七年级下册数学专题训练
- 格式:docx
- 大小:36.89 KB
- 文档页数:2
专训1运用幂的运算法则巧计算的常见类型名师点金:同底数幂的乘法、幂的乘方、积的乘方和同底数幂的除法等运算是整式乘除运算的基础,同底数幂的除法是同底数幂的乘法的逆运算,要熟练掌握这些运算法则,并能利用这些法则解决有关问题.运用同底数幂的乘法法则计算题型1底数是单项式的同底数幂的乘法1.计算:(1)a2·a3·a;(2)-a2·a5;(3)a4·(-a)5.题型2底数是多项式的同底数幂的乘法2.计算:(1)(x+2)3·(x+2)5·(x+2);(2)(a-b)3·(b-a)4;(3)(x-y)3·(y-x)5.题型3同底数幂的乘法法则的逆用3.(1)已知2m=32,2n=4,求2m+n的值.(2)已知2x=64,求2x+3的值.运用幂的乘方法则计算题型1直接运用幂的乘方法则求字母的值4.已知273×94=3x,求x的值.题型2 逆用幂的乘方法则求字母式子的值5.已知10a =2,10b =3,求103a+b 的值.题型3 运用幂的乘方解方程6.解方程:⎝⎛⎭⎫34x -1=⎝⎛⎭⎫9162.运用积的乘方法则进行计算题型1 逆用积的乘方法则计算7.用简便方法计算:(1)⎝⎛⎭⎫-1258×0.255×⎝⎛⎭⎫578×(-4)5; (2)0.1252 017×(-82 018).题型2 运用积的乘方法则求字母式子的值8.若|a n |=12,|b|n =3,求(ab)4n 的值.运用同底数幂的除法法则进行计算题型1 运用同底数幂的除法法则计算9.计算:(1)x10÷x4÷x4;(2)(-x)7÷x2÷(-x)3;(3)(m-n)8÷(n-m)3.题型2运用同底数幂的除法求字母的值10.已知(x-1)x2÷(x-1)=1,求x的值.答案1.解:(1)a 2·a 3·a =a 6.(2)-a 2·a 5=-a 7.(3)a 4·(-a)5=-a 9.2.解:(1)(x +2)3·(x +2)5·(x +2)=(x +2)9.(2)(a -b)3·(b -a)4=(a -b)3·(a -b)4=(a -b)7.(3)(x -y)3·(y -x)5=(x -y)3·[-(x -y)5]=-(x -y)8.3.解:(1)2m +n =2m ·2n =32×4=128. (2)2x +3=2x ·23=8·2x =8×64=512. 4.解:273×94=(33)3×(32)4=39×38=317=3x ,所以x =17.5.解:103a +b =103a ·10b =(10a )3·10b =23×3=24. 6.解:由原方程得⎝⎛⎭⎫34x -1=⎣⎡⎦⎤⎝⎛⎭⎫3422, 所以⎝⎛⎭⎫34x -1=⎝⎛⎭⎫344, 所以x -1=4,解得x =5.7.解:(1)原式=⎝⎛⎭⎫-758×⎝⎛⎭⎫145×⎝⎛⎭⎫578×(-4)5 =⎣⎡⎦⎤⎝⎛⎭⎫-758×⎝⎛⎭⎫578×[⎝⎛⎭⎫145×(-4)5] =⎝⎛⎭⎫-75×578×⎣⎡⎦⎤14×(-4)5 =1×(-1)=-1.(2)原式=⎝⎛⎭⎫182 017×(-82 017×8) =⎝⎛⎭⎫182 017×(-82 017)×8=-⎝⎛⎭⎫18×82 017×8 =-1×8=-8.8.解:因为|a n |=12,|b|n =3, 所以(ab)4n =a 4n ·b 4n =(a n )4·(b n )4=(|a n |)4·(|b|n )4=⎝⎛⎭⎫124×34=116×81=8116.9.解:(1)x 10÷x 4÷x 4=x 2.(2)(-x)7÷x 2÷(-x)3=-x 7÷x 2÷(-x 3)=x 2.(3)(m -n)8÷(n -m)3=(n -m)8÷(n -m)3=(n -m)5.10.解:由原方程得(x -1)x2-1=1,分三种情况:①当x 2-1=0且x -1≠0时,(x -1)x2-1=1,此时x =-1.②当x -1=1时,(x -1)x2-1=1,此时x =2.③当x -1=-1且x 2-1为偶数时,(x -1)x2-1=1.此种情况无解.综上所述,x 的值为-1或2.专训2 常见幂的大小比较技巧及幂的运算之误区名师点金:1.对于幂,由于它包含底数、指数、幂三种量,因此比较大小的类型有:比较幂的大小,比较指数的大小,比较底数的大小.2.幂的相关运算法则种类较多,彼此之间极易混淆,易错易误点较多,主要表现在混淆运算法则,符号辨别不清,忽略指数“1”等.1.幂的大小比较的技巧比较幂的大小方法1 指数比较法1.已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a方法2 底数比较法2.350,440,530的大小关系是( )A .350<440<530B .530<350<440C .530<440<350D .440<530<350方法3 作商比较法3.已知P =999999,Q =119990,那么P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .无法比较比较指数的大小4.已知x a =3,x b =6,x c =12(x >0),那么下列关系正确的是( )A .a +b >cB .2b <a +cC .2b =a +cD .2a <b +c比较底数的大小5.已知a ,b ,c ,d 均为正数,且a 2=2,b 3=3,c 4=4,d 5=5,那么a ,b ,c ,d 中最大的数是( )A .aB .bC .cD .d2.幂的运算之误区混淆运算法则6.【中考·德州】下列运算正确的是( )A .(a 2)m =a 2mB .(2a)3=2a 3C .a 3·a -5=a -15D .a 3÷a -5=a -2 7.下列运算中,结果是a 6的是( )A .a 2·a 3B .a 12÷a 2C .(a 3)3D .(-a)68.计算:(1)(a 3)2+a 5;(2)a 4·a 4+(a 2)4+(-4a 4)2.符号辨别不清9.计算⎝⎛⎭⎫-12ab 23的结果是( ) A.18a 3b 6 B.18a 3b 5 C .-18a 3b 5 D .-18a 3b 6 10.化简(-x)5·(-x)4,结果正确的是( )A .-x 20B .x 20C .x 9D .-x 911.计算:(1)(-a 2)3; (2)(-a 3)2;(3)[(-a)2]3; (4)a·(-a)2·(-a)7.忽略指数“1”12.下列算式中,正确的是()A.a3·a2=a6B.x3·x5=x8C.x·x4=x4D.y7·y7=y49不能灵活运用整体思想13.化简:(1)(x+y)5÷(-x-y)2÷(x+y);(2)(a-b)9÷(b-a)4÷(a-b)3.不能灵活运用转化思想14.(1)若3x+2y-3=0,求27x·9y的值;(2)已知3m=6,9n=2,求32m-4n+1的值.答案1.A点拨:因为a=8131=(34)31=3124,b=2741=(33)41=3123,c=961=(32)61=3122,而124>123>122,所以3124>3123>3122,即a>b>c,故选A.本题采用的是指数比较法.将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.2.B点拨:因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440,故选 B.本题采用的是底数比较法.将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.3.B点拨:因为PQ=999999×990119=(9×11)9999×990119=99×119999×990119=1,所以P=Q,故选B.本题采用的是作商比较法.当a>0,b>0时,利用“若ab>1,则a>b;若ab=1,则a=b;若ab<1,则a<b”比较.4.C点拨:因为x a=3,x b=6=2×3,x c=12=22×3,而(2×3)2=3×(22×3),所以(x b)2=x a·x c,即x2b=x a+c.又因为x>0,所以2b=a+c,故选C.5.B点拨:直接比较四个数的大小较繁琐,可两个两个地比较,确定最大的数.因为(a2)3=a6=23=8,(b3)2=b6=32=9,所以a6<b6,所以a<b.因为(b3)4=b12=34=81,(c4)3=c12=43=64,所以b12>c12,所以b>c.因为(b3)5=b15=35=243,(d5)3=d15=53=125,所以b15>d15,所以b>d.综上可知,b是最大的数,故选B.6.A7.D8.解:(1)(a3)2+a5=a6+a5.(2)a4·a4+(a2)4+(-4a4)2=a8+a8+16a8=18a8.9.D10.D11.解:(1)(-a2)3=-a6.(2)(-a3)2=a6.(3)[(-a)2]3=a6.(4)a·(-a)2·(-a)7=a·a2·(-a7)=-a10.12.B13.解:(1)原式=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.(2)原式=(a-b)9÷(a-b)4÷(a-b)3=(a-b)2.14.解:(1)27x·9y=(33)x·(32)y=33x·32y=33x+2y,因为3x+2y-3=0,所以3x+2y=3,所以原式=33=27.(2)32m-4n+1=32m÷34n×31=(3m)2÷(32n)2×3=(3m)2÷(9n)2×3=36÷4×3=27.专训1乘法公式的应用名师点金:在乘法公式中添括号的“两种技巧”:(1)当两个三项式相乘,且它们只含相同项和相反项时,常常需通过添括号把相同项、相反项分别结合,一个化为“和”的形式,一个化为“差”的形式,然后利用平方差公式计算.(2)当一个三项式进行平方时,常常需通过添括号把其中两项看成一个整体,然后利用完全平方公式计算.直接活用公式1.计算:(1)(x2+1)2-4x2;(2)(2x+1)2-(2x+5)(2x-5);(3)(x+y)2-4(x+y)(x-y)+4(x-y)2.交换位置应用公式2.计算:(1)(-2x -y)(2x -y);(2)⎝⎛⎭⎫12-2x 2⎝⎛⎭⎫-2x 2-12; (3)(-2a +3b)2.添括号后整体应用公式3.灵活运用乘法公式进行计算:(1)⎝⎛⎭⎫12m -n -22; (2)(a +2b -c)(a -2b -c).连续应用公式4.计算:(1)(a -b)(a +b)(a 2+b 2)(a 4+b 4);(2)(3m -4n)(3m +4n)(9m 2+16n 2).逆向应用公式5.(1)计算:(a 2-b 2)2-(a 2+b 2)2;(2)已知(6x -3y)2=(4x -3y)2,xy ≠0,求y x的值.变形后应用公式6.(1)计算:①1992; ②982-101×99.(2)已知x +y =3,xy =-7,求:①x 2+y 2的值;②x 2-xy +y 2的值;③(x -y)2的值.(3)已知a +1a=3,求⎝⎛⎭⎫a -1a 2的值.答案1.解:(1)原式=x 4+2x 2+1-4x 2=x 4-2x 2+1.(2)原式=4x 2+4x +1-(4x 2-25)=4x 2+4x +1-4x 2+25=4x +26.(3)原式=(x 2+2xy +y 2)-4(x 2-y 2)+4(x 2-2xy +y 2)=x 2+2xy +y 2-4x 2+4y 2+4x 2-8xy +4y 2=x 2-6xy +9y 2.2.解:(1)原式=(-y -2x)(-y +2x)=y 2-4x 2.(2)原式=⎝⎛⎭⎫-2x 2+12⎝⎛⎭⎫-2x 2-12 =4x 4-14. (3)原式=(3b -2a)2=9b 2-12ab +4a 2.3.解:(1)原式=⎣⎡⎦⎤⎝⎛⎭⎫12m -n -22 =⎝⎛⎭⎫12m -n 2-4⎝⎛⎭⎫12m -n +4 =14m 2-mn +n 2-2m +4n +4. (2)原式=[(a -c)+2b][(a -c)-2b]=(a -c)2-4b 2=a 2-2ac +c 2-4b 2.4.解:(1)原式=(a 2-b 2)(a 2+b 2)(a 4+b 4)=(a 4-b 4)(a 4+b 4)=a 8-b 8.(2)原式=(9m 2-16n 2)(9m 2+16n 2)=81m 4-256n 4.5.解:(1)原式=[(a 2-b 2)+(a 2+b 2)][(a 2-b 2)-(a 2+b 2)]=2a 2·(-2b 2)=-4a 2b 2.(2)由题意得 (6x -3y)2-(4x -3y)2=0,[(6x -3y)+(4x -3y)][(6x -3y)-(4x -3y)]= 0,(10x -6y)·2x = 0,20x 2-12xy = 0,20x 2= 12xy ,因为xy ≠0,所以x ≠0,所以y x =53. 6.解:(1)①原式=(200-1)2=2002-400+12=40 000-400+1=39 601.②原式=(100-2)2-(100+1)×(100-1)=1002-400+22-1002+12=-395.(2)①x 2+y 2=(x +y)2-2xy=32-2×(-7)=23.②x 2-xy +y 2=(x +y)2-3xy=32-3×(-7)=30.③(x -y)2=(x +y)2-4xy=32-4×(-7)=37.(3)因为a +1a =3,所以⎝⎛⎭⎫a +1a 2=9,即a 2+2+1a 2=9, 所以a 2+1a 2=9-2=7,所以⎝⎛⎭⎫a -1a 2=a 2-2+1a 2=7-2=5.专训2 活用乘法公式进行计算的六种技巧名师点金:乘法公式是指平方差公式和完全平方公式,公式可以正用,也可以逆用.在使用公式时,要注意以下几点:(1)公式中的字母a ,b 可以是任意一个式子;(2)公式可以连续使用;(3)要掌握好公式中各项的关系及整个公式的结构特点;(4)在运用公式时要学会运用一些变形技巧.巧用乘法公式的变形求式子的值1.已知(a +b)2=7,(a -b)2=4.求a 2+b 2和ab 的值.2.已知x +1x =3,求x 4+1x 4的值.巧用乘法公式进行简便运算3.计算:(1)1982; (2)2 0042;(3)2 0172-2 016×2 018;(4)1002-992+982-972+…+42-32+22-12.巧用乘法公式解决整除问题4.试说明:(n +4)2-(n -3)2(n 为正整数)能被7整除.应用乘法公式巧定个位数字5.试求(2+1)(22+1)(24+1)…(232+1)+1的个位数字.巧用乘法公式解决复杂问题(换元法)6.计算20 182 017220 182 0162+20 182 0182-2的值.7.王老师在一次团体操队列队形设计中,先让全体队员排成一方阵(行与列的人数一样多的队形,且总人数不少于25人),人数正好够用,然后再进行各种队形变化,其中一个队形需分为5人一组,手执彩带变换队形,在讨论分组方案时,有人说现在的队员人数按5人一组分将多出3人,你说这可能吗?答案1.解:(a +b)2=a 2+2ab +b 2=7,(a -b)2=a 2-2ab +b 2=4,所以a 2+b 2=12×(7+4)=12×11=112, ab =14×(7-4)=14×3=34. 2.解:因为x +1x =3,所以⎝⎛⎭⎫x +1x 2=x 2+1x 2+2=9, 所以x 2+1x 2=7,所以⎝⎛⎭⎫x 2+1x 22=x 4+1x 4+2=49, 所以x 4+1x 4=47. 3.解:(1)原式=(200-2)2=2002-800+4=39 204.(2)原式=(2 000+4)2=2 0002+16 000+16=4 016 016.(3)原式=2 0172-(2 017-1)×(2 017+1)=2 0172-(2 0172-12)=2 0172-2 0172+1=1.(4)原式=()1002-992+(982-972)+…+(42-32)+(22-12)=(100+99)×(100-99)+(98+97)×(98-97)+…+(4+3)×(4-3)+(2+1)×(2-1) =100+99+98+97+…+4+3+2+1=100×(100+1)2=5 050.4.解:(n +4)2-(n -3)2=n 2+8n +16-(n 2-6n +9)=14n +7=7(2n +1).因为n 为正整数,所以2n +1为正整数,所以(n +4)2-(n -3)2能被7整除.5.解:(2+1)(22+1)(24+1)…(232+1)+1=(2-1)(2+1)(22+1)(24+1)…(232+1)+1=(22-1)(22+1)(24+1)…(232+1)+1=…=(264-1)+1=264=(24)16=1616.因此个位数字是6.6.解:设20 182 017=m,则原式=m2(m-1)2+(m+1)2-2=m2(m2-2m+1)+(m2+2m+1)-2=m2 2m2=1 2.7.解:人数可能为(5n)2,(5n+1)2,(5n+2)2,(5n+3)2,(5n+4)2(n为正整数).(5n)2=5×5n2;(5n+1)2=25n2+10n+1=5(5n2+2n)+1;(5n+2)2=25n2+20n+4=5(5n2+4n)+4;(5n+3)2=25n2+30n+9=5(5n2+6n+1)+4;(5n+4)2=25n2+40n+16=5(5n2+8n+3)+1.由此可见,无论哪一种情况,总人数按每组5人分,要么不多出人数,要么多出的人数是1或4,不可能是3.专训3整体思想在整式乘法运算中的应用名师点金:解决某些数学问题时,把一组数或一个式子看作一个整体进行处理,不仅可以简化解题过程,而且还能拓宽思路,培养创新意识,体现了数学中的一种重要思想——整体思想.这一思想在整式的乘法运算中体现明显,在解题中应用较多,要引起重视.幂的运算中的整体思想1.已知2x+3y-3=0,求3·9x·27y的值.乘法公式运算中的整体思想类型1化繁为简整体代入2.已知a =38x -20,b =38x -18,c =38x -16, 求式子a 2+b 2+c 2-ab -ac -bc 的值.类型2 变形后整体代入3.已知x +y =4,xy =1,求式子(x 2+1)(y 2+1)的值.4.已知a -b =b -c =35,a 2+b 2+c 2=1,求ab +bc +ca 的值.5.已知a 2+a -1=0,求a 3+2a 2+2 018的值.6.已知(2 016-a)(2 018-a)=2 017,求(2 016-a)2+(2 018-a)2的值.多项式乘法运算中的整体思想类型1数字中的换元7.若M=123 456 789×123 456 786,N=123 456 788×123 456 787,试比较M与N的大小.类型2多项式中的换元8.计算:(a1+a2+…+a n-1)(a2+a3+…+a n-1+a n)-(a2+a3+…+a n-1)(a1+a2+…+a n)(n≥3,且n为正整数).答案1.解:3·9x ·27y =3·(32)x ·(33)y =3·32x ·33y =31+2x +3y .因为2x +3y -3=0,所以2x +3y =3,所以原式=31+3=34=81. 点拨:本题运用了整体思想和转化思想.2.解:由a =38x -20,b =38x -18,c =38x -16,可得a -b =-2,b -c =-2,c -a =4.从而a 2+b 2+c 2-ab -ac -bc =12[(a -b)2+(b -c)2+(c -a)2]=12×[(-2)2+(-2)2+42]=12×24=12.3.解:(x 2+1)(y 2+1)=x 2y 2+x 2+y 2+1=(xy)2+(x +y)2-2xy +1.把x +y =4,xy =1整体代入得12+42-2×1+1=16,即(x 2+1)(y 2+1)=16.4.解:由a -b =b -c =35,可以得到a -c =65.由(a -b)2+(b -c)2+(a -c)2=2(a 2+b 2+c 2)-2(ab +bc +ac),得到ab +bc +ca =(a 2+b 2+c 2)-12[(a -b)2+(b -c)2+(a -c)2].将a 2+b 2+c 2,a -b ,b -c 及a -c 的值整体代入,可得ab +bc +ca =1-12×[(35)2+⎝⎛⎭⎫352+⎝⎛⎭⎫652]=1-12×5425=-225. 5.解:因为a 2+a -1=0,①所以将等式两边都乘a ,可得a 3+a 2-a =0.②将①②相加得a 3+2a 2-1=0,即a 3+2a 2=1.所以a 3+2a 2+2 018=1+2 018=2 019.6.解:(2 016-a)2+(2 018-a)2=[(2 016-a)-(2 018-a)]2+2(2 016-a)(2 018-a)=(-2)2+2×2 017=4+4 034=4 038.点拨:本题运用乘法公式的变形x 2+y 2=(x -y)2+2xy ,结合整体思想求解,使计算简便.7. 解:设123 456 788=a ,则123 456 789=a +1,123 456 786=a -2,123 456 787=a -1.从而M =(a +1)(a -2)=a 2-a -2,N =a(a -1)=a 2-a.所以M -N =(a 2-a -2)-(a 2-a)=-2<0,所以M <N.8.解:设a 2+a 3+…+a n -1=M ,则原式=(a 1+M)(M +a n )-M(a 1+M +a n )=a 1M +a 1a n +M 2+a n M -a 1M -M 2-a n M =a 1a n .点拨:本题如果按正常展开的方式来运算显然是很复杂的.这一类带“…”的题中,往往蕴藏着重要的技巧,而发现技巧的关键是观察.因此在解决这类问题时,不要忙于解答,而要冷静观察,寻找解决问题的突破口.比如这一题,在观察时能发现a 2+a 3+…+a n这个式子在每一个因式中都存在.因此,可以考虑将这个式子作为一个整体,设为M,-1问题就简化了,体现了整体思想的运用.。
