特种陶瓷制备工艺
- 格式:doc
- 大小:90.00 KB
- 文档页数:10
一、特种陶瓷的成型新技术及其趋势1.热压铸成型热压铸成形也是注浆成形的一种,是在坯料中混入石蜡,利用石蜡的热流特性,使用金属模具在压力下进行成形,冷凝后获得坯体的方法。
热压铸成形的工作原理:先将定量石蜡熔化为蜡液,与烘干的陶瓷粉混合凝固后制成蜡板,再将蜡板置于热压铸机筒内,加热熔化成浆料,通过吸铸口压入模腔,保压、去压、冷却成形,然后脱模取出坯体,热压铸形成的坯体在烧结之前须经排蜡处理。
该工艺适合形状复杂、精度要求高的中小型产品的生产,其设备简单、操作方便、劳动强度小、生产效率高。
在特种陶瓷生产中经常被采用。
但该工艺工序比较复杂、耗能大、工期长,对于大而长的薄壁制品,由于其不易充满模具型腔而不太适宜。
2.挤压成型将粉料、粘结剂、润滑剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状坯体。
其缺点是物料强度低容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。
挤压成形用的物料以粘结剂和水做塑性载体,尤其需用粘土以提高物料相容性,故其广泛应用于传统耐火材料,如炉管以及一些电子材料的成形。
3.凝胶注膜成型凝胶注模成形是一种胶态成形工艺,它将传统陶瓷工艺和化学理论有机结合起来,将高分子化学单体聚合的方法灵活地引入到陶瓷的成形工艺中,通过将有机聚合物单体及陶瓷粉末颗粒分散在介质中制成低粘度、高固相体积分数的浓悬浮体,并加入引发剂和催化剂,然后将浓悬浮体(浆料)注入非多孔模具中,通过引发剂和催化剂的作用使有机物聚合物单体交联聚合成三维网状聚合物凝胶,并将陶瓷颗粒原位粘结而固化成坯体。
凝胶注模成形作为新型的胶态成形方法, 可净尺寸成形形状复杂、强度高、微观结构均匀、密度高的坯体,烧结成瓷的部件较干压成形的陶瓷部件有更好的电性能,已广泛应用于电子、光学、汽车等领域。
4.粉末注射成型金属、陶瓷粉末注射成形(PIM)是一种新的金属、陶瓷零部件制备技术。
它是将聚合物注射成形技术引入粉末冶金领域而生成的一种全新零部件加工技术。
特种陶瓷制备工艺采用高度精选的原料,具有能精确控制的化学组成,按照便于进行结构设计及控制制造的方法进行制造、加工,具有优异特性的陶瓷称为特种陶瓷。
由于不同的化学组分和显微结构而决定其具有不同的性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、铁电、光电、电光、声光、磁光、超导、生物相容性等。
由于绝缘特殊,这类陶瓷可运用于高温、机械、电子、宇航、医学工程等方面,成为近代尖端科技技术的重要组成部分。
特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成型、第三步是烧结。
一、陶瓷粉体的制备粉体的制备方法有:固相法、液相法、和气相法等。
1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
特种陶瓷工艺学特种陶瓷生产工艺特种陶瓷粉体性能及其制备技术特种陶瓷的成型方法特种陶瓷的烧结机制及其方法特种陶瓷的加工,以超硬材料金刚石、C B N 烧结体为主特种陶瓷成型配料常用的配料计算方法有两种:一种是按化学计量式进行式计算各原料的质量分数,以及各原料的质量分有这么高的纯度,精确计算时应予以修正。
原料中如有水分则需烘干,否则要扣除水化学组成Al 2O 3MgO CaO SiO 2wt%93 1.31.0 4.7只能由滑石引入:由高岭土和滑石同时引入:①去除原料中易挥发的杂质、化学结合和物理吸附注意以下几个方面:混料特种陶瓷成型塑化:可塑性:塑化剂:塑化特种陶瓷成型特种陶瓷成型塑化机理特种陶瓷成型塑化剂常用塑化剂塑化剂的选择塑化剂的影响特种陶瓷成型还原作用:对制品性能的影响特种陶瓷成型造粒①一般造粒法②加压造粒法③喷雾造粒法④冻结造粒法特种陶瓷成型喷雾造粒特种陶瓷成型喷雾造粒特种陶瓷成型悬浮问题(1)控制溶液PH值(2)有机胶体和表面活性物质的吸附特种陶瓷成型带电粒子在水溶液中的双电层结构扩散层吸附层对于固定体系E是固定的可通过塑化剂或者解凝剂调整特种陶瓷成型(1)控制溶液PH值特种陶瓷成型Al203料浆的PH 值、ζ电位以及粘度的关系曲线。
