特种陶瓷生产工艺
- 格式:docx
- 大小:36.83 KB
- 文档页数:2
一、特种陶瓷的成型新技术及其趋势1.热压铸成型热压铸成形也是注浆成形的一种,是在坯料中混入石蜡,利用石蜡的热流特性,使用金属模具在压力下进行成形,冷凝后获得坯体的方法。
热压铸成形的工作原理:先将定量石蜡熔化为蜡液,与烘干的陶瓷粉混合凝固后制成蜡板,再将蜡板置于热压铸机筒内,加热熔化成浆料,通过吸铸口压入模腔,保压、去压、冷却成形,然后脱模取出坯体,热压铸形成的坯体在烧结之前须经排蜡处理。
该工艺适合形状复杂、精度要求高的中小型产品的生产,其设备简单、操作方便、劳动强度小、生产效率高。
在特种陶瓷生产中经常被采用。
但该工艺工序比较复杂、耗能大、工期长,对于大而长的薄壁制品,由于其不易充满模具型腔而不太适宜。
2.挤压成型将粉料、粘结剂、润滑剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状坯体。
其缺点是物料强度低容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。
挤压成形用的物料以粘结剂和水做塑性载体,尤其需用粘土以提高物料相容性,故其广泛应用于传统耐火材料,如炉管以及一些电子材料的成形。
3.凝胶注膜成型凝胶注模成形是一种胶态成形工艺,它将传统陶瓷工艺和化学理论有机结合起来,将高分子化学单体聚合的方法灵活地引入到陶瓷的成形工艺中,通过将有机聚合物单体及陶瓷粉末颗粒分散在介质中制成低粘度、高固相体积分数的浓悬浮体,并加入引发剂和催化剂,然后将浓悬浮体(浆料)注入非多孔模具中,通过引发剂和催化剂的作用使有机物聚合物单体交联聚合成三维网状聚合物凝胶,并将陶瓷颗粒原位粘结而固化成坯体。
凝胶注模成形作为新型的胶态成形方法, 可净尺寸成形形状复杂、强度高、微观结构均匀、密度高的坯体,烧结成瓷的部件较干压成形的陶瓷部件有更好的电性能,已广泛应用于电子、光学、汽车等领域。
4.粉末注射成型金属、陶瓷粉末注射成形(PIM)是一种新的金属、陶瓷零部件制备技术。
它是将聚合物注射成形技术引入粉末冶金领域而生成的一种全新零部件加工技术。
一:一次颗粒与二次颗粒的概念?形成二次颗粒团聚的原因是什么?表示粒度颗粒群的都有哪些?所谓粉体颗粒,是指物体的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
这种基本颗粒,一般是指没有堆积、絮联等结构的最小单元即一次颗粒。
在实际应用的粉体原料中,往往都是在一定程度上团聚的颗粒,即所谓的二次颗粒。
形成二次颗粒的原因,不外乎以下五种(1):分子间的范德华力,(2):颗粒间的静电引力,(3)吸附水分的毛细管力,(4)颗粒间的磁引力,(5)颗粒表面不平滑引起的机械纠缠力。
通常认为:一次颗粒直接与物质的本质两联系,而二次颗粒则往往是作为研究和应用工作中的一种对颗粒的物态描述指标。
颗粒群粒度的表示方法:等体积球相当径,等面积球相当径,等沉降速度相当径,显微镜下测得的颗粒径。
二:特种陶瓷的制备方法?粉碎法:机械粉碎合成法:固相法制备粉末(化学合成法,热分解反应法,氧化物还原法)液相法【沉淀法(直接沉淀法)(均匀沉淀法)(共沉淀法)(醇盐水解法)(特殊的沉淀法,溶胶凝胶和凝胶沉淀)】溶剂蒸发法(冰冻干燥法)(喷雾干燥法)(喷雾热分解)气相法。
三:等静压成型的特点?1:可以成行一般方法不能生产的形状复杂、大件及细而长的制品,而且成型质量高;2:可以不断增加操作难度而比较方便地提高成型压力,而且压力效果比其他干法好;3:由于柸体各向受压里均匀,其密度高而且均匀,烧成收缩小,因而不易变形;4:模具制作方便、寿命长、因而不易变形;5可以少用或不用粘结剂。