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
专题训练二平行线的性质和判定的应用1.如图,∠MCN=45°,且AB∥CD,AC∥BD,BE⊥CN于点E.求∠DBE的度数.2.已知:如图,AD⊥BC,FG⊥BC,垂足分别为D,G,且∠ADE=∠CFG.求证:DE∥AC.3.【2022·南宁三中模拟】如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断BC与AD的位置关系,并说明理由;(3)若DA平分∠BDF,求证:BC平分∠DBE.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请你直接写出∠APC、∠α、∠β间的数量关系.7.如图,已知AB∥CD,点E是直线AB,CD之间的任意一点,锐角∠DCE和钝角∠ABE的平分线所在直线相交于点F,CD与FB交于点N.(1)当∠ECD=60°和∠ABE=100°时,求∠CFN的度数;(2)若BF∥CE,∠F=α,求∠ABE的度数(用含α的式子表示).参考答案1.如图,∠MCN =45°,且AB ∥CD ,AC ∥BD ,BE ⊥CN 于点E .求∠DBE 的度数.解:∵AB ∥CD ,∴∠MAB =∠MCN ,∠ABE =∠BEN .∵∠MCN =45°,BE ⊥CN ,∴∠MAB =45°,∠ABE =90°.∵AC ∥BD ,∴∠ABD =∠MAB .∴∠ABD =45°.∴∠DBE =∠ABE -∠ABD =45°.2.已知:如图,AD ⊥BC ,FG ⊥BC ,垂足分别为D ,G ,且∠ADE =∠CFG .求证:DE ∥AC .证明:∵AD ⊥BC ,FG ⊥BC ,∴∠C +∠CFG =90°,∠BDE +∠ADE =90°.∵∠ADE =∠CFG ,∴∠BDE =∠C .∴DE ∥AC .3.【2022·南宁三中模拟】如图,AE ∥CF ,∠A =∠C .(1)若∠1=35°,求∠2的度数;解:∵AE ∥CF ,∴∠CDB =∠1=35°.∴∠2=180°-∠CDB =145°.(2)判断BC 与AD 的位置关系,并说明理由;解:BC ∥AD .理由如下:∵AE ∥CF ,∴∠A +∠ADC =180°.又∵∠A =∠C ,∴∠C +∠ADC =180°.∴BC ∥AD .(3)若DA 平分∠BDF ,求证:BC 平分∠DBE .证明:∵AE ∥CF ,∴∠BDF =∠DBE .∵AD ∥BC ,∴∠ADB =∠DBC .∵DA 平分∠BDF ,∴∠ADB =12∠BDF . ∴∠DBC =12∠DBE .∴BC平分∠DBE.【点方法】几何推理的方法主要有两种:一种是综合法,即由“因”导“果”,由已知条件逐步推导出结论;另一种是分析法,即执“果”索“因”,根据要推出的结论,必须找到什么样的条件,一步一步反向找到条件.解答问题时一般用综合法,分析问题时一般用分析法,有时也可以两种方法综合应用.4.已知AB∥CD,点E为AB、CD之外任意一点.(1)如图①,探究∠BED与∠B、∠D的数量关系,并说明理由;(2)如图②,探究∠CDE与∠B、∠E的数量关系,并说明理由解:(1)∠B=∠BDE+∠D.理由如下:过点E作EF∥AB.又∵AB∥CD,∴EF∥AB∥CD.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D;(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB. 又∵AB∥CD,∴EF∥AB∥CD.∴∠B+∠BEF =180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.5.如图,已知l1∥l2,直线l3和直线l1、l2分别交于点C和点D,P为直线l3上一点,A、B分别是直线l1、l2上的定点.(1)若P点在线段CD(C、D两点除外)上运动时,问∠1、∠2、∠3之间的关系是什么?这种关系是否发生变化?(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系又怎样?说明理由.解:(1)∠2=∠1+∠3.不变化;(2)当点P在线段DC的延长线上时,∠2=∠3-∠1.理由:过点P作PF∥l1,∠FPA=∠1.∵l1∥l2,∴PF∥l2,∴∠FPB=∠3,∴∠2=∠FPB-∠FPA=∠3-∠1;同理,当点P在线段CD的延长线上时,∠2=∠1-∠3.6.如图①所示,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为;(2)如图②所示,AB∥CD,点P在射线OM上运动,记作∠PAB=∠α,∠DCP=∠β.当点P在B、D两点之间运动时,∠APC与∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请你直接写出∠APC 、∠α、∠β间的数量关系.解:(1)110°;(2)∠APC =∠α+∠β.理由如下:过P 作PE ∥AB 交AC 于E ,∵AB ∥CD ,∴AB ∥PE ∥CD ,∴∠α=∠APE ,∠β=∠CPE.∴∠APC =∠APE +∠CPE =∠α+∠β;(3)当P 在BD 延长线上时,∠CPA =∠α-∠β.当P 在DB 延长线上时,∠CPA =∠β-∠α.7.如图,已知AB ∥CD ,点E 是直线AB ,CD 之间的任意一点,锐角∠DCE 和钝角∠ABE 的平分线所在直线相交于点F ,CD 与FB 交于点N .(1)当∠ECD =60°和∠ABE =100°时,求∠CFN 的度数;解:(1)如图,过点F 作FH ∥CD .∵AB ∥CD ,∴FH ∥AB .∵CM 平分∠ECD ,∠ECD =60°,∴∠ECM =∠DCM =12∠ECD =30°. ∵BN 平分∠ABE ,∠ABE =100°,∴∠ABN =∠EBN =12∠ABE =50°. ∵FH ∥AB ,FH ∥CD ,∴∠HFB =∠ABN =50°,∠HFC =∠DCM =30°.∴∠CFN =∠HFB -∠HFC =20°.(2)若BF ∥CE ,∠F =α,求∠ABE 的度数(用含α的式子表示).∵BF ∥CE ,∴∠ECM =∠BFM =α.∵CM 平分∠ECD ,∴∠DCE =2∠ECM =2α.∵BF ∥CE ,∴∠BNC =∠ECD =2α.∵AB ∥CD ,∴∠ABN =∠BNC =2α.∵BN 平分∠ABE ,∴∠ABE =2∠ABN =4α.。
七年级下册数学思想方法专题练习目录一、转化思想...................................... 错误!未定义书签。
1.“新知识”向“旧知识”转化.................... 错误!未定义书签。
a.将三元一次方程组转化为二元一次方程组. .......... 错误!未定义书签。
b.将新定义转化为所学知识解题............................. 错误!未定义书签。
c.多项式乘多项式转化为单项式乘多项式............... 错误!未定义书签。
2.“未知”向“已知”转化........................ 错误!未定义书签。
a.将判断线段相等或角相等问题转化为判定三角形全等问题错误!未定义书签。
b.添加辅助线应用平行线的性质解题............ 错误!未定义书签。
3.“复杂”向“简单”转化........................ 错误!未定义书签。
a.利用平移的性质进行平移转化................ 错误!未定义书签。
b.将不规则图形面积转化为规则图形的面积...... 错误!未定义书签。
二、分类讨论思想.................................. 错误!未定义书签。
1.对字母、未知数的取值范围分不同情况讨论........ 错误!未定义书签。
2.对图形的位置、类型的分类讨论.................. 错误!未定义书签。
3.对问题的题设条件需分类讨论.................... 错误!未定义书签。
4.从图象中获取信息进行分类讨论 (9)5.对求解过程中不便统一表述的问题进行分类讨论.... 错误!未定义书签。
三、数形结合思想................................. 错误!未定义书签。
1.数转化为形.................................... 错误!未定义书签。
2020-2021学年七年级数学下册期末综合专题训练(人教版)专题04 实数的规律探究【专题训练】一、选择题1.观察下列各式,发现规律:111233+=, 112344+=, 113455+=, (1)填空:146+= ,157+= ; (2)计算(写出计算过程):120172019+; (3)请用含正整数n 的代数式把你们所发现的规律表示出来.【答案】(1)114566+=,115677+=;(2)120182019;(3)()112n n ++. 【解析】【分析】(1)先通分,然后把分子中两数的积运用平方差公式变形,再根据二次根式的性质化简即可; (2)与(1)的步骤相同;(3)与(1)的步骤相同.【详解】 (1)()()2515111461514566666-++⨯++====, ()()2616111571615677777-++⨯++====;(2)11 2017201820192019+=,原式()()20181201811 20172019120192019-++⨯+==220181201820192019 ==;(3)()()()22111112222n n nn nn n n n++++===+++++.【点睛】本题考查了二次根式的性质与化简,平方差公式,通分后能运用平方差公式变形是解答本题的关键. 2.观察下列材料各式:①284222 242 55555⨯-===⨯=即22 2255 -=②3279333 393 1010101010⨯-===⨯=即33 331010 -=……(1)按照发现的规律填空4417-=.(2)按此规律,第6个等式是.写出你的推理过程.(3)请用含自然数n(n>0)的式子写出你发现的规律;.【答案】(1)4417;(2)见解析;(3)见解析.【解析】【分析】(1)根据算术平方根的概念进行计算;(2)根据计算过程和各式的变化规律猜想结果;(3)根据给出各式的计算过程和结果,总结规律.【详解】(1)观察所给的式子可得: 44441717-=. 故答案为4417. (2)按此规律,第6个等式是77775050-=. 73507343497777.505050505050⨯-=-=== 即:77775050-=. (3)第n 个式子为:()221111.1111()()n n n n n n +++-=+++++ 【点睛】本题属于规律型,数字的变化类,根据数据前后的变化得出变化的规律是解题的关键.3.先观察下列等式,再回答下列问题:①2211111111121112++=+-=+; ②2211111111232216++=+-=+ ③22111111113433112++=+-=+ (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】 试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)2211 145++=1+14−141+=1120, 验证:2211145++=1111625++=25161400400++=441400=1120 (2)()2211 1n n 1+++=1+1 n −1 n 1+=1+()1n n 1+ (n 为正整数). 点睛:本题考查了二次根式的性质与化简,即2a a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.4.阅读理解.观察下列变形:13142⨯+==;24193⨯+==;351164⨯+==;…解答下列各题:(1)填空:7 9 1( )⨯+==________;22241( )⨯+==________;31331( ) ⨯+==________.(2)请用含n (n 为正整数)的等式反映上述变形的规律.【答案】(1)64,8;529,23;1024,32;(2)(2)11n n n ++=+【分析】(1)根据实数的性质即可化简求解;(2)根据(1)中的式子发现规律即可写出等式.【详解】解:(1)根据题意得791648⨯+==;22241529⨯+==23;313311024⨯+==32,故答案为:8,23,32;(2)根据题意得()2(2)11n n n ++=+=|n +1|=n +1 即(2)11n n n ++=+.【点睛】此题主要考查实数的性质及规律探索,解题的关键是熟知实数的性质.5.(探究)用“>”、“<”、“≤”、“≥”或“=”填空,并探究规律:(1)4+5 245⨯;(2)3+14 2134⨯; (3)1+12 2112⨯; (4)a +1 221(a >0).(发现)用一句话概括你发现的规律: ;(表达)用符号语言写出你发现的规律并加以证明;(应用)若a >0,求a +1a的最小值. 【答案】探究:(1)>,(2)>,(3)>,(4)≥;发现:两个正数的和大于等于这两数乘积的算术平方根的2倍;表达: a +b ≥2ab ,a >0,b >0);应用:2【分析】﹝发现﹞根据前面4个填空题即可得出规律;﹝表达﹞将这两个数表示为a 、b ,得到关系式即可;﹝应用﹞利用公式代入计算即可得到答案.【详解】﹝发现﹞通过计算即可完成,故答案为>,>,>,≥;﹝表达﹞故答案为:两个正数的和大于等于这两数乘积的算术平方根的2倍;故答案为:a +b ≥2ab (a >0,b >0); ﹝应用﹞由归纳的公式可知,1122a a a a +≥⨯=, ∴1a a+的最小值是2. 【点睛】此题考查代数式类规律的探究,根据所给例子总结得出此式子的规律是解题的关键.6.观察下列各式及其变形过程:11112212a ==-+ 2111233223a ==-+ 3111344334a ==-+ (1)按照此规律,写出第五个等式5a = ;(2)按照此规律,若123···n n S a a a a =++++,试用含n 的代数式表示n S . 【答案】(1)1156-;(2)111n S n =-+. 【分析】(1)根据上述的规律第五个等式a 5=1156-;(2)根据(1)总结得到的规律,用含n 的等式表示a n ,然后计算S n ,抵消合并后,即可得到S n =111n --; 【详解】解:()511156a =- 故答案为:1156- ()2用含字母n (n 为正整数)的等式表示(1)中的一般规律为 ()111111n a n n n n n n ==-++++ 123···n n S a a a a ∴=++++11111111?··223341n n =-+-+-++-+ 111n =-+ 【点睛】此题考查了分母有理化,属于规律型题,根据题意找出一般性规律是解本题的关键. 7.观察例题:∴479<<,即273<<,∴7的整数部分为2,小数部分为(72)-.请你观察上述的规律后试解下面的问题: (1)如果2的小数部分为a ,22-的小数部分为b ,求221a b +-的值.(2)已知a 是173-的整数部分,b 是173-的小数部分,求(﹣a )3+(b +4)2的平方根.【答案】(1)1;(2)±4【分析】(1)按照例题仿写即可得出小数部分和整数部分,代入即可;(2)按照例题仿写即可得出小数部分和整数部分,代入即可.【详解】(1)124<< 即122<<0221∴<-<, ∴2的整数部分为1,小数部分为()21-,22-的小数部分是22-, 21,22a b ∴=-=-, ()()22122122211a b ∴+-=-+--=; (2)161725<< 即4175<<11732∴<-< ∴173-的整数部分为1,173-的小数部分为1731=174---1,174a b ∴==-,()()()()232341174411716a b ∴-++=-+-+=-+=, ()()324a b ∴-++的平方根为:4±.【点睛】本题考查了无理数的估算,熟练掌握数的平方根是解题的关键.8.