选修3-5 课后练习(总)
- 格式:doc
- 大小:449.41 KB
- 文档页数:13
学科:物理专题:原子结构题一如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子。
问最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子?请在图中画出获得该能量后的氢原子可能的辐射跃迁图。
题二紫外线照射一些物质时,会发生荧光效应,即物质发出可见光,这些物质中的原子先后发生两次跃迁,其能量变化分别为ΔE1和ΔE2,下列关于原子这两次跃迁的说法中正确的是() A.两次均向高能级跃迁,且|ΔE1|>|ΔE2|B.两次均向低能级跃迁,且|ΔE1|<|ΔE2|C.先向高能级跃迁,再向低能级跃迁,且|ΔE1|<|ΔE2|D.先向高能级跃迁,再向低能级跃迁,且|ΔE1|>|ΔE2|题三如图所示,是氢原子四个能级的示意图。
当氢原子从n=4的能级跃迁到n=3的能级时,辐射出光子a。
当氢原子从n=3的能级跃迁到n=2的能级时,辐射出光子b。
则以下判断正确的是()A.光子a的能量大于光子b的能量B.光子a的频率大于光子b的频率C.光子a的波长大于光子b的波长D.在真空中光子a的传播速度大于光子b的传播速度题四如图所示,氢原子在不同能级间发生a、b、c三种跃迁时,释放光子的波长分别是λa、λb、λc,则下列说法正确的是()A.从n=3能级跃迁到n=1能级时,释放光子的波长可表示为λb=λaλcλa+λcB.从n=3能级跃迁到n=2能级时,电子的势能减小,氢原子的能量增加C.若用波长为λc的光照射某金属时恰好能发生光电效应,则用波长为λa的光照射该金属时也一定能发生光电效应D.用12.09eV的光子照射大量处于基态的氢原子时,可以发出三种频率的光题五氢原子的能级如图所示,已知可见光的光子能量范围约为1.62 eV~3.11 eV,则(1)用任意频率的紫外线照射处于n=3能级的氢原子,氢原子能否电离?(2)大量氢原子从高能级向n能级跃迁时,发出的光具有显著的热效应,则n至少等于多少?课后练习详解题一答案:12.75eV见详解图详解:氢原子从n>2的某一能级跃迁到n=2的能级,满足:hν=E n-E2=2.55 eVE n=hν+E2=-0.85 eV,所以n=4基态氢原子要跃迁到n=4的能级,应提供:ΔE=E4-E1=12.75 eV。
课时作业6 能量量子化1.关于对黑体的认识,下列说法正确的是( )A.黑体只吸收电磁波,不反射电磁波,看上去是黑的B.黑体辐射电磁波的强度按波长的分布除与温度有关外,还与材料的种类及表面状况有关C.黑体辐射电磁波的强度按波长的分布只与温度有关,与材料的种类及表面状况无关D.如果在一个空腔壁上开一个很小的孔,射入小孔的电磁波在空腔内表面经多次反射和吸收,最终不能从小孔射出,这个空腔就成了一个黑体解析:黑体自身辐射电磁波,不一定是黑的,故A错误;黑体辐射电磁波的强度按波长的分布只与黑体的温度有关,故B错、C对;小孔只吸收电磁波,不反射电磁波,因此是小孔成了一个黑体,而不是空腔,故D错误。
答案:C2.关于对热辐射的认识,下列说法中正确的是( )A.热的物体向外辐射电磁波,冷的物体只吸收电磁波B.温度越高,物体辐射的电磁波越强C.辐射强度按波长的分布情况只与物体的温度有关,与材料种类及表面状况无关D.常温下我们看到的物体的颜色就是物体辐射电磁波的颜色解析:一切物体都不停地向外辐射电磁波,且温度越高,辐射的电磁波越强,A错误,B正确;选项C是黑体辐射的特性,C 错误;常温下看到的物体的颜色是反射光的颜色,D错误。
答案:B3.关于对普朗克能量子假说的认识,下列说法正确的是( )A.振动着的带电微粒的能量只能是某一能量值εB.带电微粒辐射或吸收的能量只能是某一最小能量值的整数倍C.能量子与电磁波的频率成正比D.这一假说与现实世界相矛盾,因而是错误的解析:根据普朗克能量子假说知,A错误,B、C正确;普朗克能量子假说反映的是微观世界的特征,不同于宏观世界,D错误。
答案:B、C4.红、橙、黄、绿四种单色光中,光子能量最小的是( ) A.红光B.橙光C.黄光D.绿光解析:在四种颜色的光中,红光的波长最长而频率最小,由光子的能量ε=hν可知红光光子能量最小。