当PH 值由1~14时,ζ电位出现两次最大值,最大值处粘度最低酸性介质中粘度更低特种陶瓷成型有机表面活性物质的吸附(2)有机胶体和表面活性物质的吸附成型特种陶瓷成型特种陶瓷成型注浆成型特种陶瓷成型注浆成型注浆过程操作实例特种陶瓷成型特种陶瓷成型热压铸成型特种陶瓷成型热压铸成型:制备蜡浆料成蜡液,然后与粉料均匀混合,凝固后制成蜡板。
粉料要保证含水量不大于制备蜡浆时,在粉料中加入少量的表面活性剂(料浆性能要确保稳定性与可铸性热压铸成型:热压铸特种陶瓷成型热压铸成型:高温排蜡特种陶瓷成型工艺关键:控制升温速度和最高温度特种陶瓷成型排蜡工艺实例挤压成型特种陶瓷成型料浆要求:特点:挤压制造蜂窝状坯体模具特种陶瓷成型注射成型模压成型特种陶瓷成型工艺要求:注意加压速度和保压时间特点特种陶瓷成型特种陶瓷成型特种陶瓷成型模压成型机特种陶瓷成型等静压成型特种陶瓷成型特点:特种陶瓷成型特种陶瓷成型轧膜成型流延法成型特种陶瓷成型特种陶瓷成型干燥。
特种陶瓷、先进陶瓷的16种成型工艺、应用简介及优缺点总结01特种陶瓷特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷和精细陶瓷,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。
特种陶瓷分类及应用02特种陶瓷成型方法及特点陶瓷成型就是将陶瓷原料按照实际生产的要求制作成具有规定形状、尺寸及一定强度的生坯,成型过程取决于陶瓷原料的性能和成型工艺方法。
造就陶瓷制品形状的方法也是多种多样的,但总的来说,可以分为干法成型和湿法成型。
干法成型包括干压成型、等静压成型、超高压成型、粉末电磁成型等方法。
湿法成型大致可分为塑性成型和胶态浇注成型两大类。
塑性成型也称湿压法,是指将已制成塑性的物料在刚性模具中压制成型的一种成型方法,包括挤压成型、注射成型、轧膜成型(压延成型)等几种。
胶态浇注成型是将具有流动性的浆料制成可自我支撑形状的一种成型方法。
该法利用浆料的流动性,使物料干燥并固化后得到一定形状的成型体。
主要包括注浆成型、注凝成型、流延成型、直接凝固成型、胶态振动注模成型等。
陶瓷材料及部件的主要成型工艺2.1干压成型干压成型就是在陶瓷粉料中加入一定量的有机添加剂(粘结剂、润滑剂、可塑剂、消泡剂、减水剂等),在外界压力的作用下,使其在模具中成型。
优点:易于实现自动化,所以在工业生产中得到较大的应用。
缺点:在成型过程中,常会因为径向、轴向的压力分布不均而引起坯体的分层,开裂、密度不均等现象也会经常发生。
2.2等静压成型等静压成型是通过施加各项同性压力而使粉料一边压缩一边成型的方法。
根据成型温度的不同,等静压成型又分为热等静压成型和冷等静压成型。
冷等静压是在常温下对工件进行成型的等静压法。
热等静压是在指在高温高压下对工件进行等压成型烧结的等静压法。
陶瓷球坯模压-等静压成型工艺过程陶瓷球坯直接等静压成型工艺过程优点:能压制具有凹形、空心、细长件以及其他复杂形状的零件;摩擦损耗小,成型压力低;压力从各个方面传递,压坯密度分布均匀、压坯强度高,模具制作方便,寿命长,成本较低。
特种陶瓷的制备方法
特种陶瓷是指具有特殊功能和性能的陶瓷材料,常用于高科技领域。
其制备方法主要包括以下几种:
1. 粉末冶金法:将陶瓷原料粉末混合后,在高温下通过压制和烧结等过程将其固化成块状材料。
常见的方法有热等静压、冷等静压、热等静压烧结等。
2. 溶胶-凝胶法:将陶瓷前驱体通过溶胶-凝胶过程进行制备。
首先将溶胶中的金属离子或无机化合物通过水解、缩聚或聚合等反应形成凝胶,然后通过热处理将凝胶转化为陶瓷材料。
3. 化学气相沉积法:通过将气体中的化学物质在高温下分解反应,使分解产物沉积在基底表面形成陶瓷薄膜。
常见的方法有化学气相沉积、热分解和物理气相沉积。
4. 电化学沉积法:在电化学工作电极上通过电化学反应将金属离子还原成金属沉积在基底上形成陶瓷薄膜。