观察下列等式: 12-12-121212-1()() 13-23-232323-2()() 14-34-343434-3()()回答下列问题:(1)化简:120202019(无需化为最简二次根式) (2)化简:1n 1n (n 为正整数)(3)利用上面所揭示的规律计算(无需化为最简二次根式):111111223342018201920192020 【答案】(1)20202019 (2)1n n +- (3)2020-1【分析】 (1)根据已知得出式子变化规律写出答案即可;(2)进而由(1)的规律得出答案; (3)利用发现的规律化简各式进而求出即可.【详解】解:(1)12020201920202019; 故答案为:20202019; (2)111n n n n =+-++;(n 为正整数); 故答案为:1n n +-;(3)111111223342018201920192020 2132432019201820202019 20201.【点睛】 此题主要考查了分母有理化,正确发现式子中变化规律是解题关键.9.观察等式:3333,22+=2422,33⨯+=5555,44+=⋅⋅⋅. (1)请用含n (3n ≥的整数)的式子表示出上述等式的规律;(2)按上述规律若10109a ab +=,则a b +=________; (3)仿照上面内容,另编一个等式,验证你在(1)中得到的规律. 【答案】(1)11n n n n n n +=--(3n ≥的整数);(2)109+;(3)111111111010+=(答案不唯一) 【分析】(1)根据已知等式,找出等式规律,然后总结公式即可;(2)根据(1)中规律,即可求出a 和b 的值,然后代入即可;(3)根据(1)中规律,再写一个等式,然后验证即可.【详解】(1)第一个等式:3333,22+=即333,31331+=-- 第二个等式:2422,33⨯+= 即4444,1441⨯+=-- 第三个等式:5555,44+=即5155,1555+=-- ∴用含n (3n ≥的整数)的式子表示为:11n n n n n n +=--(3n ≥的整数). (2)根据题意得1010101099+=,则10,a =9b =, 即109a b +=+ 故答案为:109+.(3)此等式可以为:111111111010+=(答案不唯一),验证如下: 1110111111111110101010+=+=(此时n =11). 【点睛】此题考查的是探索规律题,根据已知等式找出规律,并归纳公式是解决此题的关键. 10.先判断下列等式是否成立,再回答问题. ①2211111122++=; ②2211111236++=; ③22111113412++=.(1)试猜想2211145++=______. (2)按照上述各式反映的规律,试用含n 的式子表示这一规律(n 为正整数).【答案】等式成立,(1)1120;(2) 2211111+(1)(1)n n n n ++=++. 【分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子【详解】等式成立.(1)2211145++=1120, 理由是:2211145++=1251611++=4411625=⨯1120; (2)2211111111(1)1(1)n n n n n n ++=+-=++++. 【点睛】 此题考查了实数有关运算的规律问题,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.。
专题5.1轴对称图形和性质(专项训练)(2023春•青秀区校级月考)1. 下列图形中是轴对称图形的是()A. B. C. D.(2023•莲湖区三模)2. 下面关于食品安全的图形中,是轴对称图形的是()A. B.C. D.(2023•南岗区校级一模)3. 下列图形中,不是轴对称图形的是()A. B. C. D.(2023•佛山一模)4. “甲骨文”是中国的一种古老文字,又称“契文”“殷墟文字”,下列甲骨文中,一定不是轴对称图形的是()A. B. C. D.(2023春•海淀区校级月考)5. 图中的图形为轴对称图形,该图形的对称轴的条数为( )A. 1B. 2C. 4D. 8(2021春•威宁县校级期末)6. 在汉字“生活中的日常用品”中,成轴对称的有( )A. 2个B. 3个C. 4个D. 5个(2023•保亭县一模)7. 如图,ABC 与A B C '''∆关于直线l 对称,则B ∠的度数为___.(2023•大埔县校级开学)8. 如图,△ABC 与△DEF 关于直线l 对称,若∠C =40°,∠B =80°,则∠F =______.(2023•陵水县一模)9. 如图,ABC 与A B C '''∆关于直线l 对称,则B ∠的度数为___.(2023•崖州区一模)10. 如图,如果直线l 是ABC 的对称轴,其中70B ∠=︒,则C ∠的度数为___________.(2023•定安县一模)11. 如图,点D 为ABC 的边AC 上一点,点B ,C 关于DE 对称,若6AC =,2AD =,则线段BD 的长度为______.(2022秋•西湖区校级期末)12. 如图,ABC 与DEF 关于直线l 对称,若65A ∠=︒,80B ∠=︒,则F ∠=_________.(2023•琼海一模)13. △ABC 与A B C ''' 关于直线l 对称,则∠B 的度数为________.(2022秋•宣州区期末)14. 如图,在面积为4的等边ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是_____________.(2021春•含山县期末)15. 如图,在边长为1的小正方形网格中,△AOB 的顶点均在恪点上.(1)B 点关于y 轴的对称点坐标为 ;(2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,在图中画出△A 1O 1B 1,并标出点的坐标;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后点P 的对应点P 1的坐标为 .(2020秋•南京期末)16. 如图,在平面直角坐标系中,已知点(14)(44)(21)A B C ---,,,,,,直线l 经过点(1,0),且与y 轴平行.(1)请在图中画出△ABC ;(2)若△A 1B 1C 1与△ABC 关于直线l 对称.请在图中画出△A 1B 1C 1;(3)若点P (a ,b )关于直线l 的对称点为P 1,则点P 1的坐标是 .(2022秋•陕州区期末)17. 如图,点M ,N 在直线l 的同侧,小东同学想通过作图在直线l 上确定一点Q ,使MQ 与QN 的和最小,那么下面的操作正确的是( )A. B.C. D.(2022秋•金平区期末)18. 某区计划在公路旁修建一个核酸采集点P,现有如下四种方案,则核酸采集点P到A B、两个小区之间的距离之和最短的是()A. B.C. D.(2022秋•河口区期末)19. 如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA 于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为( )A. 6cmB. 5cmC. 4cmD. 3cm(2022秋•香洲区期末)20. 已知30AOB ∠=︒,在AOB ∠内有一定点P ,点M ,N 分别是,OA OB 上的动点,若PMN 的周长最小值为3,则OP 的长为( )A. 1.5B. 3C.D. (2023•紫金县校级开学)21. 如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6 cm ,则∠AOB 的度数是( )A. 15B. 30C. 45D. 60(2022秋•湖里区期末)22. 如图,在四边形ABCD 中,C α∠=︒,90B D ∠=∠=︒,E ,F 分别是BC ,DC 上的点,当AEF △的周长最小时,EAF ∠的度数为( )A. αB. 2αC. 180α- D. 1802α-(2022秋•东丽区期末)23. 如图,在四边形ABCD 中,72,90C B D ∠=︒∠=∠=︒,M ,N 分别是BC ,DC 上的点,当AMN 的周长最小时,MAN ∠的度数为( )A. 72︒B. 36︒C. 108︒D. 38︒24. 如图,在△ABC 中,AB =3,AC =4,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP +BP 的最小值是( )A. 4B. 5C. 6D. 725. 如图,AD 是等边△ABC 的BC 边上的中线,F 是AD 边上的动点,E 是AC 边上动点,当EF +CF 取得最小值时,则∠ECF 的度数为( )A. 15°B. 22.5°C. 30°D. 45°26. 如图,在△ABC 中,AB=AC ,BC=4,面积是14,AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A. 6B. 8C. 9D. 1027. 如图,在等边△ABC 中,点E 是AC 边的中点,点P 是△ABC 的中线AD 上的动点,且AD =6,则EP +CP 的最小值是( )A. 12B. 9C. 6D. 3(2022秋•市北区校级期末)28. 如图,在ABC 中,30A ∠=︒,50B ∠=︒,将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,则NCF ∠的度数为( )A. 18︒B. 19︒C. 20︒D. 21︒(2021秋•琼海期末)29. 如图,点D 与点D 关于AE 对称,'56CED ∠=︒,则∠AED 的度数为( )A. 57°B. 60°C. 62°D. 67°(2023春•城阳区期中)30. 如图,将一张长方形纸条沿某条直线折叠,若1116∠=︒,则2∠=( )A. 58︒B. 68︒C. 64︒D. 54︒54(2023春•江都区月考)31. 如图1是长方形纸带,25DEF ∠=︒,将纸带沿EF 折叠成图2,再沿GF 折叠成图3,则图3中的CFE ∠的度数是( )A. 100︒B. 105︒C. 110︒D. 120︒(2022秋•南充期末)32. 如图,长方形纸片ABCD ,P 为边AD 的中点,将纸片沿BP CP ,折叠,使点A 落在E 处,点D 落在F 处,若140∠=︒,则BPC ∠大小为( )A. 105︒B. 110︒C. 115︒D. 120︒(2022秋•川汇区期末)33. 如图,点D ,E 分别在ABC 的AB ,BC 边上,将BDE 沿DE 对折,使点B 与点C 重合,DE 为折痕,若70,A AC BD ∠=︒=,则B ∠的值是( )A. 45︒B. 60︒C. 35︒D. 40︒(2022秋•桥西区期末)34. 长方形ABCD 如图折叠,D 点折叠到D 的位置,已知40D FC '∠=︒,则∠=EFC ( )A. 120︒B. 115︒C. 112︒D. 110︒(2022秋•路北区校级期末)35. 如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC 外的A '处,折痕为DE .如果A CEA BDA αβγ''∠=∠=∠=,,,那么α,β,γ三个角的关系是( )A. 2γβα=+B. 2γαβ=+C. 22γαβ=+D. γαβ=+(2022秋•汝阳县期末)36. 将一张长方形纸片按如图所示的方式折叠,BD 、BE 为折痕,则∠EBD 的度数( )A. 80°B. 90°C. 100°D. 110°(2022秋•禅城区期末)37. 如图把一张长方形的纸按如图那样折叠后,B 、D 两点分别落在了B ',D 点处,若6128AOB ''∠=︒,则BOG ∠的度数为( )A. 596'︒B. 5916'︒C. 574'︒D. 5744'︒(2023春•青秀区校级月考)38. 如图,长方形纸带ABCD 中,AD ∥CB ,将ABCD 沿EF 折叠,C 、D 两点分别与C ′、D ′对应,若∠1=2∠2,则∠1的度数为_____.(2023春•新城区校级月考)39. 如图,将长方形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E .若35CBD ∠=︒,则ADE ∠的度数为________.(2022秋•山西期末)40. 如图,在长方形纸片ABCD 中,AB CD ∥,将纸片ABCD 沿EF 折叠,A ,D 两点的对应点分别为点A ',D .若2CFE CFD ∠∠'=,则∠=AEF _________︒.(2023•长安区四模)41. 如图所示,将长方形ABCD 沿图中标示的DE 折叠,点E 在AB 边上,点A 恰好落在边BC 的点G 处,若54CDG ∠=︒,则DEG ∠的度数为___.专题5.1轴对称图形和性质(专项训练)(2023春•青秀区校级月考)【1题答案】【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项B、C、D均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项A能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2023•莲湖区三模)【2题答案】【答案】B【解析】【分析】根据轴对称图形的定义:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此解答即可.【详解】解:A、该图形不是轴对称图形,故此选项不合题意;B、该图形是轴对称图形,故此选项符合题意;C、该图形不是轴对称图形,故此选项不合题意;D、该图形不是轴对称图形,故此选项不合题意.故选:B.【点睛】本题考查了轴对称图形的识别,熟记轴对称图形的定义是解本题的关键.(2023•南岗区校级一模)【3题答案】【答案】A【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选:A.【点睛】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.(2023•佛山一模)【4题答案】【答案】D【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A,B,C选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以都是轴对称图形;D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2023春•海淀区校级月考)【5题答案】【答案】C【解析】【分析】根据轴对称的性质画出该图形的对称轴即可求解.【详解】解:由题意可知该图的对称轴如图所示:由图可知该图形的对称轴有4条.故选:C .【点睛】本题主要考查了轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.(2021春•威宁县校级期末)【6题答案】【答案】B【解析】【分析】根据轴对称的定义即可求解.【详解】根据轴对称的定义,在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选:B .【点睛】此题主要考查轴对称图形的识别,解题的关键是熟知轴对称的定义.(2023•保亭县一模)【7题答案】【答案】100︒##100度【解析】【分析】根据轴对称的性质得出30C C '==︒∠∠,进而根据三角形内角和定理即可求解.【详解】解:ABC 与A B C '''∆关于直线l 对称,∴30C C '==︒∠∠;1805030100B ∴∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了轴对称的性质,三角形内角和定理,熟练掌握轴对称的性质以及三角形内角和定理是解题的关键.(2023•大埔县校级开学)【8题答案】【答案】40°【解析】【分析】根据轴对称的性质可得结果.【详解】∵△ABC 与△DEF 关于直线l 对称,∴△ABC ≌△DEF ,∴∠F=∠C=40°,故答案为40°.【点睛】本题考查了轴对称的性质.关于轴对称的两个三角形全等是解题的关键.(2023•陵水县一模)【9题答案】【答案】100︒##100度【解析】【分析】根据轴对称的性质得出30C C '==︒∠∠,进而根据三角形内角和定理即可求解.【详解】解:ABC 与A B C '''∆关于直线l 对称,∴30C C '==︒∠∠;1805030100B ∴∠=︒-︒-︒=︒.故答案为:100︒.【点睛】本题考查了轴对称的性质,三角形内角和定理,熟练掌握轴对称的性质以及三角形内角和定理是解题的关键.(2023•崖州区一模)【10题答案】【答案】70︒##70度【解析】【分析】根据直线l 是ABC 的对称轴,得到C B ∠=∠,即可得解.【详解】解:∵直线l 是ABC 的对称轴,70B ∠=︒,∴ABC 是轴对称图形,70C B ∠=∠=︒;故答案为:70︒.【点睛】本题考查轴对称图形.根据直线l 是ABC 的对称轴,得到三角形是轴对称图形,是解题的关键.(2023•定安县一模)【11题答案】【答案】4【解析】【分析】证明BD DC =,可得结论.【详解】解:6AC = ,2AD =,624CD AC AD ∴=-=-=,B ,C 关于DE 对称,4DB DC ∴==,故答案为:4.【点睛】本题考查轴对称的性质,线段的和差定义等知识,解题的关键是掌握线段的垂直平分线的性质,属于中考常考题型.(2022秋•西湖区校级期末)【12题答案】【答案】35°##35度【解析】【分析】根据轴对称的性质与三角形的内角和等于180°可得.【详解】∵△ABC 与△DEF 关于直线l 对称,∴∠A =∠D =65°,∠B =∠E =80°,∴∠F =180°﹣∠D ﹣∠E =180°﹣65°﹣80°=35°.故答案为:35°.【点睛】本题考查轴对称的性质与三角形的内角和,解题的关键是掌握轴对称的性质与三角形的内角和.(2023•琼海一模)【13题答案】【答案】105︒【解析】【分析】根据轴对称的性质,轴对称图形全等,则,,A A B B C C '''∠=∠=∠∠=∠,再根据三角形内角和定理即可求得【详解】 △ABC 与A B C ''' 关于直线l 对称ABC A B C '''∴△≌△∴,,A A B B C C '''∠=∠=∠∠=∠30C C '∴∠=∠=︒45A ∠=︒1804530105B ∴∠=︒-︒-︒=︒故答案为:105︒【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.(2022秋•宣州区期末)【14题答案】【答案】2【解析】【分析】根据AD 是等边三角形的高可知,AD 是线段BC 的垂直平分线,由线段垂直平分线的性质及三角形全等的判定定理可求出EBF ECF ≌△△,故阴影部分的面积等于ABD △的面积,据此即可求解.