答案:A5.某种光的光子能量为E,这种光在某一种介质中传播时的波长为λ,则这种介质的折射率为( )A.λE hB.λE chC.ch λED.h λE解析:这种光的频率为ν=E h,则这种光在介质中的传播速度为v =νλ=λE h。
一、解答题1.丙烯酸乙酯(CH2=CHCOOCH2CH3)天然存在于菠萝等水果中,是一种食品用合成香料,可以用乙烯、丙烯等石油化工产品为原料进行合成:(1)有机物A的分子式是___________。
有机物B中所含官能团的名称是___________。
(2)A与B反应生成丙烯酸乙酯的化学方程式是___________,该反应的类型是___________。
(3)久置的丙烯酸乙酯自身会发生聚合反应,所得聚合物具有良好的弹性,可用于生产织物和皮革处理剂。
用化学方程式表示该聚合过程:_____。
(4)与丙烯酸乙酯具有相同官能团的同分异构体有_____种(不考虑立体异构),其中核磁共振氢谱为三组峰,峰面积之比为3:3:2的结构简式为____。
答案:C2H6O碳碳双键、羧基CH2=CHCOOCH2CH3+H2O酯化反应或取代反CH3CH2OH+CH2=CHCOOH浓硫酸Δ应nCH2=CHCOOCH2CH3一定条件−−−−−−→15、【分析】根据丙烯酸乙酯逆推,A和B反应生成丙烯酸乙酯的反应类型应该是酯化反应,反应物应该为乙醇和丙烯酸,结合题目所给的初始物质的结构简式可知,有机物A为乙醇,有机物B为丙烯酸。
解析:(1)由以上分析可知,有机物A为乙醇,有机物B为丙烯酸,所以A的分子式为C2H6O,B含有的官能团有碳碳双键、羧基,故本题答案为:C2H6O;碳碳双键、羧基;(2)根据上述推测,A为乙醇,B为丙烯酸,A和B发生酯化反应的化学方程式为:CH2=CHCOOCH2CH3+H2O,反应类型为酯CH3CH2OH+CH2=CHCOOH浓硫酸Δ化反应(取代反应),故答案为:CH2=CHCOOCH2CH3+H2O;取代反应(酯化反CH3CH2OH+CH2=CHCOOH浓硫酸Δ应);(3)丙烯酸乙酯含有不饱和键,分子间互相结合发生聚合反应,化学方程式为nCH2=CHCOOCH2CH3一定条件−−−−−−→,故答案为:nCH2=CHCOOCH2CH3一定条件−−−−−−→;(4)与丙烯酸乙酯具有相同官能团即含有碳碳双键和酯基,先写出含有酯基的碳链,在分别插入碳碳双键,共可写出15种,分别为:、、、、、、、、、、、、、、,其中核磁共振氢谱为三组峰,峰面积之比为3:3:2的结构简式为,,故答案为:15;,。
2020-2021学年高二物理人教版选修3-5课后作业:第十九章原子核水平测试卷含解析第十九章水平测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟。
第Ⅰ卷(选择题,共40分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~10题有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.下列说法中正确的是()A.错误!U的半衰期约为7亿年,随着地球环境的不断变化,其半衰期可能变短B.某原子核经过一次α衰变和两次β衰变后,核内中子数减少4C.10个放射性元素的原子核经过一个半衰期后,一定有5个原子核发生衰变D.γ粒子的电离能力比α粒子的大答案B解析半衰期的长短是由原子核内部本身的因素决定的,与原子所处的物理、化学状态无关,故A错误;某原子核经过一次α衰变电荷数减小2,质量数减小4,再经过两次β衰变后,质量数不变,电荷数要增加2,所以整个过程质量数减小4,电荷数不变,所以核内中子数减少4个。
故B正确。
半衰期具有统计规律,对大量的原子核适用.故C错误。
三种射线中γ射线的穿透能力最强,α射线的电离能力最强,故D错误。
2.在正负电子对撞机中,一个电子和一个正电子对撞发生湮灭而转化为一对光子.设正、负电子的质量在对撞前均为m,对撞前的动能均为E,光在真空中的传播速度为c,普朗克常量为h,则对撞后转化成光子的波长等于()A。
hcE B。
错误!C.错误!D。
错误!答案C解析一个光子的能量为mc2+E,h错误!=mc2+E,所以λ=错误!,C正确。