通常包括电化学沉积、电化学离子共沉积等方法。
5. 激光烧结法:利用高能激光束对陶瓷粉末进行加热和烧结,使其瞬间熔融并结合成致密的陶瓷材料。
该方法具有快速、高效、精密的特点,适用于制备复杂形状和高精度的特种陶瓷。
以上是常见的特种陶瓷制备方法,不同方法适用于不同的特种陶瓷材料和要求。
在实际应用中,通常会根据具体需求选择合适的制备方法。
特种陶瓷材料的制备工艺10材料1班 王俊红,学号:1000501134摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。
目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。
当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。
压力成形不能满足形状复杂性和密度均匀性的要求。
多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。
关键词:特种陶瓷;成形;烧结;陶瓷材料前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。
它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。
特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。
因此研究特种陶瓷制备技术至关重要。
正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。
特种陶瓷制备工艺流程图一、 陶瓷粉体的制备粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结成品陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。
由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。
陶瓷材料本身具有硬、脆、难变形等特点。
因此,陶瓷材料的制备工艺显得更加重要。
由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。
因此界面和表面的大小起着至关重要的作用。
就是说,粉末的粒径是描述粉末品质的最重要的参数。
特种陶瓷制备工艺特种陶瓷是一种高性能材料,具有耐高温、耐腐蚀、耐磨损、高强度、低热膨胀系数等优异的物理和化学性能,广泛应用于航空、航天、电子、光电、化工等领域。
制备特种陶瓷的工艺技术十分重要,下面将介绍几种常见的特种陶瓷制备工艺。
超声波振实制备法超声波振实制备法是在陶瓷粉体和溶剂混合物中添加聚乙烯醇作为粘结剂,通过超声波振动使粘结剂均匀分散在混合物中,使得粘结剂在材料表面形成薄膜,随后通过干燥和烧结工艺制备成特种陶瓷。
优点:这种制备工艺可以制备出高密度、高维氧化硅、硼碳化物、氮化硼等特种陶瓷材料,且可以制备出具有复杂形状的特种陶瓷。
缺点:由于特种陶瓷材料的制备需要高能化的超声波作为加工手段,因此仪器设备的成本高昂,生产成本较高。
射流磨法射流磨法是在一定参数下将陶瓷釉料施加到陶瓷基材表面,通过高速喷射将釉料磨损成细小颗粒后与基材表面结合。
随后通过控制烧成工艺制备成特种陶瓷。
优点:与传统的制备工艺相比,射流磨法制备的特种陶瓷产量更高,成本更低。
缺点:射流磨法的精度受到喷嘴尺寸、流量的限制,对于纳米级粒子的制备有一定难度。
同时,射流磨法还具有环境污染的可能性。
凝胶注模制备法凝胶注模制备法是先将陶瓷粉体、溶剂和有机物混合物在低温下形成凝胶,随后将凝胶注入注模中,在高温下脱除有机物和水分,然后进行烧成工艺。
通过控制注模和烧成工艺可以制备出具有特定形状和维度的特种陶瓷。
优点:凝胶注模制备法不需要昂贵的仪器设备,可以制备出高密度的特种陶瓷材料。
缺点:在注模中可能会出现气孔等缺陷,影响制品质量。
溶胶凝胶法溶胶凝胶法是通过配制前驱体溶液,经过几步反应生成粉末,然后通过热流传递作用烧结成特种陶瓷。