【详解】解:∵AD 是等边三角形的高,∴AD 是线段BC 的垂直平分线,∴BE CE BF CF EF EF ===,,,∴EBF ECF ≌△△,∴ABD S S = 阴影,∴122ABD ABC S S S === 阴影.故答案为:2.【点睛】本题主要考查了三角形的面积与等边三角形的性质,熟练掌握相关概念是解题关键.(2021春•含山县期末)【15题答案】【答案】(1)(﹣3,2);(2)见解析,A1(-2,5),O1(-3,2),B1(0,4);(2)(a﹣3,b+2).【解析】【分析】(1)根据点(x,y)关于y轴对称的点的坐标为(﹣x,y)解答即可;(2)利用坐标平移变换的性质分别作出O,A,B的对应点O1,A1,B1即可.(3)根据平移变换的规律解决问题即可.【详解】解:(1)∵B(3,2),∴B点关于y轴的对称点坐标为(﹣3,2),故答案为:(﹣3,2);(2)如图,△A1O1B1即为所求,由图可知,A1(-2,5),O1(-3,2),B1(0,4);(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后点P的对应点P1的坐标为(a﹣3,b+2).故答案为:(a﹣3,b+2).【点睛】本题考查坐标与图形变换-轴对称、坐标与图形变换-平移,理解变换规律是解答的关键.(2020秋•南京期末)【16题答案】【答案】(1)详见解析;(2)详见解析;(3)(2,)a b -.【解析】【分析】(1)依次将点(14)(44)(21)A B C ---,,,,,表示在平面直角坐标系中,顺次连接三个点即可;(2)分别作出(14)(44)(21)A B C ---,,,,,关于直线1x =的对称点111A B C 、、,再顺畅连接111A B C 、、即可;(3)根据题意,1P P 、关于直线1x =对称,则1P P 、的横坐标的和的一半是1,纵坐标不变,据此解题.【详解】解:(1)如图所示,△ABC 即为所求;(2)如图所示,△A 1B 1C 1即为所求;(3)设点(,)P a b 关于直线l 的对称点为1(,)P x y ,由题意得,12a x y b+⎧=⎪⎨⎪=⎩2x a y b=-⎧∴⎨=⎩1(2,)P a b ∴-故答案为:(2,)a b -.【点睛】本题考查作图—轴对称变换,是重要考点,难度较易,掌握相关知识是解题关键.(2022秋•陕州区期末)【17题答案】【答案】C【解析】【分析】先作点M 关于l 的对称点M ′,连接M ′N 交l 于点Q ,即可.【详解】作点M 关于直线l 的对称点M ′,再连接M ′N 交l 于点Q ,则MQ+NQ=M ′Q+NQ=M ′N ,由“两点之间,线段最短”,可知点Q 即为所求.故选C【点睛】本题主要考查轴对称的应用以及线段的性质,熟练掌握“马饮水”模型,是解题的关键.(2022秋•金平区期末)【18题答案】【答案】B【解析】【分析】用对称的性质,通过等线段代换,将所求路线转化为两点之间的距离.【详解】解:作点A 关于直线m 的对称点A ',连接A B '交直线m 于P ,根据两点之间线段最短,可知选项B 中的核酸采集点P 到A B 、两个小区之间的距离之和最短,故选:B .【点睛】本题考查了最短路径的数学问题,熟练掌握两点之间,线段最短是解题的关键.(2022秋•河口区期末)【19题答案】【答案】B【解析】【分析】对称轴就是两个对称点连线的垂直平分线,由垂直平分线的性质可得MP =1M P ,NP =2N P ,所以12PP =MP +MN +NP =5cm .【详解】∵P 与1P 关于OA 对称,∴OA 为线段1P P 的垂直平分线,∴MP =1M P ,同理,P 与2P 关于OB 对称,∴OB 为线段2P P 的垂直平分线,∴NP =2N P ,∵△PMN 的周长为5cm .∴12PP =1M P +MN +2N P =MP +MN +NP =5cm ,故选B【点睛】对称轴是对称点的连线垂直平分线,再利用垂直平分线的性质是解此题的关键.(2022秋•香洲区期末)【20题答案】【答案】B【解析】【分析】根据题意画出符合条件的图形,求出60OD OE OP DOE ==∠=︒,,得出等边三角形DOE ,求出3DE =,求出PMN 的周长DE =,即可求出答案.【详解】解:作P 关于OA 的对称点D ,作P 关于OB 的对称点E ,连接DE 交OA 于M ,交OB 于N ,连接PM PN ,,则此时PMN 的周长最小,连接OD OE ,,∵P 、D 关于OA 对称,∴OD OP PM DM ==,,同理OE OP PN EN ==,,∴OD OE OP ==,∵P 、D 关于OA 对称,∴OA PD ⊥,∵OD OP =,∴DOA POA ∠=∠,同理POB EOB ∠=∠,∴223060DOE AOB ∠=∠=⨯︒=︒,∵OD OE =,∴DOE 是等边三角形,∴DE OD OP ==,∵PMN 的周长是3PM MN PN DM MN EN DE ++=++==,∴3OP =故选:B .【点睛】本题考查了轴对称-最短路线问题,关键是画出符合条件的图形.(2023•紫金县校级开学)【21题答案】【答案】B【解析】【分析】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,由对称的性质得出PM=DM ,OP=OC ,∠COA=∠POA ;PN=DN ,OP=OD ,∠DOB=∠POB ,得出∠AOB=12∠COD ,证出△OCD 是等边三角形,得出∠COD=60°,即可得出结果.【详解】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM=DM ,OP=OD ,∠DOA=∠POA ;∵点P 关于OB 的对称点为C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD ,∵△PMN 周长的最小值是6cm ,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP ,∴OC=OD=CD ,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B .【点睛】此题考查轴对称的性质,最短路线问题,等边三角形的判定与性质,熟练掌握轴对称的性质,证明三角形是等边三角形是解题的关键.(2022秋•湖里区期末)【22题答案】【答案】D【解析】【分析】要使AEF △的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A 关于BC 和CD 的对称点A ',A '',即可得出AA E A α'''∠+∠=,即可得出答案.【详解】解:作A 关于BC 和CD 的对称点A ',A '',连接A A ''',交BC 于E ,交CD 于F ,∴AF A F ''=,AE A E '=,∴EA A EAA ''∠=∠,FAD A ''∠=∠,则A A '''即为AEF △的周长最小值,C α∠= ,90ABC ADC ∠=∠=︒180DAB α∴∠=︒-,()180180AA E A αα'''∴∠+∠=︒-︒-=,EA A EAA ''∠=∠ ,FAD A ''∠=∠,EAA A AF α'''∴∠+∠=,1801802EAF ααα∴∠=︒--=︒-,故选:D .【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E ,F 的位置是解题关键.(2022秋•东丽区期末)【23题答案】【答案】B【解析】【分析】根据要使AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC 和BC 的对称点A A '",,即可得出72AA M A HAA ∠'∠"∠'︒+==,进而得出2AMN ANM AA M A ∠∠∠'∠"+=(+)即可得出答案.【详解】解:作A 关于BC 和CD 的对称点A A '",,连接A A '",,交BC 于M ,交CD 于N ,则A A '"即为AMN 的周长最小值.作DA 延长线AH ,∵108DAB ∠=︒,∴72HAA ∠'=︒,∴72AA M A HAA ∠'∠"∠'︒+==,∵MA A MAA NAD A ∠'∠'∠∠"=,=,且MA A MAA AMN NAD A ANM ∠'∠'∠∠∠"∠+=,+=,∴2272144AMN ANM MA A MAA NAD A AA M A ∠∠∠'∠'∠∠"∠'+∠"⨯︒︒+=+++=()==,∴36MAN ∠=︒,故选:B .【点睛】本题考查的是轴对称−最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E ,F 的位置是解题关键.【24题答案】【答案】A【解析】【分析】根据题意知点B 关于直线EF 的对称点为点C ,故当点P 在AC 上时,AP+BP 有最小值.【详解】解:连接PC .∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:A.【点睛】本题考查了轴对称-最短路线问题的应用,明确点A、P、C在一条直线上时,AP+PB有最小值是解题的关键.【25题答案】【答案】C【解析】【分析】过点B作BE⊥AC于点E,交AD于点F,连接CF,根据垂线段最短可知此时EF+CF取得最小值,再利用等边三角形的性质求解即可.【详解】解:如图:过点B作BE⊥AC于点E,交AD于点F,连接CF,根据垂线段最短可知此时EF+CF取得最小值,∵△ABC是等边三角形,∴AE=EC,AF=FC,∴∠FAC=∠FCA,∵AD是等边△ABC的BC边上的中线,∴∠BAD=∠CAD=30°,∴∠ECF=30°.故选:C.【点睛】本题考查最短路径问题——垂线段最短,等边三角形的性质,根据垂线段最短找到点E、F是解题的关键.【26题答案】【答案】C【解析】【详解】解:连接AD,如图所示:∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=14,解得AD=7,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=7+12×4=7+2=9.故选C.【27题答案】【答案】C【解析】【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解即可.【详解】解:作点E关于AD的对称点F,连接CF,∵△ABC 是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,∴AD 是BC 的垂直平分线,∴点E 关于AD 的对应点为点F ,∴CF 就是EP +CP 的最小值.∵△ABC 是等边三角形,E 是AC 边的中点,∴F 是AB 的中点,∴CF 是△ABC 的中线,∴CF =AD =6,即EP +CP 的最小值为6,故选:C .【点睛】本题主要考查了轴对称-最短路线问题以及等边三角形的性质,熟练掌握等边三角形和轴对称的性质是解题的关键.(2022秋•市北区校级期末)【28题答案】【答案】C【解析】【分析】根据三角形内角和定理求出100ACB ∠=︒,再根据折叠的性质得,30ACN A ︒∠=∠=,50FCE B ︒∠=∠=,进而得20NCF ∠=︒.【详解】解:∵30A ∠=︒,50B ∠=︒,∴100ACB ∠=︒,∵将点A 与点B 分别沿MN 和EF 折叠,使点A 、B 与点C 重合,∴30ACN A ︒∠=∠=,50FCE B ︒∠=∠=,∴100305020NCF ︒∠=︒-︒-︒=,故选:C .【点睛】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,折叠的性质是解题关键.(2021秋•琼海期末)【29题答案】【答案】C【解析】【分析】利用轴对称的性质,平角的定义求解即可.【详解】解:∵点D 与点D'关于AE 对称,∴∠AED =∠AED′,∵∠CED′=56°,∴∠AED =12(180°-∠'CED )=12(180°-56°)=62°,故选:C .【点睛】本题考查轴对称的性质,平角的定义等知识,解题的关键是掌握轴对称的性质.(2023春•城阳区期中)【30题答案】【答案】A【解析】【分析】先标注图形,根据“两直线平行,内错角相等”得BAC ∠,再根据折叠的性质得BAD ∠,最后根据“两直线平行,内错角相等”得出答案.【详解】解:如图,∵AB CD ,∴1116B A C ∠=∠=︒.由折叠可得,1582BAD BAC ∠=∠=︒.∵AB CD ,∴258B A D ∠=∠=︒.故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质等,灵活选择平行线的性质定理是解题的关键.(2023春•江都区月考)【31题答案】【答案】B【解析】【分析】根据长方形的性质和翻折的性质求出BFE ∠和BFC ∠的度数,即可求出CFE ∠的度数.【详解】解: 四边形ABCD 为长方形,AD BC ∴∥,25BFE DEF ∴∠=∠=︒.由长方形的性质可知:90A B C D ∠=∠=∠=∠=︒,由翻折的性质可知,图2中,180********EFC DEF ∠=︒-∠=︒-︒=︒,∴15525130BFC EFC BFE ∠=∠-∠=︒-︒=︒.∴图3中,13025105CFE BFC BFE ∠=∠-∠=︒-︒=︒.故答案选:B .【点睛】本题考查了翻折的性质,要充分利用长方形的性质和翻折的性质解题,从翻折变化中找到不变量是解题的关键.(2022秋•南充期末)【32题答案】【答案】B【解析】【分析】根据折叠的性质的到12APB EPB APE ∠=∠=∠,12DPC FPC DPF ∠=∠=∠,结合平角的定义及140∠=︒即可得到答案;【详解】解:∵纸片沿BP CP ,折叠,使点A 落在E 处,点D 落在F 处,∴12APB EPB APE ∠=∠=∠,12DPC FPC DPF ∠=∠=∠,∵140∠=︒,∴1801140APE DPF ∠+∠=︒-∠=︒,∴11()170401102BPC EPB FPC APE DPF ∠=∠+∠+∠=∠+∠+∠=︒+︒=︒,故选B .【点睛】本题考查矩形中折叠及整体代换的思想,解题的关键是根据折叠得到角度相等整体代换.(2022秋•川汇区期末)【33题答案】【答案】C【解析】【分析】由折叠的性质得出B BCD ∠=∠,设B BCD x ∠=∠=,由三角形的外角的性质求出2ADC x ∠=,再由,BD CD AC BD ==可得AC CD =,则可得2ADC A x ∠=∠=.最后列方程求解即可.【详解】解:∵将BED 沿DE 折叠,使点B 与点C 重合,∴BD CD =,∴B BCD ∠=∠,设B BCD x ∠=∠=,∴2ADC B BCD x ∠=∠+∠=,∵,BD CD AC BD ==,∴AC CD =,∴2ADC A x ∠=∠=,∵70,A ∠=︒∴270x =解得:35x =,∴35B ∠=︒,故选:C .【点睛】本题考查了折叠的性质,等腰三角形的性质及三角形的外角性质,利用折叠的性质及三角形的外角性质,理解等腰三角形的性质解题的关键.(2022秋•桥西区期末)【34题答案】【答案】D【解析】【分析】根据翻折不变性可知,DFE D FE ∠∠=',又因为40D FC ∠'=︒,根据平角的定义,可求出EFC ∠的度数.【详解】根据翻折不变性得出,DFE EFD ∠∠=',∵40180D FC DFE EFD D FC ∠∠∠∠'=︒+'+'=︒,,∴218040140EFD ∠'=︒-︒=︒,∴70EFD ∠'=︒,∴7040110EFC EFD D FC ∠∠∠='+'=︒+︒=︒.故选D .【点睛】此题考查了角的计算和翻折变化,掌握长方形的性质和翻折不变性是解题的关键.(2022秋•路北区校级期末)【35题答案】【答案】B【解析】【分析】设,AC A D '交于点F ,由折叠得:A A '∠=∠,根据将三角形的外角的性质得出BDA A AFD AFD A CEA '''∠=∠+∠∠=∠+∠,,进而即可求解.【详解】解:如图所示,设,AC A D '交于点F ,由折叠得:A A '∠=∠,BDA A AFD AFD A CEA '''∠=∠+∠∠=∠+∠, ,A CEA BDA αβγ''∠=∠=∠=,, ,2BDA γααβαβ'∴∠==++=+,故选:B .【点睛】本题考查了三角形外角的性质,折叠问题,熟练掌握三角形外角的性质以及折叠的性质是解题的关键.(2022秋•汝阳县期末)【36题答案】【答案】B【解析】【分析】根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,且∠EBD =∠A ′BE +∠DBC ′,继而即可求出答案.【详解】解:根据翻折的性质可知,∠ABE =∠A ′BE ,∠DBC =∠DBC ′,又∵∠ABE +∠A ′BE +∠DBC +∠DBC ′=180°,∴∠EBD =∠A ′BE +∠DBC ′=180°×12=90°.故选B .【点睛】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE =∠A ′BE ,∠DBC =∠DBC ′是解题的关键.(2022秋•禅城区期末)【37题答案】【答案】B【解析】【分析】根据折叠的性质得出BOG B OG ∠=∠',进而根据平角的定义可得1(180)2B OG AOB ''∠=∠︒-,代入数据即可求解.【详解】解: 折叠后,B 、D 两点分别落在了B ',D 点处,BOG B OG ∴∠='∠,'6128AOB ∠=︒' ,1(180)2B OG AOB ''︒∴∠=-∠()118061282=⨯︒︒'-=5916'︒.故选:B .【点睛】本题考查了角度的计算,折叠的性质,熟练掌握折叠的性质是解题的关键.(2023春•青秀区校级月考)【38题答案】【答案】72°【解析】【分析】由题意∠1=2∠2,设∠2=x ,易证∠DEF =∠1=∠FED ′=2x ,构建方程即可解决问题.【详解】解:由翻折的性质可知:∠DEF =∠FED ′,∵AD ∥BC ,∴∠DEF =∠1,∵∠1=2∠2,∴设∠2=x ,则∠DEF =∠1=∠FED ′=2x ,∵∠2+∠DEF +∠FED ′=180°,∴5x =180°,∴x =36°,∴∠1=2∠2=2x =72°.故答案为:72°.【点睛】本题考查平行线的性质,翻折变换等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.(2023春•新城区校级月考)【39题答案】【答案】20︒【解析】【分析】根据折叠的性质和平行线的性质,可以得到ADB ∠和EDB ∠的度数,然后即可得到ADE ∠的度数.【详解】解:由折叠的性质可得:CDB EDB ∠=∠,AD BC ∥ ,35CBD ∠=︒,35CBD ADB ∴∠=∠=︒,90C ∠=︒ ,903555CDB ∴∠=︒-︒=︒,55EDB ∴∠=︒,553520ADE EDB ADB ∴∠=∠-∠=︒-︒=︒,故答案为:20︒.【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.(2022秋•山西期末)【40题答案】【答案】72【解析】【分析】设CFD x '∠=,则22CFE CFD x '∠=∠=,3EFD x '∠=,由折叠的性质得:23180x x +=︒,36272CFE ∠=︒⨯=︒,进而得出根据平行线的性质即可求解.【详解】解:设CFD x '∠=,则22CFE CFD x '∠=∠=,3EFD x '∠=,由折叠的性质得:3DFE EFD x '∠=∠=,180DFE CFE ∠+∠=︒ ,即23180x x +=︒,36x ∴=︒,36272CFE ∴∠=︒⨯=︒,AB CD ∥,72AEF CFE ∴∠=∠=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握平行线的性质,折叠性质是解题的关键.(2023•长安区四模)【41题答案】【答案】72︒##72度【解析】【分析】根据折叠的性质得出18ADE GDE ∠=∠=︒,进而根据90DEG GDE ∠=︒-∠,即可求解.【详解】解:54CDG ∠=︒ ,90905436ADG CDG ∴∠=︒-∠=︒-︒=︒,又11361822ADE GDE ADG ︒︒∠=∠=∠=⨯= ,90D A E D G E ∠=∠=︒90901872DEG GDE ∴∠=︒-∠=︒-︒=︒.故答案为:72︒.【点睛】本题考查了折叠的性质,熟练掌握是折叠的性质解题的关键.。
