a A,A n t o n s s o n A,e t a l.C h a r a c t e r i z a t i o n o fs e a w a t e r i n t r u s i o n u s i n g2D e l e c t r i c a l i m a g i n g[J].N e a r S u r f a c eG e o p h y s i c s,2009,7(1303):377-390.[33] S h a o S,G u o X J,G a o C,e t a l.Q u a n t i t a t i v e R e l a t i o n s h i p B e-t w e e n t h e R e s i s t i v i t y D i s t r i b u t i o n o f t h e B y-P r o d u c t P l u m e a n d t h e H y d r o c a r b o n D e g r a d a t i o n i n a n A g e d H y d r o c a r b o n C o n t a m i-n a t e d S i t e[J].J o u r n a l o f H y d r o l o g y,2021,596:126122. [34] M a n h e i m F T,K r a n t z D E,B r a t t o n J F.S t u d y i n g g r o u n d w a t e ru n d e r d e l m a r v a c o a s t a l b a y s u s i n g e l e c t r i c a l r e s i s t i v i t y[J].G r o u n d W a t e r,2004,42(7):1052-1068.4114期李明波,等:泥质潮滩水盐运移过程电阻率探针高精度监测效果分析511H i g h-P r e c i s i o n M o n i t o r i n g E f f e c t A n a l y s i s o f R e s i s t i v i t y P r o b e i n t h eW a t e r a n d S a l t T r a n s p o r t P r o c e s s i n M u d d y T i d a l F l a tL i M i n g b o1,2,Z h a n g Y u f e n g3,G u o X i u j u n3,4,W u Z h e n1,2,W u B i n1,2,M a J i a n1,2,N i e P e i x i a o1,2(1.N o.4E x p l o r a t i o n I n s t i t u t e o f G e o l o g y a n d M i n e r a l R e s o u r c e s,W e i f a n g261021,C h i n a;2.K e y L a b o r a t o r y o f C o a s t a lZ o n e G e o l o g i c a l E n v i r o n m e n t P r o t e c t i o n,S h a n d o n g G e o l o g y a n d M i n e r a l E x p l o r a t i o n a n d D e v e l o p m e n t B u r e a u,W e i f a n g 261021,C h i n a;3.C o l l e g e o f E n v i r o n m e n t a l S c i e n c e a n d E n g i n e e r i n g,O c e a n U n i v e r s i t y o f C h i n a,Q i n g d a o266100,C h i n a;4.S h a n d o n g P r o v i n c i a l K e y L a b o r a t o r y o f M a r i n e E n v i r o n m e n t a n d G e o l o g i c a l E n g i n e e r i n g,Q i n g d a o266100,C h i n a)A b s t r a c t: T h e w a t e r a n d s a l t t r a n s p o r t p r o c e s s i n f i n e-g r a i n e d s e d i m e n t s o f m u d d y t i d a l f l a t h a s n o t b e e n d e s c r i b e d i n d e t a i l s o f a r.T h e r i n g e l e c t r o d e r e s i s t i v i t y p r o b e m o n i t o r i n g i s a n e w m e t h o d t o d e-s c r i b e t h i s p r o c e s s,b u t i t s r e s o l u t i o n o f p o r e w a t e r s a l i n i t y c h a n g e i s u n k n o w n.I n t h i s s t u d y,i n-s i t u t e s t s w e r e c a r r i e d o u t o n t h e m u d d y t i d a l f l a t o f L a i z h o uB a y.T h e a b i l i t y o f r i n g e l e c t r o d e r e s i s t i v i t y p r o b e t o m o n i t o r t h e s e d i m e n t s r e s i s t i v i t y a n d p o r e w a t e r s a l i n i t y c h a n g e w a s q u a n t i t a t i v e l y a n a l y z e d, a n d t h e w a t e r a n d s a l t t r a n s p o r t p r o c e s s w a s p r e l i