溶胶凝胶法可以制备出大量形状复杂的特种陶瓷,同时可以控制陶瓷材料的物理性能,是目前比较流行的一种制备工艺。
优点:已经被广泛应用于特种陶瓷材料的制备过程中,制备出来的特种陶瓷质量高,表面平整度高。
缺点:由于制备过程需要进行多次反应和烧结工艺,生产成本相对较高。
一种特种陶瓷材料及其制备方法与应用全文共四篇示例,供读者参考第一篇示例:特种陶瓷材料在现代工业中发挥着重要作用,其在各种领域的应用越来越广泛。
本文将以一种特种陶瓷材料为例,探讨其制备方法和应用情况。
一、特种陶瓷材料简介特种陶瓷材料是指在特定条件下制备的,具有特殊物理、化学、结构等性质的陶瓷材料。
它具有较高的耐磨性、耐高温性、耐腐蚀性等特点,被广泛应用于航空航天、汽车、电子、医疗器械等领域。
1. 原料选择:特种陶瓷材料的制备要首先选择适合的原料。
通常采用氧化铝、氧化锆、碳化硅等高纯度材料作为主要原料。
2. 混合和粉碎:将选定的原料进行混合,并通过球磨等方法进行粉碎,以确保原料的均匀性和细度。
3. 成型:采用压制或注模等方法将粉末成型成所需的形状,然后进行烧结。
4. 烧结:通过高温处理,使混合的粉末颗粒结合成为致密的陶瓷坯体。
5. 后处理:经过烧结后的陶瓷坯体可能存在气孔或其他缺陷,需要进行热处理或其他后处理工艺,以提高其性能。
1. 航空航天领域:特种陶瓷材料具有优异的耐高温性能和机械性能,被广泛应用于航空发动机喷嘴、涡轮叶片等部件。
2. 汽车领域:特种陶瓷材料在汽车发动机、制动系统等部件中具有重要作用,可以提高汽车的性能和耐久性。
3. 电子领域:特种陶瓷材料在电子器件中被广泛应用,如陶瓷电容器、电子陶瓷等,具有良好的绝缘性能和耐高温性能。
4. 医疗器械领域:特种陶瓷材料在医疗器械中也有重要应用,如人工关节、牙科修复材料等,具有良好的生物相容性和耐腐蚀性。
特种陶瓷材料具有独特的性能和广泛的应用前景,在现代工业中发挥着重要作用。
通过不断的研究和创新,特种陶瓷材料的性能和应用领域将会得到进一步拓展和提升。
希望本文可以对特种陶瓷材料的制备方法和应用情况有所了解,激发读者对陶瓷材料的研究和开发的兴趣。
第二篇示例:特种陶瓷材料是一种具有特殊性能和功能的陶瓷材料,具有优异的热导性、耐磨性、耐腐蚀性、绝缘性等特点,被广泛应用于航空航天、电子、医疗、军事等领域。
特种陶瓷概述摘要本文主要叙述了国内特种陶瓷市场发展和生产现状,讲述了相关的制备方法和最新的相关技术前沿工艺,最后展望了特种陶瓷未来的发展趋势。
关键词特种陶瓷;市场现状;制备工艺;发展规模前言特种陶瓷也称为先进陶瓷、新型陶瓷、高性能陶瓷等,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的,具有独特和优异性能的陶瓷材料。
已成为现代高性能复合材料的一个研究热点。
特种陶瓷于二十世纪发展起来,在近二、三十年内,新产品不断涌现,在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。
许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必将占据十分重要的地位。
特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等领域。
一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此,特种陶瓷的发展十分迅速,在技术上也有很大突破。
1.发展现状1.1市场情况:与20年前相比,目前我国特陶行业结构变化巨大,私营企业、外资企业的数量和比重迅猛增加,特别是外资企业增长势头迅猛,约占我国全部特陶企业的10%左右。
当前在电子陶瓷行业中,股份制和三资企业市场竞争力最强。
我国特陶市场的开放和市场规模的潜力,吸引许多国外企业纷纷进入,投资不断增加,规模逐步扩大,其投资模式已从最初的产品输入(经销产品)到生产输入(投资设厂),再到应用研究输入(设立实验室),对我国本土特陶企业带来巨大挑战。