实际问题专项初中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分设该班胜x场,负y场,则根据题意,下列方程组中正确的是( )A.26216x yx y+=⎧⎨+=⎩B.26216x yx y+=⎧⎨+=⎩C.16226x yx y+=⎧⎨+=⎩D.16226x yx y+=⎧⎨+=⎩2.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行.问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为( )A.32,29y xy x=-⎧⎨=+⎩B.3(2),29y xy x=-⎧⎨=+⎩C.32,29y xy x=-⎧⎨=-⎩D.3(2),29y xy x=-⎧⎨=-⎩3.某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩4.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为( )A.10216x yx y+=⎧⎨+=⎩B.10216x yx y+=⎧⎨-=⎩C.10216x yx y+=⎧⎨-=⎩D.10216x yx y+=⎧⎨+=⎩5.《九章算术》在中国古代数学上有其独到的成就,不仅最早提到了分数问题,首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱,问买鸡的人数、鸡的价格各是多少?通过计算可得买鸡的人数是( )A.6B.7C.8D.96.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为( )A.46383548x yx y+=⎧⎨+=⎩B.46483538y xy x+=⎧⎨+=⎩C.46485338x yx y+=⎧⎨+=⎩D.46483538x yx y+=⎧⎨+=⎩7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹,若设小马有x 匹,大马有y 匹,则下列方程组中正确的是( ) A.100,3.x y y x +=⎧⎨=⎩B.100,3.x y x y +=⎧⎨=⎩C.10013100.3x y x y +=⎧⎪⎨+=⎪⎩,D.10013100.3x y y x +=⎧⎪⎨+=⎪⎩,8.我国古代数学经典著作《九章算术》中有这样一题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何.”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问:人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( ) A.83,74y x y x =-⎧⎨=+⎩B.83,74y x y x =+⎧⎨=+⎩C.83,74y x y x =-⎧⎨=-⎩D.83,74y x y x =+⎧⎨=-⎩9.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是( )A.275,3x y y x +=⎧⎨=⎩B.275,3x y x y +=⎧⎨=⎩C.275,3x y y x +=⎧⎨=⎩D.275,3x y x y +=⎧⎨=⎩10.如图的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量也相等,则每块巧克力和每个果冻的质量分别为( )A.10 g ,40 gB.15 g ,35 gC.20 g ,30gD.30 g ,20 g11.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得16分.若设该队胜的场数为x ,负的场数为y ,则可列方程组为( ) A.10216x y x y +=⎧⎨+=⎩,B.10216x y x y +=⎧⎨-=⎩,C.10216x y x y +=⎧⎨-=⎩,D.10216x y x y +=⎧⎨+=⎩,12.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2327214x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为( )A.2164322x yx y+=⎧⎨+=⎩B.2164327x yx y+=⎧⎨+=⎩C.2114327x yx y+=⎧⎨+=⎩D.2114322x yx y+=⎧⎨+=⎩二、解答题13.寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元.(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?14.为加快复工复产,某企业需运输一批物资,据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1 350箱.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批货物,每辆大货车一次需费用5 000元,每辆小货车一次需要3 000元.若运输物资不少于1 500箱,且总费用小于54 000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用为多少元.15.今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到极大的影响,“一方有难,八方支援”,某市筹集了大量的生活物资,用A、B两种型号的货车分两批运往受灾严重的地区,具体运输情况如下:(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车试问:至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?16.“绿水青山就是金山银山”,为保护生态环境,,A B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员的方案?17.某旗舰网店用8000元购进甲、乙两种型号的口罩,销售完后共获利2800元,进价和售价如表:进价(元/袋)(1)求该网店购进甲、乙两种型号口罩各多少袋;(2)该网店第二次以原价购进甲、乙两种型号口罩,购进乙种型号口罩袋数不变,而购进甲种型号口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种型号的口罩都售完,要使第二次销售活动获利不少于3680元,乙种型号的口罩最低售价为每袋多少元?18.小欣打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位.已知第一、二束气球的价格如图,求第三束气球的价格.参考答案1.答案:D解析:由比赛场次为16可列方程16x y+=,由16场比赛中得26分可列方程226x y+=.故选D.2.答案:B解析:由“若3人坐一辆车,则两辆车是空的”得3(2)y x=-,由“若2人坐一辆车,则9人需要步行”得29y x=+,联立这两个方程即可.故选B.3.答案:A解析:由“旅店一共有70个房间”可得70x y+=,由“大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满”可得86480x y+=,故选A.4.答案:A解析:根据在10场比赛中得到16分,可列方程组为10,216,x yx y+=⎧⎨+=⎩,故选A.5.答案:D解析:设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”可得911,616,y xy x=-⎧⎨=+⎩解得9,70.xy=⎧⎨=⎩所以合伙买鸡者有9人,鸡的价格为70文钱.故选D.6.答案:D解析:根据“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,可列方程组为4648, 3538.x yx y+=⎧⎨+=⎩故选D.7.答案:C解析:本题考查列二元一次方程组、数学文化.根据题中的相等关系得100,13100,3x yx y+=⎧⎪⎨+=⎪⎩故选C.8.答案:A解析:由“每人出八钱,会多三钱”列方程,得83y x=-;由“每人出七钱,又差四钱”列方程,得74y x=+,联立两个方程得83,7 4.y xy x=-⎧⎨=+⎩故选A.9.答案:D解析:根据图示可得,275,3x yx y+=⎧⎨=⎩故选D.10.答案:C解析:设每块巧克力的质量为x g,每个果冻的质量为y g.由题意,得32,50,x y x y =⎧⎨+=⎩解得20,30.x y =⎧⎨=⎩故选C.11.答案:A解析:这个队胜x 场,负y 场, 根据题意,得10,216.x y x y +=⎧⎨+=⎩故选A.12.答案:C 解析:13.答案:(1)16,10 (2)25解析:(1)设每副围棋x 元,每副中国象棋y 元: 由题意,得3598,83158,x y x y +=⎧⎨+=⎩解得16,10.x y =⎧⎨=⎩∴每副围棋16元,每副中国象棋10元. (2)设购买围棋z 副,则购买中国象棋()40z -副. 由题意,得()161040550z z +-≤,解得25z ≤. ∴最多可以购买25副围棋. 14.答案:(1)150,100(2)共有3种运输方案,分别为6辆大货车,6辆小货车;7辆大货车,5辆小货车;8辆大货车,4辆小货车;当租6辆大货车,6辆小货车时所需费用最少,最少费用为48 000元 解析:(1)设1辆大货车一次运输x 箱物资,1辆小货车一次运输y 箱物资. 由题意,得23600,561350,x y x y +=⎧⎨+=⎩解得150,100.x y =⎧⎨=⎩∴1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资. (2)设计划用m 辆大货车,则小货车需()12m -辆. 由题意,得50003000(12)54000,150100(12)1500,m m m m +-<⎧⎨+-≥⎩解得69m ≤<.m 为正整数,6,7,8m ∴=.∴共有3种运输方案,分别为6辆大货车,6辆小货车;7辆大货车,5辆小货车;8辆大货车,4辆小货车. 设租车总费用为w 元,则50003000(12)200036000w m m m =+-=+, 20000,w >∴的值随m 值的增大而增大,∴当6m =时,w 取得最小值,最小值为48 000.∴共有3种运输方案,分别为6辆大货车,6辆小货车;7辆大货车,5辆小货车;8辆大货车,4辆小货车;当租6辆大货车,6辆小货车时所需费用最少,最少费用为48 000元.15.答案:(1)A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)至少还需联系6辆B 种型号货车才能满足要求.解析:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资.由题意,得328,2550,x y x y +=⎧⎨+=⎩解得10,6.x y =⎧⎨=⎩∴A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车. 由题意,得310662.4m ⨯+≥,解得 5.4m ≥.m 为正整数,∴至少还需联系6辆B 种型号货车才能满足要求.16.答案:(1)清理养鱼网箱的人均支出费用为2 000元,清理捕鱼网箱的人均支出费用为3 000元 (2)有2种分配清理人员的方案,方案一:清理养鱼网箱人数为18,清理捕鱼网箱人数为22;方案二:清理养鱼网箱人数为19,清理捕鱼网箱人数为21解析:(1)设清理养鱼网箱的人均支出费用为x 元,清理捕鱼网箱的人均支出费用为y 元, 根据题意,列方程组得15957000,101668000,x y x y +=⎧⎨+=⎩解得2000,3000.x y =⎧⎨=⎩答:清理养鱼网箱的人均支出费用为2 000元,清理捕鱼网箱的人均支出费用为3 000元. (2)设清理养鱼网箱人数为m ,则清理捕鱼网箱人数为()40m -,根据题意,得20003000(40)102000,40,m m m m +-≤⎧⎨<-⎩解得1820m ≤<, m 是整数,18m ∴=或19,∴当18m =时,4022m -=,即清理养鱼网箱人数为18,清理捕鱼网箱人数为22;当19m =时,4021m -=,即清理养鱼网箱人数为19,清理捕鱼网箱人数为21.因此,有2种分配清理人员的方案,方案一:清理养鱼网箱人数为18,清理捕鱼网箱人数为22;方案二:清理养鱼网箱人数为19,清理捕鱼网箱人数为21.17.答案:(1)该网店购进甲种型号口罩200袋,乙种型号口罩160袋. (2)乙种型号的口罩最低售价为每袋33元.解析:(1)设该网店购进甲种型号口罩x 袋,乙种型号口罩y 袋, 依题意得20258000,(2620)(3525)2800,x y x y +=⎧⎨-+-=⎩解得200,160.x y =⎧⎨=⎩答:该网店购进甲种型号口罩200袋,乙种型号口罩160袋. (2)设乙种型号的口罩售价为每袋m 元, 依题意得(2620)2002(25)1603680m -⨯⨯+-⨯≥, 解得33m ≥.答:乙种型号的口罩最低售价为每袋33元.18.答案:设一个笑脸气球的单价为x 元,一个爱心气球的单价为y 元.根据题意得316,320.x y x y +=⎧⎨+=⎩①②()2÷①+②,得2218x y +=.故第三束气球选的价格为18元. 解析:。
中考数学七年级下册知识专题训练50题含答案一、单选题1.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩的x 与y 互为相反数,则m 的值为( )A .11B .-1C .1D .-112.如图,OA ⊥OB ,若⊥1=55°,则⊥2的度数是( )A .35°B .40°C .45°D .60°3.据医学研究:猴痘病毒的平均直径约为0.00000023米,0.00000023米用科学记数法表示为( ) A .72.310-⨯米B .82.310-⨯米C .92.310-⨯米D .102.310-⨯米4.若21x y =⎧⎨=⎩是方程3ay x -=的解,则a 的取值是( )A .1B .2C .5D .5-5.下列运算正确的是( ). A .236a a a =B .21a a a -=C .236()a a =D .842a a a ÷=6.石墨烯是目前世界上最薄却又最坚硬同时还是导电性能最好的纳米材料,其理论厚度大约仅0.00000034纳米,将0.00000034用科学记数法表示为( ) A .73.410-⨯B .83.410-⨯C .83410-⨯D .70.3410-⨯7.下列等式从左到右的变形,属于因式分解的是( ) A .()m x y mx my -=- B .22()()a b a b a b -=+- C .221(2)1x x x x ++=++D .2(3)(1)43x x x x ++=++8.将0.0012用科学记数法表示为( ) A .1.2×10﹣2B .1.2×10﹣3C .1.2×10﹣4D .1.2×10﹣59.计算()32a ,结果正确的是( )10.若二次三项式()2316x m x +++是一个完全平方式,则m 的值为( )A .1B .1或-7C .5D .5或11-11.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =.则这个等式是( ) A .32y x =-+B .32y x =+C .32y x =-D .32y x =--12.如图,在ABC 中,10AB =,8AC =,AD 为中线,则ABD △与ACD 的周长之差为( )A .1B .2C .3D .413.下列四个图形中,1∠和2∠是内错角的是( )A .B .C .D .14.方程组233x y x y +=⎧⎨=+⎩的解是( )A .21x y =⎧⎨=⎩B .21x y =-⎧⎨=⎩C .21x y =-⎧⎨=-⎩D .21x y =⎧⎨=-⎩15.化简22222a b a ab b --+的结果是:( )A .2a bab- B .a b a b +- C .a b a b -+D .2a bab+ 16.如图,在ABC 中, D 、E 分别是AB 、AC 的中点,CD 与BE 相交于点O ,AO 的延长线与BC 相交于点F ,则AF 一定为ABC 的( ).A .高线B .角平分线C .中线D .以上都是17.在同一平面内两条不重合的直线的位置关系是( ) A .平行或垂直 B .平行或相交 C .垂直或相交 D .以上都不对18.在平面直角坐标系中,我们把横纵坐标均为整数的点称为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.例如:图中ABC 的与四边形DEFG 均为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点记为L ,已知格点多边形的面积可表示为S N aL b =++(a ,b 为常数),若某格点多边形对应的14N =,7L =,则S =( )A .16.5B .17C .175.D .1819.下列运算正确的是( ) A .m 2+2m 3=3m 5B .m 2•m 3=m 6C .