3.将半衰期为5天的铋64 g分成四份分别投入(1)开口容器中;(2)100 atm的密封容器中;(3)100 ℃的沸水中,第四份则与别的元素形成化合物,经10天后,四种情况剩下的质量分别为m1、m2、m3、m4,则()A.m1=m2=m3=m4=4 gB.m1=m2=m3=4 g, m4〈4 gC.m1>m2>m3〉m4,m1=4 gD.m1=4 g,其余无法知道答案A解析放射性元素的半衰期是一定的,与放射性元素所在的物理环境和化学环境无关,所以A正确。
一、解答题1.一个验电器带正电,因为空气干燥,验电器金属箔的张角能维持很长的时间。
现有一束α射线射向这个验电器上端的金属球,验电器金属箔的张角将会怎样变化?为什么? 解析:张角变小,原因见详解验电器金箔的张角将变小。
因为α射线具有一定的电离作用,它能使所经过的路径中空气分子电离,使空气变成导体,从而使带正电的验电器上的正电荷发生转移、中和,所以验电器金属箔的张角将变小。
2.在微观领域,动量守恒定律和能量守恒定律依然适用。
在轻核聚变的核反应中,两个氘核(21H )以相同的动能 E K 0=0.35 MeV 做对心碰撞,假设该反应中释放的核能全部转化为氦核(32He )和中子(10 n )的动能。
已知氘核的质量 m D =2.014 1u ,中子的质量 m n =1.008 7u ,氦核的质量 m He =3.016 0u ,其中 1u 相当于 931 MeV :(1)在上述轻核聚变的核反应中释放的核能为多少 MeV ?(结果保留2 位有效数字) (2)生成的氦核和中子的动能各是多少 MeV ?(结果保留 1 位有效数字) 解析:(1)3.3MeV ;(2)kHe 1MeV E =,kn 3MeV E = (1)核反应方程式为2311202H H n →+亏损的质量为2 2.0141u 3.0160u 1.0087u 0.0035u m ∆=⨯--=释放的核能0.0035931MeV 3.3MeV E =⨯≈(2)根据核反应中系统的能量守恒kHe kn k02E E E E +=+∆根据核反应中系统的动量守恒,有He n 0p p -=可知kHe n kn He 13E m E m == 解得kHe 01(2)1MeV 4E E E =+∆=kn 03(2)3MeV 4E E E =+∆=3.在微观领域,动量守恒定律和能量守恒定律依然适用.在轻核聚变的核反应中,两个氘核(21H)以相同的动能E 0=0.35MeV 做对心碰撞,假设该反应中释放的核能全部转化为氦核(32He)和中子(10n)的动能.已知氘核的质量m D =2.0141u ,中子的质量m n =1.008 7 u ,氦核的质量m He =3.0160u ,其中1 u 相当于931MeV.在上述轻核聚变的核反应中生成的氦核和中子的动能各是多少MeV ?(结果保留一位有效数字) 解析:He 1MeV E =,n 3MeV E = 该反应的核反应方程为2311202H He n →+由质能方程可知,该反应放出的核能为()2D He n 2 3.2585MeV E m m m c =--=核反应前后,能量守恒,故0He n 2E E E E +=+核反应前后由动量守恒He n 0P P -=由22k p E m=,可得He n n He 13E m E m =≈ 联立,解得He 1MeV E = n 3MeV E =4.已知质量为m 1的静止137N 衰变为质量为m 2的126C ,放出质量为m 3的某种粒子,并伴有一个γ光子辐射,求: (1)写出核反应方程式; (2)反应放出的核能△E ;(3)若放出粒子动量大小是p 1,γ光子动量大小为p 2,它们方向相同,求126C 动量大小。
19.2 反射性元素的衰变【重点知识】1.原子核衰变时电荷数和质量数都守恒。
2.α衰变:238 92U→234 90Th +42He3.β衰变:234 90Th→234 91Pa + 0-1e4.放射性元素的原子核有半数发生衰变所需的时间叫做这种元素的半衰期。
【基本知识】一、原子核的衰变1.定义原子核放出 或 ,则核电荷数变了,变成另一种 ,这种变化称为原子核的衰变。
2.衰变分类(1)α衰变:放出α粒子的衰变。
(2)β衰变:放出β粒子的衰变。
3.衰变方程23892U→23490Th + 23490Th→234 91Pa + 。
4.衰变规律(1)原子核衰变时 和 都守恒。
(2)当放射性物质连续衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射。