四:陶瓷烧结过程中的烧制方式有哪些种以及它们的机理?蒸发和凝聚、扩散、粘滞流动与塑性流动、溶解和沉淀。
蒸发和凝聚机理:在高温下具有较高蒸气压的陶瓷系统、在烧结过程中,由于颗粒之间表面曲率的差异,造成各部分的蒸汽压不同,物质从蒸汽压较高的凸面蒸发,通过气相传递,在蒸汽压较低的凹面处凝聚,这样使颗粒间的接触面积增加,颗粒和形状改变,导致胚体逐步致密化。
扩散的机理:在高温下挥发性较小的陶瓷原料,其物质主要是通过表面扩散和体积扩散进行传递,实际晶体往往有很多的缺陷,当缺陷出现浓度梯度时,它就会有浓度大的地方向浓度低的地方定向扩散。
特种陶瓷生产工艺,过程及设备特种陶瓷,那可是陶瓷家族里的“高精尖”成员呢。
特种陶瓷的生产工艺啊,就像是一场精心编排的舞蹈。
最开始得选原料,这原料可不能随便挑,就好比盖房子选地基材料一样重要。
要是原料选不好,后面的一切都白搭。
这原料啊,得是那些具有特殊性能的粉末,像氧化铝粉末之类的,纯度还得高,杂质就像捣乱的小坏蛋,要尽可能地少。
原料选好后就到了成型这一步。
成型就像是把松散的泥土捏成一个形状。
有好几种成型方法呢。
比如说干压成型,这就像是把面粉使劲儿压实做成饼一样,给原料粉末加上压力,让它变成我们想要的形状,不过这得控制好压力大小,压力小了形状不牢固,压力大了可能就压坏了。
还有注射成型,这个就比较神奇了,就像给原料加上了魔法药水,把原料和粘结剂混合起来,让它们变得像橡皮泥一样,可以捏出各种复杂的形状,像那些有精细内部结构的陶瓷部件就靠这个方法。
再然后就是烧结了。
烧结简直就是给陶瓷来一场烈火中的洗礼。
把成型后的陶瓷放到高温环境里,温度高得吓人,就像把东西放到太阳中心似的。
在这个过程中,陶瓷内部的结构会发生很大的变化,那些粉末之间的空隙会变小,陶瓷会变得更加致密坚硬。
这就像一群分散的士兵,经过训练之后变得紧密团结起来,形成一个坚不可摧的队伍。
烧结的温度、时间等条件都得精确控制,不然这陶瓷的性能就会大打折扣。
说到特种陶瓷的生产过程,那是环环相扣的。
从原料的选择到最后的烧结,每个环节都像是链条上的一环,缺了哪一个都不行。
就像做一道好菜,从选材到烹饪再到最后的调味,少了一步,这菜的味道就不对了。
再讲讲特种陶瓷生产的设备。
那设备啊,就像特种陶瓷的亲密战友。
比如说球磨机,这球磨机就像一个超级大力士在搅拌原料。
里面有很多球,它们不停地滚动、撞击,把原料研磨得细细的,就像把大石头磨成小沙子一样。
还有烧结炉,这烧结炉可不得了,它能提供高温环境,就像一个大火炉,能把陶瓷烧得妥妥当当。
而且这烧结炉的温度控制精度很高,就像一个神枪手,能准确击中目标温度。
特种陶瓷制备工艺采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制制造的方法进行制造、加工,具有优异特性的陶瓷称为特种陶瓷。
由于不同的化学组分和显微结构而决定其具有不同的性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、电光、声光、磁光、超导、生物相容性等。
由于绝缘特殊,这类陶瓷可运用于高温、机械、电子、宇航、医学工程等方面,成为近代尖端科技技术的重要组成部分。
特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成型、第三步是烧结。
一、陶瓷粉体的制备粉体的制备方法有:固相法、液相法、和气相法等。
1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