(﹣m )3=﹣m 3D .(mn )3=mn 320.下列各式中,正确的是( ) A .y 3·y 2=y 6B .(a 3)3=a 6C .(-x 2)3=-x 6D .-(-m 2)4=m 8二、填空题21.若点()21,2m m -+-在x 轴上,则m =________. 22.分解因式:9a 2﹣4=_____.23.如图,直线AB ,CD ,EF 相交于点O ,⊥AOC 的邻补角是___________.若⊥AOC =50°,则⊥BOD =________,⊥COB =________.24.若关于x ,y 的多项式3224231xy ax xy x --+-不含2x 的项,则=a ______. 25.因式分解:2224a a b -=___________.26.若点A (m -1,m +2)在x 轴上,则点A 的坐标为_________. 27.已知4812M a b =,M=______________.28.已知三角形的三边长分别为23m ,,,则m 的取值范围是_______. 29.计算:()3222()a ab -=________.30.已知32×9m ÷27=323,则m =_____.31.若a 、b 、c 为三角形的三边长,且a 、b 满足|a ﹣3|+(b ﹣2)2=0,则第三边长c 的取值范围是_____.32.附中文化源远流长,潜移默化.学校通过推出的“你的名字,我的记忆”校园文创产品的设计活动,给学子们提供了施展自己才华的平台,经过选拔评比,学校拟推出A 、B 、C 三款校园文创产品,并以零售和礼盒两种形式销售(各产品的零售单价均为正整数,礼盒售价为各产品零售价之和).其中甲礼盒含有3件A 产品,2件B 产品,2件C 产品,乙礼盒含有4件A 产品,1件B 产品,1件C 产品,丙礼盒含有2件A 产品,4件B 产品,1件C 产品.甲礼盒的售价比乙礼盒多11元,甲礼盒的售价比丙礼盒售价的2倍少80元,并且A 产品的单价不超过10元.则A 产品与B 产品的单价之比为______.33.已知2,32m n a b ==,m ,n 为正整数,则252m n -=______.(用含a ,b 的式子表示)34.因式分解:21025x x -+=______. 35.在实数范围内分解因式:428a -=______;36.22164x kxy y ++是一个完全平方式,则k =_________________37.计算:()()223a a +-=__________;分解因式:32a ab -=___________. 38.很多代数公式都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式等.【提出问题】如何用表示几何图形面积的方法计算:3333123n ++++=【规律探究】观察下面表示几何图形面积的方法:【解决问题】请用上面表示几何图形面积的方法写出3333123n ++++=______=______(用含n 的代数式表示); 【拓展应用】根据以上结论,计算:3333246(2)n ++++的结果为________.39.已知:1纳米=1×10﹣9米.用科学记数法表示:250纳米=___米. 40.已知:22x y 5,x y 11,+=+=则代数式3223x y-3x y xy +的值为________.三、解答题41.计算:()()2333322a a a a ⋅+-+-42.解方程组.43.解三元一次方程组:(1)3423126x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩(2)302223x z x y z x y z +-=⎧⎪-+=⎨⎪--=-⎩.44.已知O 为直线AB 上的一点,⊥COE 是直角,OF 平分⊥AOE .(1)如图1,若⊥COF =34°,则⊥BOE =______;(2)如图1,若⊥BOE =80°,则⊥COF =______;(3)若⊥COF =m °,则⊥BOE =______度;⊥BOE 与⊥COF 的数量关系为______. (4)当⊥COE 绕点O 逆时针旋转到如图2的位置时,(3)中⊥BOE 与⊥COF 的数量关系是否仍然成立?请说明理由. 45.因式分解: (1)4x 2﹣64;(2)81a 4﹣72a 2b 2+16b 4;(3)(x 2﹣2x )2﹣2(x 2﹣2x )﹣3.46.从夏令营地到学校先下山后走平路,某人骑自行车以12千米/时速度下山,再以9千米/时速度通过平地,用了1小时,返回时以8千米/时通过平路,6千米/时速度上山回到原地,共用1小时15分钟,求营地到学校有多远?47.如图,已知DC ⊥FP ,⊥1=⊥2,38DEF ∠=︒,⊥AGF =70°,FH 平分⊥EFG . (1)求证:DC ⊥AB ; (2)求⊥PFH 的度数.48.马虎同学化简()()()2222a b a b a b +-+-的解题过程如下:解:原式()222244a b a b =+--(第一步)222244a b a b =+--(第二步)0=(第三步)(1)马虎同学的化简过程从第__________步开始出现错误; (2)请你帮助他写出正确的化简过程. 49.已知:如图,AD⊥EF ,⊥1=⊥2. (1) AB⊥DG 吗? 请说明理由.(2)若⊥B=50°⊥C=62°,求⊥DGC 的度数.50.因式分解(1)(2)参考答案:1.A【分析】由x 与y 互为相反数,得到y =-x ,代入方程组计算即可求出m 的值. 【详解】解:由题意得:y =-x , 代入方程组得:33221x x m x x m -++⎧⎨-⎩=①=②,消去x 得:32123m m +-=, 即3m +9=4m -2, 解得:m =11. 故选:A .【点睛】本题考查解二元一次方程组,解题的关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法. 2.A【详解】试题分析:⊥OA⊥OB , ⊥⊥AO⊥=90°,即⊥2+⊥1=90°. ⊥⊥1=55°,⊥⊥2=35°. 故选A .考点:1.垂直的性质;2.数形结合思想的应用. 3.A【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.【详解】解:0.00000023米=72.310-⨯米. 故选:A【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键. 4.C【分析】将x 与y 的值代入方程计算即可求出a 的值. 【详解】解:将x=2,y=1代入方程得:a-2=3,解得:a=5, 故选:C .【点睛】本题考查二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 5.C【分析】见解析.【详解】235a a a =,2121a a a a -=-,844a a a ÷=,所以选C. 【点睛】掌握整式的运算法则是解题的关键. 6.A【分析】科学记数法表示绝对值小于1的数形如,11001,na n a <⨯<为负整数,据此解题.【详解】解:0.00 000 034用科学记数法表示为73.410-⨯, 故选:A .【点睛】本题考查用科学记数法表示绝对值小于1的数,是基础考点,难度较易,掌握相关知识是解题关键. 7.B【分析】根据因式分解的定义直接判断即可.【详解】解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .没把一个多项式化为几个整式的积的形式,不是因式分解,故此选项不符合题意;D .属于整式乘法,不属于因式分解,故本选项不符合题意; 故答案为:B .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解. 8.B【分析】用科学记数法表示绝对值小于1的数,形如,11001,na n a <⨯<负整数.【详解】解:将0.0012用科学记数法表示为1.2×10﹣3 故选:B .【点睛】本题考查用科学记数法表示绝对值小于1的数,是基础考点,掌握相关知识是解题关键. 9.B【分析】根据幂的乘方,底数不变,指数相乘,计算后直接选取答案. 【详解】()326a a =,故选:B .【点睛】本题考查了幂的乘方的性质,熟练掌握性质是解题的关键. 10.D【分析】根据首末两项是x 和4的平方,那么中间项为加上或减去x 和4的乘积的2倍也就是()3m x +,由此对应求得m 的数值即可.【详解】解:⊥()2316x m x +++是一个多项式的完全平方,⊥()324m x x +=±⨯⨯, ⊥38m +=±,解得:5m =或11m =-. 故选:D .【点睛】此题考查完全平方公式问题,关键要根据完全平方公式的结构特征进行分析,两数和的平方加上或减去它们乘积的2倍,就构成完全平方式,在任意给出其中两项的时候,未知的第三项均可求出,要注意积的2倍符号,有正负两种情形,不可漏解. 11.A【分析】分别把当x=2时,y=-4,当x=-2时,y=8代入等式,得到关于k 、b 的二元一次方程组,求出k 、b 的值即可.【详解】解:分别把当x=2时,y=-4,当x=-2时,y=8代入等式y=kx+b 得,4282k b k b -=+⎧⎨=-+⎩①②, ⊥-⊥得,4k=-12, 解得k=-3,把k=-3代入⊥得,-4=-3×2+b , 解得b=2,分别把k=-3,b=2的值代入等式y=kx+b 得,y=-3x+2,故选:A .【点睛】本题主要考查的是解二元一次方程组的加减消元法和代入消元法,难度适中. 12.B【分析】根据三角形中线的性质得BD CD =,则两个三角形的周长之差就是AB 和AC 长度的差.【详解】解:⊥AD 是中线,⊥BD CD =,⊥ABD CAB AD BD =++,ACD C AC AD CD =++△, ⊥1082ABD ACD C C AB AC -=-=-=.故选:B .【点睛】本题考查中线的性质,解题的关键是掌握三角形中线的性质.13.B【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A 、⊥1与⊥2不是内错角,选项不符合题意;B 、⊥1与⊥2是内错角,选项符合题意;C 、⊥1与⊥2不是内错角,选项不符合题意;D 、⊥1和⊥2不是内错角,选项不符合题意;故选:B .【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形.14.D【分析】把方程⊥代入方程⊥先求解,y 再求解x 即可得到答案.【详解】解:233x y x y ①②把⊥代入⊥得:363,y解得:1,y =-把1y =-代入⊥得:2,x =所以方程组的解为:2.1x y故选D【点睛】本题考查的是二元一次方程组的解法,掌握“代入法解二元一次方程组”是解本题的关键.15.B【分析】用平方差公式和完全平方公式进行化简即可 【详解】解:22222a b a ab b --+ ()()()2a b a b a b -+=- a b a b +=- 故选:B【点睛】本题考查了分式的化简,解决问题的关键是熟练应用平方差公式和完全平方公式 16.C【分析】结合题意,根据三角形中线和重心的性质,即可得到答案.【详解】⊥三角形三条中线相交于一点,这点是三角形的重心又⊥D 、E 分别是AB 、AC 的中点,CD 与BE 相交于点O⊥点O 是三角形的重心⊥AF 经过点O⊥AF 是ABC 的中线故选:C .【点睛】本题考查了三角形中线、三角形重心的知识;解题的关键是熟练掌握三角形中线、三角形重心的性质,从而完成求解.17.B【详解】在同一平面内,不重合的两条直线位置关系只有平行和相交两种.18.A【分析】先分别根据ABC 和四边形DEFG 中,S 、N 、L 的数值得出关于a 和b 的二元一次方程组,解得a 和b 的值,则可求得当14N =,7L =时S 的值.【详解】解:ABC 中,1S =,0N =,4L =,则41a b +=;同理,四边形DEFG 中,24122112232 3.5S =⨯-⨯÷-⨯÷-⨯÷=,2N =,5L =⊥25 3.5a b ++=;联立得4125 3.5a b a b +=⎧⎨++=⎩解得:0.5a =,1b⊥14N =,7L =,则14 3.5116.5S =+-=,故选:A .【点睛】本题属于创新题型,主要考查了二元一次方程相关知识以及学生对于题意理解和数据分析能力.19.C【分析】根据合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方逐一计算可得.【详解】A. m 2与2m 3不是同类项,不能合并,故错误;B. m 2•m 3=m 5,故错误;C. (﹣m)3=﹣m 3,正确;D. (mn)3=m 3n 3,故错误,故选C.【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法、幂的乘方与积的乘方的运算法则.20.C【分析】根据同底数幂的乘法,幂的乘方与积的乘方的运算法则计算,利用排除法即可得到答案.【详解】A. 应为:32325y y y y +⋅==,故本选项错误; B. 应为:33339()a a a ⨯==, 故本选项错误;C.23236()x x x ,⨯-=-=-故正确;D. 应为:24248()m m m ⨯--=-=-, 故本选项错误;故选C.【点睛】考查同底数幂的乘法,幂的乘方与积的乘方,掌握它们的运算法则是解题的关键. 21.2【分析】根据点在x 轴上的坐标的特征,即可求解.【详解】解:⊥点()21,2m m -+-在x 轴上,⊥20m -= ,⊥2m = .故答案为:2 .【点睛】本题考查了x 轴上点的坐标特征,解决本题的关键是掌握好坐标轴上的点的坐标的特征:x 轴上的点的纵坐标为0.22.(3a ﹣2)(3a +2)【分析】直接利用平方差公式分解因式即可.【详解】222294(3)32)(2)(3a a a a --==-+故答案为:32)(2)(3a a -+.【点睛】本题考查了利用平方差公式分解因式,分解因式常用方法有:提取公因式法、公式法(完全平方公式、平方差公式)、十字交叉相乘法、配方法等.23. ⊥AOD 、⊥BOC 50° 130°【分析】根据邻补角必须是相邻的两个角,即有一条公共边和一个公共顶点的互补的两个角;对顶角有一个公共顶点,其中一个角的两条边是另一个角的两条边的反向延长线,对顶角的度数相等即可得出答案.【详解】解:⊥AOC 的邻补角是⊥BOC ,⊥AOD ;⊥⊥BOD 的对顶角是⊥AOC ,⊥AOC =50°,⊥⊥BOD =⊥AOC =50°,⊥⊥COB 是⊥AOC 邻补角,⊥⊥COB =180°-⊥AOC =130°.故答案为:⊥AOD 、⊥BOC ,50°,130°【点睛】本题主要考查了邻补角与对顶角的概念和特点,熟练掌握邻补角与对顶角的定义是解题的关键.24.12##0.5【分析】先把多项式关于2x 项合并,由题意得出2x 项的系数为0,进而求出即可.【详解】解:3224231xy ax xy x --+- ()3242131xy a x xy =----因为关于x 、y 的多项式3224231xy ax xy x --+-不含2x 的项,可得:210a -=, 解得:12a =, 故答案为:12.【点睛】此题主要考查了多项式系数中的字母求值,多项式中不含哪一项,哪一项的系数为0,注意要先合并同类项.25.()()21212a b b -+【分析】先提取公因式,再用平方差公式来分解因式.【详解】解: ()()()2222224141212a a b a b a b b -=-=-+ .故答案为: ()()21212a b b -+【点睛】本题考查的是用提公因式法、平方差公式分解因式,能够熟练掌握因式分解的方法是解题的关键.26.(-3,0)【分析】直接利用x 轴上点的坐标特点得出m 的值,即可得出答案.【详解】解:⊥A (m -1,m +2)在x 轴上,⊥m +2=0,解得:m =-2,⊥m -1=-3,⊥点A 的坐标是:(-3,0).故答案为:(-3,0).【点睛】本题主要考查了点的坐标,正确掌握x 轴上点的坐标特点是解题关键. 27.23a b ±【分析】根据积的乘方逆运算即可求解.【详解】⊥()423812a a b b =±⊥M=23a b ±故填:23a b ±.【点睛】此题主要考查幂的运算,解题的关键是熟知积的乘方公式.28.15m <<##51m >>【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得答案.【详解】解:⊥三角形的三边长分别为23m ,,, ⊥3232m -<<+,即15m <<.故答案为:15m <<.【点睛】本题考查了确定三角形第三边的取值范围,掌握三角形三边关系是解题的关键. 29.828a b -【分析】根据幂的乘方和积的乘方以及同底数幂的乘法法则计算.【详解】解:()3222()a ab - =()()6228a a b -⋅=828a b -故答案为:828a b -.【点睛】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,解题的关键是掌握运算法则.30.12【分析】先将底数全部转为以3为底,再结合同底数幂的乘除法法则解答.【详解】解:由32×9m ÷27=323得32×32m ÷33=323,32+2m -3=323,2+2m -3=232m =24m =12故答案为:12.【点睛】本题考查同底数幂的乘除法,是基础考点,掌握相关知识是解题关键. 31.1<c <5【分析】先根据非负数的性质求出a 、b 的值,再由三角形的三边关系即可得出结论.【详解】⊥a 、b 满足|a ﹣3|+(b ﹣2)2=0,⊥a ﹣3=0,b ﹣2=0,⊥a =3,b =2.⊥a 、b 、c 为三角形的三边长,⊥3﹣2<c <3+2,即1<c <5.故答案为1<c<5.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.32.2:3【分析】先设A款校园文创产品的单价为a元,B款校园文创产品的单价为b元,C款校园文创产品的单价为c元,则甲礼盒的售价为:3a+2b+2c,乙礼盒的售价为:4a+b+c,丙礼盒的售价为:2a+4b+c;利用甲礼盒的售价比乙礼盒多11元,甲礼盒的售价比丙礼盒售价的2倍少80元,列出三元一次方程组,化简得到a关于c的关系式,然后利用A产品的单价不超过10元,各产品的零售单价均为正整数,得到c,a的值,进而利用﹣a+b+c=11求得b的值,则结论可求.【详解】解:设A款校园文创产品的单价为a元,B款校园文创产品的单价为b元,C款校园文创产品的单价为c元,则甲礼盒的售价为:3a+2b+2c,乙礼盒的售价为:4a+b+c,丙礼盒的售价为:2a+4b+c.⊥甲礼盒的售价比乙礼盒多11元,甲礼盒的售价比丙礼盒售价的2倍少80元,⊥(322)(4)11 3222(24)80a b c a b ca b c a b c++-++=⎧⎨++=++-⎩.化简得:11680a b cb a-++=⎧⎨+=⎩,⊥a=67c+2.⊥a≤10,a,b,c均为正整数,⊥c=7,a=8符合题意.