这时,放射性物质发出的射线中就会同时具有α、β和γ三种射线。
二、半衰期1.定义放射性元素的原子核有 发生衰变所需的时间。
2.决定因素放射性元素衰变的快慢是由 的因素决定的,跟原子所处的化学状态和外部条件没有关系。
不同的放射性元素,半衰期 。
3.应用利用半衰期非常稳定这一特点,可以测量其衰变程度、推断时间。
【课堂例题】例1、原子核238 92U经放射性衰变①变为原子核234 90Th,继而经放射性衰变②变为原子核234 91Pa,再经放射性衰变③变为原子核234 92U。
放射性衰变①②③依次为 ( )A.α衰变、β衰变和β衰变B.β衰变、α衰变和β衰变C.β衰变、β衰变和α衰变D.α衰变、β衰变和α衰变例2、(多选)14C发生放射性衰变成为14N,半衰期约5 700年。
已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减小。
现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二分之一。
下列说法正确的是 ( ) A.该古木的年代距今约5 700年B.12C、13C、14C具有相同的中子数C.14C衰变为14N的过程中放出β射线D.增加样品测量环境的压强将加速14C的衰变例3、 (多选)静止在匀强磁场中的某放射性元素的原子核放出一个α粒子,其速度方向与磁场方向垂直。
一、解答题1.太阳的能量来自下述反应:四个质子聚变成一个α粒子,同时发射两个正电子和两个没有质量的中微子。
已知氢气燃烧时与氧气化合成水,每形成一个水分子释放的能量为6.2eV 。
若想产生相当于太阳上1kg 的氢核聚变成α粒子所释放的能量,需燃烧多少千克氢气?α粒子质量 4.0026u a m =,质子质量p 1.00783u m =,电子质量45.4810ue m -=⨯(u 为原子质量单位)。
解析:62.0810kg ⨯根据题目所给的信息可得太阳的聚变反应为1411024H He 2e →+可见1kg 氢核可发生聚变的次数n 为p14n m =由爱因斯坦的质能方程,可知每发生一次聚变所释放的能量E ∆为()22p e a 42E mc m m m c ∆=∆=--1kg 氢核聚变可产生的能量E 聚为2p p(42)4e a m m m c E E n m --==∆聚而燃烧氢气的化学方程式为222 2H O 2H O +可见每形成1个水分子需燃烧1个氢分子,而每生成1个水分子所释放的能量E 燃为19196.2 1.6109.9210(J)E --=⨯⨯=⨯燃那么要得到E 聚的能量(即1kg 的氢核聚变成α粒子所释放的能量)需燃烧的氢分子个数N 为p e 2p (42)4a m m m E N c E m E ⨯--==聚燃燃解得6p e 2() 2.0810kg m N m m =+=⨯氢2.某些建筑材料可产生放射性气体一一氡,氡可以发生α或β衰变,如果人长期生活在氢浓度过高的环境中,氢经过人的呼吸道沉积在肺部,并放出大量的射线,从而危害人体健康。
原来静止的氡核(33386Rn )发生一次α衰变生成新核钋(O P ),并放出一个能量为00.05MeV E =的γ光子。
已知放出的α粒子动能为0.05MeV E α=;忽略放出光子的动量,但考虑其能量2lu=931.5MeV/c 。
(1)写出衰变的核反应方程; (2)求新核钋(0P )的动能;(3)衰变过程中总的质量亏损为多少?(保留三位有效数字)解析:(1)22221848684O 2Rn P +He+γ→;(2)00.0835MeV P E =;(3)0.00011 m u ∆=(1)衰变的核反应方程22221848684O 2Rn P +He+γ→(2)忽略放出光子动量,根据动量守恒定律得:0P αP P =即新核动量大小与α粒子动量大小相等,又根据2k 2p E m= 可求出新核0P 动能为0P α4218E E =得0P 0.00092MeV E =(3)由题意0P 0a E E E E ∆=++根据2E mc ∆=∆得0.00011 m u ∆=3.一个中子(10n )和一个质子(11H )结合成氘核时要放出2.22MeV 的能量,这些能量以γ光子的形式辐射出来。