1995年我国特种陶瓷产品销售额80亿元人民币(约合10亿美元),其中电子陶瓷约占70%,约56亿元;结构陶瓷占30%,约为24亿元。
相当于日本的1/9、美国的1/5,与欧洲的市场规模相当。
特种陶瓷制备工艺
特种陶瓷制备工艺主要包括以下几个步骤:
1. 材料准备:选择适合特种陶瓷制备的原材料,如氧化铝、氮化硅、氧化锆等,并按照一定的比例混合和研磨,使其成为粉末状。
2. 成型:将粉末状材料通过成型工艺成型,常见的成型方法包括注塑成型、压制成型和挤出成型等。
3. 烧结:将成型后的陶瓷件进行烧结处理,使其在高温下发生化学反应,颗粒之间发生结合,形成致密的陶瓷体。
常见的烧结工艺包括等静压烧结、热等静压烧结和热压烧结等。
4. 加工:对于需要进行后续加工的特种陶瓷制品,还需要进行精加工和表面处理。
常见的加工工艺包括磨削、抛光、切割等。
5. 检测与品质控制:对特种陶瓷制品进行质量检测,包括外观检查、尺寸测量、力学性能测试和化学成分分析等,确保产品符合要求。
6. 涂装和烤漆(可选):根据产品的需要,进行涂装和烤漆处理,增加陶瓷制品的美观和耐用性。
特种陶瓷制备工艺主要包括材料准备、成型、烧结、加工、检测与品质控制以及涂装和烤漆等环节,不同的特种陶瓷材料和应用领域会有不同的制备工艺。
特种陶瓷的制备及应用特种陶瓷是指在一定条件下具有特殊功能和用途的陶瓷材料,具有高温、耐磨、耐腐蚀、导热性能优异的特点。
特种陶瓷的制备及应用在现代材料领域具有重要意义,广泛应用于航空航天、电子通讯、医疗器械、能源和环保等领域。
特种陶瓷的制备包括原料准备、成型、烧结和表面处理等工艺步骤。
首先是原料准备,通常是选择高纯度的氧化物粉末作为主要原料,根据需要添加其他成分。
然后是成型,成型工艺有多种方法,如注射成型、压制成型和模压成型等,以获得所需的形状和尺寸。
接下来是烧结,烧结是制备特种陶瓷的关键步骤,通过高温烧结将原料粉末结合成致密的块状陶瓷材料。
最后是表面处理,包括抛光、涂层和改性等工艺,以提高特种陶瓷的表面平整度和性能。
特种陶瓷的应用领域非常广泛。
在航空航天领域,特种陶瓷被广泛用于制造发动机零部件和导向系统,如涡轮叶片、燃烧室和航天器热保护系统等,因其具有优异的高温耐磨和耐腐蚀性能。
在电子通讯领域,特种陶瓷被用于制造电容器、电子陶瓷、热敏电阻和压敏电阻等元器件,因其具有优异的介电性能和导电性能。
在医疗器械领域,特种陶瓷被用于制造人工关节、牙科修复材料和医疗器械包装等,因其具有良好的生物相容性和耐磨性能。
在能源和环保领域,特种陶瓷被用于制造燃料电池、太阳能电池和环保过滤器等,因其具有良好的化学稳定性和能量转换效率。
特种陶瓷的制备及应用在提高材料性能和推动科技进步方面发挥着重要作用。
随着科学技术的不断发展,特种陶瓷的制备工艺和应用技术也在不断创新。
例如,利用纳米技术制备纳米陶瓷材料,可以显著提高陶瓷材料的机械性能和导热性能。
利用3D打印技术制造特种陶瓷制品,可以实现复杂形状和结构的定制化制造。
利用表面处理和改性技术提高特种陶瓷的表面硬度和耐磨性能,提高其在特定环境中的应用寿命。
总之,特种陶瓷作为现代材料领域的重要一员,具有独特的特性和广泛的应用前景。
通过不断创新制备工艺和应用技术,特种陶瓷在航空航天、电子通讯、医疗器械、能源和环保等领域的应用将会更加广泛,为推动科技进步和社会发展做出更大的贡献。
第 节 第三节特种陶瓷粉体制备方法特种陶瓷粉体的制备方法:物理制备方法 物理制备方法和化 化 学合成法机械球磨法(滚筒式球磨机、振动磨、行星式研磨机等)物理制备方法气流粉碎法(气流磨) 物理气相沉积(PVD 物理气相沉积( PVD)法 )法第三节 特种陶瓷粉体制备方法 化学合成法:固相法 热分解法 热 固相反应 火花放电 溶出法 化学气相反应法CVD 气 相 法 气体中蒸发法PVD 化学气相凝聚法CVC 溅射法沉淀法 液 相 法 水热法 溶胶-凝胶法 喷雾法 蒸发溶剂热法第三节特种陶瓷粉体制备方法粉碎法 粉碎法——由粗颗粒来获得细粉的方法,通常采用 由粗颗粒来获得细粉的方法 通常采用 机械粉碎(机械制粉)。
现在已发展到采用气流粉碎 等。
但是无论哪种粉碎方式,都不易制得粒径在1 微米以下的微细颗粒。