⊥b=11+a﹣c=12.⊥A产品与B产品的单价之比为8:12=2:3.故答案为:2:3.【点睛】本题主要考查了三元一次方程组的应用,列代数式.依据题干中的等量关系列出三元一次方程组是解题的关键.33.2 a b【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可.【详解】解:⊥2,32m n a b ==,⊥22252(2),2m m n a b ===, ⊥22255=222m m n n a b-=. 故答案为:2a b【点睛】本题考查幂的乘方公式和同底数幂的除法.熟练掌握公式,并能逆运用是解题关键.34.()x -25【分析】直接利用公式法分解因式即可.【详解】原式=x 2-25x ⋅⋅+52=(x-5)2.故答案为:(x-5)2.【点睛】此题主要考查了公式法分解因式,正确应用公式是解题关键.35.2(a 2【分析】实数包括有理数和无理数,先运用提公因式法和平方差公式得出2(x 2+2)(x 2-2),后一个括号还能运用平方差公式进行分解.【详解】解:原式=2(x 2+2)(x 2-2)()222(x x x =+故答案为()222(x x x + 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 36.16±【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】⊥()()222216442x kxy y x kxy y ++=++是一个完全平方式,⊥24?2kxy x y =±⨯,⊥k =±16.故答案为:±16.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值. 37. 226a a +- ()();a a b a b +-【分析】⊥用多项式乘多项式法则计算即可;⊥提取公因式再公式法因式分解即可.【详解】⊥()()22223234626a a a a a a a +-=-+-=+-,⊥3222()()()a ab a a b a a b a b -=-=+-,故答案为:⊥226a a +-;⊥()()a a b a b +-.【点睛】此题考查多项式的乘法和因式分解的相关知识,难度一般.38.规律探究26;解决问题2(123)n +++⋅⋅⋅+;22(1)4n n +;拓展应用222(1)n n +或432242n n n ++.【分析】规律探究:计算333123++=36=大正方形面积,然后直接求大正方形面积即可; 解决问题:3333123n +++⋯+转化为大正方形面积,其边长为1+2+3+…+n ,再求面积化简即可;拓展应用:()33332462n +++⋯+提公因式8转化为8(3333123n +++⋯+),再用规律计算即可【详解】解:规律探究:333123++=1+8+27=36=大正方形面积=()221+2+3=6; 故答案为:62解决问题:由上面表示几何图形的面积探究知,()23333123123n n +++⋯+=+++⋯+, 又(1)1232n n n ++++⋯+=, 2223333(1)(1)12324n n n n n ++⎡⎤∴+++⋯+==⎢⎥⎣⎦; 故答案为:222(1)(123),4n n n ++++⋯+; 拓展应用:()33333333324622123n n +++⋯+=⨯+++⋯+⎡⎤⎣⎦,223333(1)1234n n n ++++⋯+=, ()()()223233332432124622212424n n n n n n n n +∴+++⋯+=⨯=+=++. 故答案为:222(1)n n +或432242n n n ++.【点睛】本题考查实践探索问题,仔细观察图形与算式的关系,发现规律为立方数的和等于最大正方形面积,再利用面积公式求是解题关键.39.2.5×10-7.【分析】根据用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,求解即可得出答案.【详解】解:250纳米=2.5×10-7米.故答案为:2.5×10-7.【点睛】本题主要考查了科学记数法,熟练掌握科学记数法表示的方法进行求解是解决本题的关键.40.-70【分析】先由22x y 5,x y 11,+=+=求出xy 的值,然后再对3223x y-3x y xy +因式分解即可完成解答.【详解】解:⊥22x y 5,x y 11,+=+=⊥()222x y x y 225xy +=++=⊥xy=7 3223x y-3x y xy +=()22xy x -3xy y +=()22xy x y -3xy +=7×(11-3×7)=-70【点睛】本题考查了完全平方公式、因式分解和代数式求值,解题的关键是通过完全平方公式的变形以及因式分解寻求条件之间的关系.41.64a【分析】原式利用幂的乘方及同底数幂的乘法法则计算,合并即可得到结果.【详解】解:()()2333322a a a a ⋅+-+- 666=4a a a +-64a =【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.42.【详解】试题分析:方程组利用加减消元法求出解即可.解:,⊥×3﹣⊥×2得:5x=25,即x=5,把x=5代入⊥得:y=1,则方程组的解为.考点:解二元一次方程组.43.(1)231x y z =⎧⎪=⎨⎪=⎩;(2)241x y z =⎧⎪=⎨⎪=⎩ 【详解】试题分析:(1)、通过⊥+⊥和⊥+⊥得到关于x 和y 的二元一次方程组,从而求出方程组的解,最后代入⊥求出z 的值,得出方程组的解;(2)、通过⊥﹣⊥和⊥得出关于x 和z 的二元一次方程组,从而求出方程组的解,最后代入⊥求出y 的值,得出方程组的解.试题解析:(1)、3423126x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩①②③, ⊥+⊥得:5x+2y=16⊥, ⊥+⊥得:3x+4y=18⊥,⊥×2﹣⊥得:7x=14,即x=2,把x=2代入⊥得:y=3, 把x=2,y=3代入⊥得:z=1,则方程组的解为231x y z =⎧⎪=⎨⎪=⎩;(2)、302223x z x y z x y z +-=⎧⎪-+=⎨⎪--=-⎩①②③, ⊥﹣⊥得:x+3z=5⊥, ⊥﹣⊥得:2z=2,即z=1,把z=1代入⊥得:x=2, 把z=1,x=2代入⊥得:y=4,则方程组的解为241xyz=⎧⎪=⎨⎪=⎩.44.(1)68° (2) 40° (3)2m⊥BOE=2⊥COF;(4)成立,理由见解析.【分析】(1)根据互余得到⊥EOF=90°-34°,再由OF平分⊥AOE,得到⊥AOE=2⊥EOF,然后根据邻补角的定义即可得到⊥BOE;(2)设⊥COF=n°,根据互余得到⊥EOF=90°-n°,再由OF平分⊥AOE,得到⊥AOE=2⊥EOF=180°-2n°,然后根据邻补角的定义得到⊥BOE=180°-(180°-2n°)=2n°=80°,于是得到结论;(3)当⊥COF=m°,根据互余得到⊥EOF=90°-m°,再由OF平分⊥AOE,得到⊥AOE=2⊥EOF=180°-2m°,然后根据邻补角的定义得到⊥BOE=180°-(180°-2m°)=2m°,所以有⊥BOE=2⊥COF;(4)同(3),可得到⊥BOE=2⊥COF.【详解】解:(1)⊥⊥COE是直角,⊥COF=34°,⊥⊥EOF=90°-34°=56°,⊥OF平分⊥AOE.⊥⊥AOE=2⊥EOF=112°,⊥⊥BOE=180°-112°=68°;(2)设⊥COF=n°,⊥⊥EOF=90°-n°,⊥⊥AOE=2⊥EOF=180°-2n°,⊥⊥BOE=180°-(180°-2n°)=2n°=80°,⊥⊥COF=40°;(3)当⊥COF=m°,⊥⊥EOF=90°-m°,⊥⊥AOE=2⊥EOF=180°-2m°,⊥⊥BOE=180°-(180°-2m°)=2m°,⊥⊥BOE=2⊥COF;(4)⊥BOE与⊥COF的数量关系仍然成立.理由如下:设⊥COF=n°,⊥⊥COE是直角,⊥⊥EOF=90°-n°,又⊥OF平分⊥AOE.⊥⊥AOE=2⊥EOF=180°-2n°,⊥⊥BOE=180°-(180°-2n°)=2n°,即⊥BOE=2⊥COF.【点睛】本题考查了角的计算,角平分线的定义以及互余互补.解题的关键是注意找出所求角与已知角之间的关系.45.(1)x(x+4)(x﹣4);(2)(3a﹣2b)2(3a+2b)2;(3)(x﹣3)(x+1)(x﹣1)2.【详解】整体分析:先提取公因式,再用公式法分解,注意x2+(p+q)x+pq=(x+p)(x+q)形式的因式分解,要分解到不能再分解为至,相同的因式要写成幂的形式.解:(1)4x2﹣64=4(x2﹣16)=x(x+4)(x﹣4).(2)81a4﹣72a2b2+16b4=(9a2)2﹣2×9×4a2b2+﹙4b2﹚2=(9a2﹣4b2)2=(3a﹣2b)2(3a+2b)2.(3)(x2﹣2x)2﹣2(x2﹣2x)﹣3.=(x2﹣2x﹣3)(x2﹣2x+1)=(x﹣3)(x+1)(x﹣1)2.46.营地到学校有667千米【分析】设下山路长x千米,平路长y千米,根据“下山时间+走平路时间=1、上山时间+走平路时间=54”列方程组求解可得.【详解】设下山路长x千米,平路长y千米,根据题意,得:1 1295 684x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,整理得:34364330x y x y +=⎧⎨+=⎩①②, ⊥+⊥得:7766x y +=, ⊥667x y +=. 答:营地到学校有667千米. 【点睛】本题主要考查了二元一次方程组的实际应用,理解题意得出题目当中蕴含的相等关系是解题的关键.47.(1)见解析;(2)16︒【分析】(1)根据平行线的性质与判定定理即可得证;(2)先根据平行线的性质求得EFG ∠,再根据平分线的定义求得EFH ∠,进而根据角度的差即可求得⊥PFH 的度数.【详解】(1)12∠=∠//AB FP ∴//DC FP//DC AB ∴(2)//DC FPDEF EFP ∴∠=∠12∠=∠//AB FP ∴AGF PFG ∴∠=∠DEF AGF EFP PFG EFG ∴∠+∠=∠+∠=∠38DEF ∠=︒,⊥AGF =70°,∴EFG ∠=3870108︒+︒=︒FH 平分⊥EFG111085422EFH EFG ∴∠=∠=⨯︒=︒ 543816PFH EFH EFP ∴∠=∠-∠=︒-︒=︒16PFH ∴∠=︒【点睛】本题考查了平行线的性质与判定,角平分线的定义,角度的和差计算,掌握平行线的性质与判定是解题的关键.48.(1)一;(2)见解析【分析】(1)观察该同学解题过程,确定出出错的步骤即可;(2)写出正确的解答过程,把a 的值代入计算即可求出值.【详解】解:(1)该同学的解答过程从第一步开始出现错误;故答案为:一;(2)解:原式()2222444a ab b a b =++--2222444a ab b a b =++-+248ab b =+【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 49.(1)证明见解析;(2)68°【详解】(1)AB⊥DG .理由如下: 略(2) 68°50.(1)x (x+1)(x-1);(2)23(2)x x y -.【详解】试题分析:(1)先提取公因式x ,再运用平方差公式进行分解即可; (2)先提取公因式3x ,再运用平方差公式进行分解即可.试题解析:(1)x 3-x=x (x 2-1)=x (x+1)(x-1);(2)32222312123(44)x x y xy x x xy y -+=-+23(2)x x y =-考点:因式分解---提公因式法与公式法的综合运用.。
2022-2023学年人教版七年级数学下册《5.2平行线及其判定》解答题专题训练(附答案)1.如图,已知∠C=∠1,∠1和∠D互余,∠2和∠D互余.求证:AB∥CD.2.根据如图,写出相应的几何语言:(1)判定方法1:∵=,∴AB∥CD.(2)判定方法2:∵=.∴AB∥CD.(3)判定方法3:∵+=180°,∴AB∥CD.3.如图,点E、F分别是AB、CD上的点,连接BD、AD、EC、BF,AD分别交CE、BF 于点G、H,若∠DHF=∠AGE,∠ABF=∠C,求证:AB∥CD.4.如图,BE平分∠ABC,D是BE上一点,∠CDE=150°,∠C=120°,求证:AB∥CD.5.如图,直线EF分别交直线AB、CD于点E、F,EG平分∠AEF交CD于点G.若∠1+2∠2=180°,求证:AB∥CD.6.如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.7.如图,∠1=40°,∠2=140°,∠C=∠D,求证:AC∥DF.8.如图,如果直线EF与AC交于点O,∠A=∠AOE,∠AOF=∠C,试判断AB与CD是否平行,并说明理由.9.如图,已知∠1=75°,∠2=35°,∠3=40°,求证:a∥b.10.如图,已知∠A=∠AGE,∠D=∠DGC.求证:AB∥CD.11.如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,已知∠1+∠2=90°,且∠2:∠3=2:5.(1)求∠BOF的度数;(2)试说明AB∥CD的理由.12.如图,已知∠1=∠2,∠3+∠4=180°,证明:AB∥EF.13.如图,AE平分∠BAC,∠CAE=∠CEA.求证:AB∥CD.14.如图所示,已知:∠A=114°,∠C=135°,∠1=66°,∠2=45°.求证:AD∥CF.15.如图,已知∠1=∠2,CD、EF分别是∠ACB、∠AED的平分线.求证:BC∥DE.16.如图,已知△ABC中,点D、E、F分别在线段BC、AB、AC上,且∠A=∠EDF,∠C=∠BDE.请说明AB∥DF的理由.17.在横线上填上适当的内容,完成下面的证明.已知,∠1与∠2互补,∠A=∠C,求证:AD∥BC.证明:∵∠1=∠DGH(),又∵∠1+∠2=180°(补角的定义),∴∠DGH+∠2=180°(等量代换),∴()(),∴∠A=∠EDG(),又∵∠A=∠C(已知),∴∠EDG=∠C(等量代换),∴AD∥BC().18.已知:如图∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.19.如图AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.求证:AB∥CE.请完成下列推理过程:证明:∵CD平分∠ECF,∴∠ECD=().∵∠ACB=∠FCD(),∴∠ECD=∠ACB()∵∠B=∠ACB,∴∠B=∠().∴AB∥CE().20.如图,在△ABC中,∠ADE=∠B,∠CDE=∠BFG.CD与GF平行吗?说说你的理由.参考答案1.证明:∵∠1和∠D互余,∠2和∠D互余,∴∠1+∠D=90°,∠2+∠D=90°,∴∠1=∠2,∵∠C=∠1,∴∠C=∠2,∴AB∥CD.2.解:(1)判定方法1:∵∠1=∠2,∴AB∥CD.故答案为:∠1;∠2;(2)判定方法2:∵∠2=∠3,∴AB∥CD.故答案为:∠2;∠3;(3)判定方法3:∵∠2+∠4=180°,∴AB∥CD.故答案为:∠2;∠4.3.证明:∵∠DHF=∠AHB,∠DHF=∠AGE,∴∠AHB=∠AGE,∴BH∥EC,∴∠ABF=∠AEG,∴∠ABF=∠C,∴∠AEG=∠C,∴AB∥CD.4.证明:∵∠CDE=150°,∠C=120°,∴∠CBD=∠CDE﹣∠C=150°﹣120°=30°.∵BE平分∠ABC,∴∠CBA=2∠CBD=2×30°=60°,∴∠CBA+∠C=60°+120°=180°,∴AB∥CD.5.证明:∵EG平分∠AEF交CD于点G,∴∠AEG=∠GEF.∠1+2∠2=180°,∠1+2∠AEG=180°,∴∠2=∠AEG,∴AB∥CD.6.证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).7.证明:∵∠1=40°,∠2=140°,∴∠1+∠2=180°,∴BD∥CE,∴∠D=∠CEF,∵∠C=∠D,∴∠CEF=∠C,∴AC∥DF.8.解:AB∥CD,理由如下:∵∠A=∠AOE,∴AB∥EF,∵∠AOF=∠C,∴CD∥EF,∴AB∥CD.9.证明:∵∠4是∠2,∠3所在三角形的外角,∴∠4=∠3+∠2=75°,又∵∠1=75°,∴∠1=∠4,∴a∥b.10.证明:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD.11.解:(1)∵OA,OB分别平分∠COE和∠DOE,∴∠AOE=∠AOC=∠COE,∠2=∠BOE=∠DOE,∵∠COE+∠DOE=180°,∴∠2+∠AOC=90°,∵∠COE=∠3,∴∠AOC=∠3,∴∠2+∠3=90°,∵∠2:∠3=2:5,∴∠3=∠2,∴∠2+×∠2=90°,∴∠2=40°,∴∠3=100°,∴∠BOF=∠2+∠3=140°;(2)∵∠1+∠2=90°,∠2+∠AOC=90°,∴∠1=∠AOC,∴AB∥CD.12.证明:∵∠1=∠2,∴AB∥CD.∵∠3+∠4=180°,∴CD∥EF.∴AB∥EF.13.证明:∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CAE=∠CEA,∴∠BAE=∠CEA,∴AB∥CD.14.证明:∵∠A=114°,∠C=135°,∠1=66°,∠2=45°,∴∠A+∠1=114°+66°=180°,∠C+∠2=135°+45°=180°,∴AD∥BE,CD∥BE,∴AD∥CF.15.证明:∵∠1=∠2,∴EF∥CD,∴∠3=∠4,∵CD、EF分别是∠ACB、∠AED的平分线,∴∠ACB=2∠3,∠AED=2∠4,∴∠AED=∠ACB,∴BC∥DE.16.解:∵∠C=∠BDE,∴DE∥AC,∴∠A=∠BED,∵∠A=∠EDF,∴∠BED=∠EDF,∴AB∥DF.17.证明:∵∠1=∠DGH(对顶角相等),又∵∠1+∠2=180°(补角的定义),∴∠DGH+∠2=180°(等量代换),∴CD∥AB(同旁内角互补,两直线平行),∴∠A=∠EDG(两直线平行,同位角相等),又∵∠A=∠C(已知),∴∠EDG=∠C(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:对顶角相等,CD∥AB,同旁内角互补,两直线平行,两直线平行,同位角相等,内错角相等,两直线平行.18.证明:∵∠1=∠2=∠E,∴AD∥BE,∠1+∠CAE=∠2+∠CAE,即∠BAE=∠DAC,∴∠DAC=∠3,∴∠3=∠BAE,∵∠3=∠4,∴∠4=∠BAE,∴AB∥CD.19.证明:∵CD平分∠ECF,∴∠ECD=∠DCF(角平分线定义).∵∠ACB=∠FCD(对顶角相等),∴∠ECD=∠ACB(等量代换).∵∠B=∠ACB,∴∠B=∠ECD(等量代换).∴AB∥CE(同位角相等,两直线平行).故答案为:∠DCF,角平分线定义,对顶角相等,等量代换,ECD,等量代换,同位角相等,两直线平行.20.解:CD与GF平行,理由如下:∵∠ADE=∠B,∴BC∥DE,∴∠CDE=∠BCD,∵∠CDE=∠BFG,∴∠BFG=∠BCD,∴CD∥GF.。
