概率论与数理统计第一章
- 格式:ppt
- 大小:3.45 MB
- 文档页数:124
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。
概率论与数理统计配套教材:苏德矿等,概率论与数理统计,高等教育出版社概率论产生于17世纪,本来是由保险事业发展而产生的,但是来自赌博者的请求,却是数学家们思考概率论问题的源泉1>. 早在1654年,有一个赌徒梅勒向当时的数学家帕斯卡提出了一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算获胜,全部赌本就归胜者,但是当其中一个人甲赢了a(a<m)局的时候,赌博中止,问赌本应当如何分配才算合理?”概率论在物理、化学、生物、生态、天文、地质、医学等学科中,在控制论、信息论、电子技术、预报、运筹等工程技术中的应用都非常广泛。
序言自然界和社会上发生的现象是多种多样的.在观察、分析、研究各种现象时,通常我们将它们分为两类:(1)可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或者根据它过去的状况,在相同条件下完全可以预言将来的发展,例如,在标准大气压下,纯水加热到100℃必然沸腾;向空中抛掷一颗骰子,骰子必然会下落;在没有外力作用下,物体必然静止或作匀速直线运动;太阳每天必然从东边升起,西边落下等等,称这一类现象为确定性现象或必然现象.第一章随机事件及其概率人们经过长期实践和深入研究之后,发现随机现象在个别试验中,偶然性起着支配作用,呈现出不确定性,但在相同条件下的大量重复试验中,却呈现出某种规律性.随机现象的这种规律性我们称之为统计规律性.概率论与数理统计是研究和揭示随机现象的统计规律性的一门数学学科.(2)在个别试验中呈现不确定的结果,而在相同条件下大量重复试验中呈现规律性的现象称为随机现象(或偶然现象).例如,在相同条件下,抛掷一枚硬币,其结果可能是正面朝上,也可能是反面朝上,并且在每次抛掷之前无法确定抛掷的结果是什么.§1 随机事件在一定条件下,并不总是出现相同结果的现象称为随机现象.§1.1 随机试验与样本空间(1)抛一枚硬币,有可能正面H朝上,也有可能反面T朝上.(2)抛一粒骰子,出现的点数.(3)一只灯泡使用的寿命.在相同条件下可以重复的随机现象称为随机试验(Random experiment).随机试验具有以下特点:(1)可以在相同条件下重复进行;(2)每次试验的可能结果不止一个,并且事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.试验的样本空间的实例E1:抛一枚硬币,观察正面H、反面T出现的情况.则样本空间为Ω1 ={H,T}E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.则样本空间为Ω 2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}E3:将一枚硬币抛掷三次,观察正面H出现的次数.则样本空间为Ω 3={0,1,2,3}E7:记录某地一昼夜的最高温度和最低温度.则样本空间为Ω 7={(x,y)|T0≤x≤y≤T1}这里x表示最低温度,y表示最高温度;并设这一地区的温度不会小于T0,不会大于T1.E4:抛一粒骰子,观察出现的点数.则样本空间为Ω 4={1,2,3,4,5,6}E5:记录电话交换台一分钟内接到的呼唤次数.则样本空间为Ω5={0,1,2,3,…}E6:在一批灯泡中任意抽取一只,测试它的寿命.则样本空间为Ω 6={t|t≥0}于是样本空间是由三个样本点构成的集合这个例子表明:试验的样本点与样本空间是根据试验的内容而确定的.例:抛二粒骰子的样本空间为:§1.2 随机事件(random event)(6)空集?? 称为不可能事件(Impossible event ).(5)样本空间Ω称为必然事件(Certain event) .(4)由样本空间中的单个元素组成的子集称为基本事件(Basic events) . 随机现象的某些样本点组成的集合称为随机事件,简称事件.(2)事件A发生当且仅当A中的某个样本点出现.(1)任一事件A是相应样本空间的一个子集.(3)事件可用集合A表示,也可用语言描述.