机械混合制备多组分粉体工 艺简单 产量大 但得到的粉体组分分布不均匀 艺简单、产量大。
但得到的粉体组分分布不均匀, 特别是当某种组分很少的时候;而且这种方法常常 会给粉体引入杂质。
合成法——由原子、离子、分子通过反应、成核和 成长、收集、后处理来获得微细颗粒的方法(化学 制粉)。
特点 纯度高 粒度可控 均匀性好 颗粒微细 特点:纯度高、粒度可控,均匀性好,颗粒微细。
实 并且可以实现颗粒在分子级水平上的复合、均化。
合成法可得到性能优良的高纯、超细、组分均匀的 粉料,其粒径可达10nm以下,是一类很有前途的粉 体(尤其是多组分粉体)制备方法 但这类方法或需 体(尤其是多组分粉体)制备方法。
但这类方法或需 要较复杂的设备,或制备工艺要求严格,因而成本 也较高。
第三节 特种陶瓷粉体的制备一、特种陶瓷粉末的机械制备法以机械力使原材料变细的方法在陶瓷工业中应用也极为广 泛。
陶瓷原料进行破碎有利于提高成型坯体质量,提高致 密程度并有利于烧结过程中各种物理化学反应的顺利进行, 降低烧成温度。
主要介绍两种:球磨法和气流粉碎法第三节 特种陶瓷粉体的制备1、球磨法球磨法是十分常用的制取粉末的方法,但它也常常用来作为 球磨法是十分常用的制取粉末的方法 但它也常常用来作为 成型前的粉末准备工序。
特种陶瓷材料的制备工艺10材料1班 王俊红,学号:1000501134摘 要:介绍粉末陶瓷原料的制备技术、特种陶瓷成形工艺、烧结方法。
目前,特种陶瓷中的粉末冶金陶瓷工艺已取得了很大进展,但仍有一些急需解决的问题。
当前阻碍陶瓷材料进一步发展的关键之一是成形技术尚未完全突破。
压力成形不能满足形状复杂性和密度均匀性的要求。
多种胶体原位成形工艺,固体无模成形工艺以及气相成形工艺有望促使陶瓷成形工艺获得关键性突破。
关键词:特种陶瓷;成形;烧结;陶瓷材料前言:陶瓷分为普通陶瓷和特种陶瓷两大类, 特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。
它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。
特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。
因此研究特种陶瓷制备技术至关重要。
正文:特种陶瓷的生产步骤大致可以分为三步:第一步是陶瓷粉体的制备、第二步是成形,第三步是烧结。
特种陶瓷制备工艺流程图一、 陶瓷粉体的制备粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即粉末制备 坯料制备 成型 干燥 烧结 后处理 热压或热等静压烧结成品陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。
由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。
陶瓷材料本身具有硬、脆、难变形等特点。
因此,陶瓷材料的制备工艺显得更加重要。
由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。
因此界面和表面的大小起着至关重要的作用。
就是说,粉末的粒径是描述粉末品质的最重要的参数。
因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。
制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。
粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著使组分之间发生固相反应,得到所需的物相。
同时,机械球磨混合无法使组分分的影响。
粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。
传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。
其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法(干磨、湿磨)进行粉碎并混合。