特种陶瓷、先进陶瓷的16种成型工艺、应用简介及优缺点总结01特种陶瓷特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷和精细陶瓷,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。
特种陶瓷分类及应用02特种陶瓷成型方法及特点陶瓷成型就是将陶瓷原料按照实际生产的要求制作成具有规定形状、尺寸及一定强度的生坯,成型过程取决于陶瓷原料的性能和成型工艺方法。
造就陶瓷制品形状的方法也是多种多样的,但总的来说,可以分为干法成型和湿法成型。
干法成型包括干压成型、等静压成型、超高压成型、粉末电磁成型等方法。
湿法成型大致可分为塑性成型和胶态浇注成型两大类。
塑性成型也称湿压法,是指将已制成塑性的物料在刚性模具中压制成型的一种成型方法,包括挤压成型、注射成型、轧膜成型(压延成型)等几种。
胶态浇注成型是将具有流动性的浆料制成可自我支撑形状的一种成型方法。
该法利用浆料的流动性,使物料干燥并固化后得到一定形状的成型体。
主要包括注浆成型、注凝成型、流延成型、直接凝固成型、胶态振动注模成型等。
陶瓷材料及部件的主要成型工艺2.1干压成型干压成型就是在陶瓷粉料中加入一定量的有机添加剂(粘结剂、润滑剂、可塑剂、消泡剂、减水剂等),在外界压力的作用下,使其在模具中成型。
优点:易于实现自动化,所以在工业生产中得到较大的应用。
缺点:在成型过程中,常会因为径向、轴向的压力分布不均而引起坯体的分层,开裂、密度不均等现象也会经常发生。
2.2等静压成型等静压成型是通过施加各项同性压力而使粉料一边压缩一边成型的方法。
根据成型温度的不同,等静压成型又分为热等静压成型和冷等静压成型。
冷等静压是在常温下对工件进行成型的等静压法。
热等静压是在指在高温高压下对工件进行等压成型烧结的等静压法。
陶瓷球坯模压-等静压成型工艺过程陶瓷球坯直接等静压成型工艺过程优点:能压制具有凹形、空心、细长件以及其他复杂形状的零件;摩擦损耗小,成型压力低;压力从各个方面传递,压坯密度分布均匀、压坯强度高,模具制作方便,寿命长,成本较低。
特种陶瓷生产工艺
特种陶瓷是指具有特殊性能和特殊用途的陶瓷材料,其生产工艺相对于普通陶瓷要求更为精细和复杂。
首先,特种陶瓷的原料选取非常重要。
特种陶瓷一般采用高纯度、细粒度的原料,如氧化铝、氧化锆、碳化硅等。
在选料过程中,需要对原料进行分析和筛选,确保其成分和颗粒大小的均匀性,以免对成品陶瓷的性能产生不良影响。
其次,特种陶瓷的成型方法多样。
常见的成型方法包括注塑成型、压制成型、挤出成型等。
其中,注塑成型是一种较为常用的方法,它通过将粉末与有机增塑剂混合,并加热使其变得可塑,再通过注射机将其压入模具中,最后经过高温烘烤使之固化成型。
然后,特种陶瓷的烧结过程一般分为前烧和后烧。
前烧是将成型后的陶瓷坯体在一定温度下进行烘烤,以去除残留的有机物和气泡,并使陶瓷坯体的颗粒结合成坚固的整体。
后烧是在更高的温度下进行,使陶瓷坯体的颗粒进一步熔结,从而增强陶瓷的密度和硬度,提高其力学性能。
最后,特种陶瓷还需要进行后处理工艺。
后处理工艺可以进一步提升特种陶瓷的性能和质量。
常见的后处理工艺包括研磨、抛光、修补、激光加工等。
这些工艺可以使陶瓷表面更加光滑,去除杂质和缺陷,提高陶瓷的抗磨损能力和耐热性。
综上所述,特种陶瓷的生产工艺是一个复杂而精细的过程。
从
原料选取、成型、烧结到后处理,每个环节都需要严格控制和精确操作,以确保特种陶瓷的品质和性能。
只有在专业的工艺指导下,特种陶瓷才能发挥其独特的特性,满足各种特殊用途的需求。