例:对于试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况. A2={HHH,TTT}(2)事件A2:“三次出现同一面”,则A1={HHH,HHT,HTH,HTT}(1)事件A1:“第一次出现的是正面H”,则A2={HHT,HTH,THH}(3)事件A3:“出现二次正面”,则例:对于试验E6:在一批灯泡中任意抽取一只,测试它的寿命.B={t|0≤t<1000}事件B:“寿命小于1000小时”,则例:对于试验E7:记录某地一昼夜的最高温度和最低温度.C={(x,y)|y-x=10, T0≤x≤y≤T1}事件C:“最高温度与最低温度相差10度”,则§1.3 事件的关系(Relation of events )设试验E的样本空间为Ω ,而A,B,Ak(k=1,2,…)是Ω的子集.事件是一个集合,因而事件间的关系与事件的运算自然按照集合论中集合之间的关系和集合运算来处理.根据“事件发生”的含义,下面给出事件的关系和运算在概率论中的提法.§1.3.1 包含关系(Inclusion relation)定义:若属于A的样本点必属于B,则称事件B包含事件A,记为A ?? B .即事件A发生必然导致事件B发生.例:抛一粒骰子,事件A=“出现4点”,B=“出现偶数点” .则事件A发生必然导致B发生,所以A ?? B .§1.3.2 相等关系(equivalent relation)定义:若属于A的样本点必属于B,且属于B的样本点必属于A,则称事件A 与事件B相等,记为A= B .A=B ?? A??B且B??A例:抛二粒骰子,A=“二粒骰子点数之和为奇数”,B=“二粒骰子的点数为一奇一偶” .则事件A发生必然导致B发生,而且B发生必然导致A发生,所以A = B .§1.3.3 互不相容(Incompatible events)定义:若事件A与事件B没有相同的样本点,则称事件A与B互不相容 .A与B互不相容,即事件A与事件B不可能同时发生.A与B互不相容?? AB=??§1.4.1 事件的并(Union of events)定义:由事件A与B中所有样本点(相同的样本点只计入一次)组成的新事件称为事件A与B的并.§1.4 事件的运算(operation of events )(1)A∪B={x|x∈A或x∈B}(2)当且仅当A,B中至少有一个发生时,事件A∪B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∪B={1,2,3,4,6}§1.4.2 事件的交(Product of events)定义:由事件A与B中公共的样本点组成的新事件称为事件A与B的交.(2)当且仅当A与B同时发生时,事件AB发生.(1)A∩B=AB={x|x∈A且x∈B}例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∩B={2}§1.4.3 事件的差(Difference of events)定义:由事件A中而不B中的样本点组成的新事件称为事件A对B的差.(1)A-B={x|x∈A且x∈B}(2)当且仅当A发生,而B不发生时,事件A-B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} .所以,A-B={1,3}问:B-A=?§1.4.4 对立事件(Opposite events)定义:由在Ω中而不在A中的样本点组成的新事件称为A的对立事件. (1)事件A与B互为对立事件?? A∪B= Ω且AB=?? .(2)A的对立事件记作B=? .例:抛一粒骰子,事件A=“出现点数不超过3”.则A={1,2,3},而Ω={1,2,3,4,5,6,}.所以, ? ={4,5,6}§1.4.5 事件运算的规则1、交换律(Exchange law) :A??B=B??A,AB=BA2、结合律(Combination law) :(A??B)??C=A??(B??C),(AB)C=A(BC)3、分配律(Distributive law) :(A??B)C=(AC)??(BC),(AB)??C=(A??C)(B??C)4、 7>De Morgan对偶律(Dual law) :(1)第三次未中奖(2)第三次才中奖(3)恰有一次中奖(4)至少有一次中奖(5)不止一次中奖(6)至多中奖二次§2 随机事件的概率定义:随机事件A发生可能性大小的度量(数值),称为A发生的概率,记作P(A).对于一个随机事件(必然事件和不可能事件除外)来说,它在一次试验中可能发生,也可能不发生.我们希望知道某些事件在一次试验中发生的可能性究竟有多大,找到一个合适的数来表示事件在一次试验中发生的可能性大小.§2.1 概率的公理化定义定义:设Ω为一个样本空间,如果对任一事件A,赋予一个实数P(A).如果集合函数P(.)满足下列条件:(1)非负性公理:对于每一事件A,有P(A)≥0;(2)正则性公理:P(Ω)=1;(3)可列可加性公理:设A1,A2,…是互不相容的事件,即对于i≠j,AiAj=??,i,j=1,2,…,则有则称P(A)为事件A的概率(Probability).