然后在一定的温度下煅烧。
由于达不到微观均匀,而且粉末的细度有限(通常很难小于 l μm 而达到亚微米级),因此人们普遍采用化学法得到各种粉末原料。
根据起始组分的形态和反应的不同,化学法可分为以下三种类型:1.固相法:化合反应法:化合反应一般具有以下的反应结构式:A(s)+B(s)→C(s)+D(g)两种或两种以上的固态粉末,经混合后在一定的热力学条件和气氛下反应而成为复合物粉末,有时也伴随一些气体逸出。
钛酸钡粉末的合成就是典型的固相化合反应。
等摩尔比的钡盐BaCO3和二氧化钛混合物粉末在一定条件下发生如下反应:BaCO3+TiO2→BaTiO3+CO2↑该固相化学反应在空气中加热进行。
生成用于PTC制作的钛酸钡盐,放出二氧化碳。
但是,该固相化合反应的温度控制必须得当,否则得不到理想的、粉末状钛酸钡。
热分解反应法:用硫酸铝铵在空气中进行热分解,就可以获得性能良好的Al2O3粉末。
氧化物还原法:特种陶瓷SiC、Si3N4的原料粉,在工业上多采用氧化物还原方法制备,或者还原碳化,或者还原氧化。
例如SiC粉末的制备,是将SiO2与粉末混合在1460~1600℃的加热条件下,逐步还原碳化。
其大致历程如下:SiO2+C→SiO+CO↑SiO+2C→SiC+CO↑SiO+C→Si+CO↑Si+C→SiC2.液相法:由液相法制备粉末的基本过程为:金属盐溶液→盐或氢氧化物→氧化物粉末所制得的氧化物粉末的特性取决于沉淀和热分解两个过程。
热分解过程中,分解温度固然是个重要因素,然而气氛的影响也很明显。
从溶液制备粉末的方法其特点是:易控制组成,能合成复合氧化物粉末;添加微量成分很方便,可获得良好的混合均匀性等。
但是,必须严格控制操作条件,才能使生成粉末保持溶液说具有的、在离子水平上的化学均匀性。
3.气相法:由气相生成微粉的方法有如下两种:一种是系统不发生化学反应的蒸发-凝聚法(PVD),另一种是气相化学反应法(CVD)蒸发-凝聚法是将原料加热至高温(用电弧或等离子流等加热),使之气化,接着在电弧焰和等离子焰与冷却环境造成的较大温度梯度条件下急冷,凝聚成微粒状物料的方法。
气相化学反应法是挥发性金属化合物的蒸发通过化学反应合成所需要物质的方法。
气相化学反应法可分为两类:一类为单一化合物的分解;另一类为两种以上化学物质之间的反应。
二、特种陶瓷的成型粉末成形是陶瓷材料或制品制备过程中的重要环节。
粉料成形技术的目的是为了使坯体内部结构均匀、致密,它是提高陶瓷产品可靠性的关键步骤。
成形过程就是将分散体系(粉料、塑性物料、浆料)转变为具有一定几何形状和强度的块体,也称素坯。
粉末的成形方法很多,如胶态成形工艺、固体无模成形工艺、陶瓷胶态注射成形等。
不同形态的物料应用不同的成形方法。
究竟选择哪一种成形方法取决于对制品各方面的要求和粉料的自身性质(如颗粒尺寸、分布、表面积)。
陶瓷材料的成形除将粉末压成一定形状外,还可以外加压力,使粉末颗粒之间相互作用,并减少孔隙度,使颗粒之间接触点产生残余应力(外加能量的储存)。
这种残余应力在烧结过程中,是固相扩散物质迁移致密化的驱动力。
没有经过冷成形压实的粉末,即使在很高的温度下烧结,也不会产生致密化的制品。
经烧结后即可得到致密无孔的陶瓷,可见成形在陶瓷烧结致密化中的重要作用。
坯体成形的方法种类很多,如:(1)热压铸成形热压铸成形也是注浆成形的一种,但不同之处在于它是在坯料中混入石蜡,利用石蜡的热流特性,使用金属模具在压力下进行成形,冷凝后获得坯体的方法。
热压铸成形的工作原理如下:先将定量石蜡熔化为蜡液再与烘干的陶瓷粉混合,凝固后制成蜡板,再将蜡板置于热压铸机筒内,加热熔化成浆料,通过吸铸口压入模腔,保压、去压、冷却成形,然后脱模取出坯体,热压铸形成的坯体在烧结之前须经排蜡处理。
该工艺适合形状复杂、精度要求高的中小型产品的生产,设备简单、操作方便、劳动强度小、生产效率高。
在特种陶瓷生产中经常被采用。
但该工艺工序比较复杂、耗能大、工期长,对于大而长的薄壁制品,由于其不易充满模具型腔而不太适宜。