七年级下册数学《第六章实数》专题实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算:(1)(5)2+(−3)2+3−8;(2)(﹣2)3×18−327×(−【分析】(1)原式利用平方根及立方根定义计算即可求出值;(2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值.【解答】解:(1)原式=5+3+(﹣2)=8﹣2=6;(2)原式=(﹣8)×18−3×(−13)=(﹣1)﹣(﹣1)=﹣1+1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.(2022•庐江县二模)计算:0.04+3−8−【分析】先计算被开方数,再开方,最后加减.【解答】解:原式=0.2﹣2−=0.2﹣2−45=0.2﹣2﹣0.8=﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键.3.(2022春•上思县校级月考)计算:(1)−12+16+|2−1|+3−8;(2)23+|3−2|−364+9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案.【解答】解:(1)−12+16+|2−1|+3−8;=﹣1+4+2−1﹣2=2;(2)原式=23+2−3−4+3=3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算:(1)16+(−3)2+327;(2)3−3+|1−33|﹣(−3)2.【分析】(1)先计算平方根和立方根,再计算加减;(2)先计算平方根、立方根和绝对值,再计算加减;【解答】解:(1)16+(−3)2+327=4+3+3=10;(2)3−3+|1−33|﹣(−3)2=−33+33−1﹣3=﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算:(1)3−8+4−(−1)2023;(2)(−9)2−364+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1)3−8+4−(−1)2023=﹣2+2﹣(﹣1)=0+1=1;(2)(−9)2−364+|−5|−(−2)2=9﹣4+5﹣4=6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算:(1)−12−0.64+3−27−125(2)3+(−5)2−3−64−|3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算;(2)先计算平方根、立方根和绝对值,再进行加减运算.【解答】解(1)−12−0.64+3−27−=﹣1﹣0.8﹣3﹣0.2=﹣5;(2)3+(−5)2−3−64−|3−5|=3+5+4+3−5=23+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:16−(−1)2022−327+|1−2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案.【解答】解:原式=4﹣1﹣3+2−1=2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−364+|3−2|.【分析】这里,先算﹣12022=﹣1,364=4,|3−2|=2−3,再进行综合运算.【解答】解:﹣12022−364+|3−2|=﹣1﹣4+2−3=﹣3−3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)3125+(−3)2−【分析】先化简各式,然后再进行计算即可解答.【解答】解:3125+(−3)2−=5+3−27=5+3﹣(−23)=5+3+23=823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:3−27|−2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:3−27|−2|+1=﹣3+12×4+2+1=﹣3+2+2+1=2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+3−8+(−3)2.【分析】先化简各式,然后再进行计算即可解答.【解答】解:﹣12+|﹣2|+3−8+(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|2−2|+49+3(−3)3.【分析】按照实数的运算顺序进行运算即可.【解答】解:原式=1+2−2+7−3=7−2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|3−2|+3−8×12+(−3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减.【解答】解:原式=2−3+(﹣2)×12+3=2−3−1+3=4−3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+(−4)2+38+【分析】先算乘方、开方,再算乘法,最后算加减.【解答】解:原式=﹣1+4+2+10×35=﹣1+4+2+6=11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键.15.(2021秋•峨边县期末)计算:|5−3|+(−2)2−3−8+5.【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案.【解答】解:原式=3−5+2+2+5=7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:(−3)2−2×+52×3−0.027.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案.【解答】解:原式=3﹣2×32+52×(﹣0.3)=3﹣3−52×310=0−34=−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可.【解答】解:原式=1+3﹣(﹣1)×2=4+2=6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算:(1)364−81+3125+3;(2)|−3|−16+38+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案;(2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=4﹣9+5+3=3;(2)原式=3﹣4+2+4=5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算:(1)﹣23+3−27−(﹣2)2+1681(2)(﹣3)2×(﹣2)+364+9.【分析】(1)先计算乘方、立方根和平方根,再计算加减;(2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减.【解答】解:(1)﹣23+3−27−(﹣2)2=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+364+9=﹣9×2+4+3=﹣18+4+3=﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算:(1)(3)2−163−8;(2)(﹣2)3×)2013−327;(3)(−4)2+32+42.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先化简各式,然后再进行计算即可解答.【解答】解:(1)(3)2−16+3−8=3﹣4+(﹣2)=﹣3;(2)(﹣2)3×+(﹣1)2013−327=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)(−4)2+32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−16+3−8+(−2)2;(2)3−27+|2−3|−(−16)+23.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−16+3−8+(−2)2=3﹣4+(﹣2)+4=1.(2)3−27+|2−3|−(−16)+23=﹣3+(2−3)﹣(﹣4)+23=﹣3+2−3+4+23=3+3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:(−3)2×−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1=−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:3−8+9−(−1)2022+|1−2|.【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可.【解答】解:3−8+9−(−1)2022+|1−2|.=﹣2+3−54+1+2−1=−14+2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题:(11+−1);(2)35−|−35|+23+33.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先化简各式,然后再进行计算即可解答.【解答】解:(1+=27+=23+34=1712;(2)35−|−35|+23+33=35−35+23+33=53.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(3−1)−|3−2|−364.【分析】先去括号,化简绝对值,开立方,再计算加减即可.【解答】解:原式=23−2﹣(2−3)﹣4=23−2﹣2+3−4=33−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−3−64−|﹣3|.【分析】先算乘方,再算乘法,后算加减,即可解答.【解答】解:﹣22×(﹣112)2−3−64−×|﹣3|=﹣4×94−(﹣4)−43×3=﹣9+4﹣4=﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算:(1)|7−2|﹣|2−π|−(−7)2;(2)﹣22×(−4)2+3(−8)3×(−12)−327.【分析】(1)先化简绝对值和平方根,再计算加减;(2)先算乘方和根式,再计算乘法,最后加减.【解答】解:(1)|7−2|﹣|2−π|−(−7)2=7−2−(π−2)﹣7=7−2−π+2−7=﹣π;(2)﹣22×(−4)2+3(−8)3×(−12)−327=﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:0.01×121+0.81.【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(7−2)+3−8+|3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣27+4﹣2+2−3=9﹣27−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:(−3)2+(﹣1)2020+3−8+|1−2|【分析】先化简各式,然后再进行计算即可解答.【解答】解:(−3)2+(﹣1)2020+3−8+|1−2|=3+1+(﹣2)+2−1=3+1﹣2+2−1=1+2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:16+3−27−3−|3−2|+(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−3−2+3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022(−4)2×(−12)3−|1−3|.【分析】先化简各式,然后再进行计算即可解答.−(−4)2×(−12)3−|1−3|=−23+4×(−18)﹣(3−1)=−23+(−12)−3+1=−76−3+1=−16−3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:81+3−27−2(3−3)−|3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣23+6﹣(2−3)=6﹣23+6﹣2+3=10−3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:3(−1)3+3−27+(−2)2−|1−3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(3−1)=﹣1﹣3+2−3+1=﹣1−3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+(−2)2−364+|3−2|.【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−3=﹣1−3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)1+3−27−30.125+(2)|7−2|﹣|2−|−(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178;(2)原式=7−2−π+2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:30.008×172−82÷【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:30.008×−172−82÷=0.2×54−15÷(−15)=14+75=7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:33−2(1+3)+(−2)2+|3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=33−2﹣23+2+2−3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)(−2)2×3(−8)(2)9+|1−2|−×(−3)2+|40.25−2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)16+32+3−8=4+3﹣2=5(2)(−2)2×23×=2×32−8×14=3﹣2=1(3)9+|1−2|−27×(−3)2+|40.25−2|=3+2−1−53×3+2−2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×|3−8|+2×(﹣1)2022【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+2=4+2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+16+38+1014×934.【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−327+(﹣2)2+4÷(−23).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)12+(3)2+−913(2)(−3)2+(−1)2022+38+|1−2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=23+3+14×43−9=23+3+3−33=3;(2)原式=3+1+2+2−1=5+2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:49−327+|1−2|+【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+2−1+13=103+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|2−3|−(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−2−3,=−34−2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。
七年级下册数学专题训练
一、整数及其运算
在七年级下册数学中,整数及其运算是一个重要的学习内容。
对于整
数的正负性、绝对值、加减乘除等基本概念,需要进行深入的理解和
掌握。
可以通过做大量的练习题,熟练掌握整数的运算法则,提高整
数运算的正确性和速度。
二、一次函数与一元一次方程
七年级下册数学还需要学习一次函数与一元一次方程。
在学习一次函
数时,需要了解直线的斜率、截距、自变量和函数值的关系。
通过掌
握一次函数的相关知识,可以更好地理解解一元一次方程的过程和方法,从而提高解题的准确性。
三、几何与数据统计
除了数学中的代数内容,七年级下册数学中几何和数据统计也是重要
的学习内容。
在几何中,需要学习平面图形的性质、分类和相关定理。
在数据统计中,需要学习数据的收集、整理、分析和表达。
可以通过
练习几何和数据统计方面的题目,加深对知识点的理解。
四、分数
分数是数学中的基础概念之一,也是七年级下册数学中的重点内容。
在学习分数时,首先需要了解分数的定义、约分和通分等概念。
其次,需要熟练掌握分数的加减乘除法,包括有理数的加减乘除。
通过练习
大量分数相关的题目,掌握分数的加减乘除运算规律。
五、二次根式和已知条件下的图形构造
在学习七年级下册数学时,还需要学习二次根式和已知条件下的图形
构造。
对于二次根式的定义、化简、合并等操作需要进行熟练掌握。
同时,在图形构造中,需要掌握直线、角度、比例尺、平移、旋转、
镜像等基本概念和操作方法,将其应用到实际问题中。
以上就是七年级下册数学专题训练的一些主要内容。
通过大量的练习,可以更好地掌握这些知识点。
同时,在学习过程中应注重培养自己的
数学思维能力,提高分析和解决问题的能力,为以后的学习打下坚实
的基础。