§2.2 概率的统计定义(The statistic definition of probability)定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数.比值nA/n称为事件A发生的频率,并记为fn(A).频率具有下述性质:(1)0≤fn(A)≤1;(2)fn(Ω )=1;(3)若A1,A2,…,Ak是两两互不相容的事件,则§2.2.1 频率(Frequency)历史上抛掷匀质硬币的若干结果§2.2.2 概率的统计定义0.49981499430000维尼0.50051201224000皮尔逊0.5016601912000皮尔逊0.506920484040蒲丰0.51810612048德.摩尔根正面出现频率m/n正面出现次数m抛掷次数n试验者定义:在相同的条件下,进行了n次重复试验,在这n次试验中,事件A发生了nA次,当试验的次数n很大时,如果事件A发生的频率fn(A)=nA/n稳定在某一数值p的附近摆动,而且随着试验次数的增大,这种摆动的幅度越变越小,则称数值p为事件A在这组条件下发生的概率,记作P(A)=p.这样定义的概率称为统计概率.性质1:P(??)=0.§2.3 概率的性质于是由可列可加性得又由P(??)≥0得, P(??)=0证明: 令An+1=An+2=…=??,则由可列可加性及P(??)=0得即性质3:对于任一事件A,有证明:由A ?? B知B=A∪(B-A),且A(B-A)=??,性质4:设A,B是两个事件,若A ?? B,则有P(B-A)=P(B)-P(A)推论:若A ?? B,则P(B)≥P(A)证明:由P(B)=P(A)+P(B-A)又由概率的定义知P(B-A)≥0因此有P(B)≥P(A)因此由概率的有限可加性得P(B)=P(A)+P(B-A)从而有 P(B-A)=P(B)-P(A)证明:因为A-B=A-AB,且AB ?? A性质6:对于任意两事件A,B,有P(A-B)=P(A)-P(AB)故 P(A-B)=P(A-AB)=P(A)-P(AB)证明:因为A ?? Ω,因此有P(A)≤P(Ω)=1性质5:对于任一事件A,有P(A)≤1证明:因为A∪B=A∪(B-AB),且A(B-AB)=??,AB?? B故 P(A∪ B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB)性质7:对于任意两事件A,B,有P(A∪B)=P(A)+P(B)-P(AB)上式称为概率的加法公式.概率的加法公式可推广到多个事件的情况.设A,B,C是任意三个事件,则有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)一般,对于任意n个事件A1,A2,…,An,有§3 古典概型与几何概率具有以上两个特点的随机试验称为古典概型,也称为等可能概型. 在概率论发展的初期主要研究具有如下两个特点的随机试验: (1)试验的样本空间的元素只有有限个;(2)试验中每个基本事件发生的可能性相同.§3.1 古典概型古典概型的计算公式因此,若事件A={ei1}∪{ei2}∪…∪{eik}包含k个基本事件,则有P(A)=k/n.设随机试验的样本空间为Ω ={e1,e2,…,en},由于在试验中每个基本事件发生的可能性相同,即有P({e1})=P({e2})=…=P({en})又由于基本事件是两两不相容的,于是有1=P(Ω )=P({e1}∪{e2}∪…∪{en})=P({e1})+ P({e2})+…+P({en})=nP({ei}) i=1,2,…,n所以 P({ei})=1/n i=1,2,…,n即样本空间有4个样本点,而随机事件A1包含2个样本点,随机事件A2包含3个样本点,故P(A1)=2/4=1/2P(A2)=3/4例:将一枚硬币抛掷二次,设事件A1为“恰有一次出现正面”; 事件A2为“至少有一次出现正面”.求P(A1)和P(A2).解:正面记为H,反面记为T,则随机试验的样本空间为Ω ={HH,HT,TH,TT}而 A1={HT,TH}A2={HH,HT,TH}例: 抛掷一颗匀质骰子,观察出现的点数,求出现的点数是不小于3的偶数的概率.解设A表示出现的点数是大小于3的偶数,则基本事件总数n=6,A包含的基本事件是“出现4点”和“出现6点”即m=2,故§3.2 排列与组合公式乘法原理:设完成一件事需分两步,第一步有n1种方法,第二步有n2种方法,则完成这件事共有n1n2种方法A B C加法原理:设完成一件事可有两种途径,第一种途径有n1种方法,第二种途径有n2种方法,则完成这件事共有n1+n2种方法。