(2)挤压成形将粉料、粘结剂、润滑剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状成形体。
其缺点主要是物料强度低容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。
挤压成形用的物料以粘结剂和水做塑性载体,尤其需用粘土以提高物料相容性,故其广泛应用于传统耐火材料,如炉管以及一些电子材料的成形生产。
(3)流延成形流延成形是将粉料与塑化剂混合得到流动的粘稠浆料,然后将浆料均匀地涂到转动着的基带上,或用刀片均匀地刷到支撑面上,形成浆膜,干燥后得到一层薄膜,薄膜厚度一般为 0.01~1mm。
流延法用于铁电材料的浇注成形。
此外,它还被广泛用于多层陶瓷、电子电路基板、压电陶瓷等器件的生产中。
(4)凝胶注模成形凝胶注模成形是一种胶态成形工艺,它将传统陶瓷工艺和化学理论有机结合起来,将高分子化学单体聚合的方法灵活地引入到陶瓷的成形工艺中,通过将有机聚合物单体及陶瓷粉末颗粒分散在介质中制成低粘度,高固相体积分数的浓悬浮体,并加入引发剂和催化剂,然后将浓悬浮体(浆料)注入非多孔模具中,通过引发剂和催化剂的作用使有机物聚合物单体交联聚合成三维网状聚合物凝胶,并将陶瓷颗粒原位粘结而固化成坯体。
凝胶注模成形作为一种新型的胶态成形方法,可净尺寸成形形状复杂、强度高、微观结构均匀、密度高的坯体,烧结成瓷的部件较干压成形的陶瓷部件有更好的电性能。
目前已广泛应用于电子、光学、汽车等领域。
(5)气相成形利用气相反应生成纳米颗粒,如能使颗粒有效而且致密地沉积到模具表面,累积到一定厚度即成为制品,或者先使用其它方法制成一个具有开口气孔的坯体,再通过气相沉积工艺将气孔填充致密,用这种方法可以制造各种复合材料。
由于固相颗粒的生成与成形过程同时进行,因此可以避免一般超细粉料中的团聚问题。
在成形过程中不存在排除液相的问题,从而避免了湿法工艺带来的种种弊端。
(6)轧模成形将准备好的坯料伴以一定量的有机粘结剂置于两辊之间进行辊轧,然后将轧好的坯片经冲切工序制成所需的坯件。
轧辊成形时坯料只是在厚度和前进方向上受到碾压,宽度方向受力较小。
因此,坯料和粘结剂会出现定向排列。
干燥烧结时横向收缩大易出现变形和开裂,坯体性能会出现各向异性。
另外,对厚度小于 0.08mm 的超薄片,轧模成形是难以轧制的,质量也不易控制。
(7)注浆成形根据所需陶瓷的组成进行配料计算,选择适当的方法制备陶瓷粉体进行混合、塑化、造粒等,才能应用于成形。
注浆成形适用于制造大型的、形状复杂的、薄壁的陶瓷产品。
对料浆性能也有一定的要求,如:流动性好、粘度小,利于料浆充型,稳定性好。
料浆能长时间保持稳定,不易沉淀和分层,含水量和含气量尽可能小等。
注浆成形的方法有:空心注浆和实心注浆。
为提高注浆速度和坯体质量,可采用压力注浆、离心注浆和真空注浆等新方法。
注浆成形工艺成本低、过程简单、易于操作和控制,但成形形状粗糙,注浆时间较长、坯体密度、强度也不高。
在传统注浆成形的基础上,相继发展产生了新的压滤成形和离心注浆成形工艺,借助于外加压力和离心力的作用,来提高素坯的密度和强度,避免了注射成形中复杂的脱脂过程,但由于坯体均匀性差,因而不能满足制备高性能、高可靠性陶瓷材料的要求。
(8)注射成形陶瓷注射成形是借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成形的,成形之后再把高聚物脱除。
注射成形的优点是可成形形状复杂的部件,并且具有高尺寸精度和均匀的显微结构。
缺点是模具设计加工和有机物排除过程中的成本较高。
在克服传统注射成形缺点的基础上,水溶液注射成形和气相辅助注射成形工艺便发展起来。
水溶液注射成形采用水溶性的聚合物作为有机载体,较好地解决了脱脂问题。
水溶液注射成形技术可以很容易地实现自动控制,比起传统的注射成形成本低。
气体辅助注射成形是把气体引入聚合物熔体中而使成形更容易进行。
陶瓷胶态注射成形是将低粘度、高固相体积分数的水基陶瓷浓悬浮体注射到非孔模具中,并使之原位快速固化,再经烧结,制得显微结构均匀、无缺陷和净尺寸的高性能、高可靠性的陶瓷部件,并大大降低陶瓷制造成本。