m i n a r i l y d e s c r i b e d b y u s i n g t h i s m e t h o d.T h e r e s e a r c h r e s u l t s s h o w t h a t t h e r i n g e l e c t r o d e r e s i s t i v i t y p r o b e m o n i t o r i n g r e s u l t s c a n a c c u r a t e l y d e s c r i b e t h e d i s-t r i b u t i o n a n d v a r i a t i o n o f f i n e-g r a i n e d s e d i m e n t s r e s i s t i v i t y.P o r e w a t e r s a l i n i t y c h a n g e r a t i o c o n v e r t e d b a s e d o n m o n i t o r i n g r e s u l t s a n d t h e a c t u a l p o r e w a t e r s a l i n i t y c h a n g e r a t i o h a v e a nʃ10%e r r o r.T h e r i n g e l e c t r o d e r e s i s t i v i t y p r o b e h a s t h e a b i l i t y t o r o u g h l y a n d q u a n t i t a t i v e l y a n a l y z e t h e w a t e r a n d s a l t t r a n s p o r t p r o c e s s i n m u d d y t i d a l f l a t.U n d e r t h e t i d a l i n f l u e n c e,t h e w a t e r a n d s a l t t r a n s p o r t p r o c e s s i n m u d d y t i d a l f l a t u n d e r g r o u n d i s a s f o l l o w:D u r i n g t h e f l o o d t i d e,t h e h i g h s a l i n i t y w a t e r m a i n l y s u p p l i e s t h e t o p a n d b o t t o m o f t h e f i n e-g r a i n e d s e d i m e n t s l a y e r.D u r i n g t h e h i g h t i d e,t h e s a l t a t t h e t o p a n d b o t-t o m o f t h e f i n e-g r a i n e d s e d i m e n t s l a y e r b e g a n t o g r a d u a l l y l o s e,b u t t h e s a l t a c c u m u l a t i o n r a t e i n t h e m i d d l e o f t h e f i n e-g r a i n e d s e d i m e n t s a c c e l e r a t e d.D u r i n g t h e e b b t i d e,t h e w h o l e f i n e-g r a i n e d s e d i m e n t s l a y e r l o s t i t s s a l t,a n d t h e h i g h-s a l i n i t y w a t e r i s r e l e a s e d o u t w a r d t h r o u g h t h e s e e p a g e.K e y w o r d s:r i n g e l e c t r o d e r e s i s t i v i t y p r o b e;m u d d y c o a s t;w a t e r a n d s a l t t r a n s p o r t p r o c e s s;m o n i t o-r i n g e f f e c t;s a l i n i t y c h a n g e r a t i o责任编辑徐环。
土中水的运动规律土中水的运动规律主要涉及到土壤水分运动的过程和影响因素。
土壤是地球陆地上的一种自然资源,可提供植物生长所需的水分和养分。
了解土中水的运动规律有助于进行合理的土壤管理和水资源利用。
1. 水的入渗:土壤中的水分是通过入渗过程进入土壤中的。
入渗是指自由水通过土壤表面进入土壤深层的过程。
入渗速率受土壤质地、土壤毛细管力、土壤的初始水分含量、土壤的坡度等因素的影响。
一般来说,砂质土壤的入渗速率较快,粘土质土壤的入渗速率较慢。
2. 土壤水分的分布:土壤中的水分分布是不均匀的,通常出现水分下渗和水分上升的现象。
水分下渗是指自由水在土壤中向下移动,直到达到地下水位或土层底部。
而水分上升则是指土壤中的毛细水在根系的吸引作用下向上移动。
土壤中的水分下渗和上升过程受土壤的质地、根系的吸水能力以及外界环境的影响。
3. 土壤中水分的保持:土壤中的水分在自由水的下渗和毛细水的上升过程中容易流失,因此需要采取措施进行水分保持。
常见的水分保持方式包括覆盖物(如秸秆、覆膜等)的使用、植被覆盖以及合理的灌溉管理等。
这些措施可以有效减少土壤水分的蒸发和多余流失。
4. 土壤水分的运动路径:土壤中的水分在运动过程中存在多个运动路径。
主要包括:大孔隙流动(通过土壤中的大孔隙直接流动)、毛细流动(通过毛细孔隙的连通路径上升和下降)、分散波动流动(由于土壤颗粒无序排列而产生的波动流动)和根系吸水。
不同路径的运动主要取决于土壤的孔隙结构和根系的分布情况。
5. 影响土中水运动的因素:土中水运动的过程受多种因素的影响。
主要包括土壤质地、土壤结构、土壤含水量、温度、压力和植被覆盖等。
土壤质地和结构的不同会影响土壤中的孔隙结构和通道的大小和连通性,从而影响水分的运动速率和路径。
土壤含水量的变化会改变土壤中的毛细力和浸润能力,进而影响水分的入渗和上升。
温度和压力的变化还会影响水分的气体交换和蒸发速率。
综上所述,土中水的运动规律主要包括水的入渗、分布、保持和运动路径等方面。