动量守恒定律计算题同步练习一、计算题(共26小题)1.如图所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接,质量为m1的小球从高为h处由静止开始沿轨道下滑,与静止在轨道BC段上质量为m2的小球发生碰撞,碰撞后两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。
求:(1)m1到达B点时的速度(2)碰撞后小球m2的速度大小v2.(重力加速度为g)2.如图所示,质量为M的木块位于光滑水平面上,木块与墙间用轻弹簧连接,开始时木块静止在A位置。
现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,经过极短时间,子弹与木块一起运动,弹簧在弹性限度内。
求:(1)子弹刚与木块相对静止时速度大小v;(2)从子弹嵌入木块到木块第一次回到A位置的过程中,墙对弹簧冲量大小I。
3.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车。
求:小球到达车底B点时小车的速度。
4.如图所示,AOB是光滑水平轨道,BC是质量为M、半径为R的光滑的圆弧轨道,可在光滑水平面滑动,两轨道恰好相切于B点。
开始时,BC轨道处于锁定状态。
质量也为M的小木块静止在O点,一颗质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均看作质点)。
(1)求子弹射入木块前的速度v0;(2)若每当小木块返回到O点,立即有一颗相同的子弹以速度v0射入小木块,并留在其中,则当第2颗子弹射入小木块后,小木块的速度为多少;(3)在(2)的条件下,第17颗子弹射入小木块时,立即解除BC圆弧轨道的锁定,求小木块沿圆弧轨道能上升的最大高度为多少5.如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,物块的质量均为M=0.60kg。
一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。
人教版物理选修3-5第16章第2节动量和动量定理同步练习一、单选题(本大题共13小题,共52.0分)1.下列说法正确的是()A. 速度大的物体,它的动量一定也大B. 动量大的物体,它的速度一定也大C. 只要物体的运动速度大小不变,则物体的动量也保持不变D. 物体的动量变化越大则该物体的速度变化一定越大2.下面关于冲量的说法正确的是( )A. 只要力恒定,不管物体运动状态如何,其冲量就等于该力与时间的乘积B. 当力与位移垂直时,该力的冲量一定为零C. 物体静止时,其重力的冲量一定为零D. 物体受到很大的力时,其冲量一定很大3.古时有“守株待兔”的寓言.设兔子的头部受到大小等于自身体重的打击力即可致死,并设兔子与树桩作用时间为0.3 s,则被撞死的兔子其奔跑的速度可能为(g取10 m/s2)A. 1m/sB. 1.5m/sC. 2m/sD. 3m/s4.如果一物体在任意相等的时间内受到的冲量相等,则此物体的运动不可能是()A. 匀速圆周运动B. 自由落体运动C. 平抛运动D. 竖直上抛运动5.质量为m的物体以初速v0做竖直上抛运动,不计空气阻力,从抛出到落回抛出点这段时间内,以下说法正确的是( )A. 物体动量变化大小是零B. 物体动量变化大小是2mv0C. 物体动量变化大小是mv0D. 重力的冲量为零6.对于力的冲量,下列说法正确的是()A. 力越大,力的冲量就越大B. 作用在物体上的力大,力的冲量不一定大C. 竖直上抛运动中,上升和下降过程时间相等,则重力在整个过程中的冲量等于零D. 竖直上抛运动中,上升和下降过程时间相等,则上升和下降过程中重力的冲量等大、反向7.如图所示,光滑水平面上有质量均为m的物块A和B,B上固定一轻质弹簧,B静止,A以速度v0水平向右运动,从A与弹簧接触至弹簧被压缩到最短的过程中( )A. A,B的动量变化量相同B. A,B的动量变化率相同C. A,B系统的总动能保持不变D. A,B系统的总动量保持不变8.如图所示,质量为m P=2 kg的小球P从离水平面高度为h=0.8 m的光滑斜面上滚下,与静止在光滑水平面上质量为m Q=2 kg的带有轻弹簧的滑块Q碰撞,g=10 m/s2,下列说法正确的是( )A. P球与滑块Q碰撞前的速度为5m/sB. P球与滑块Q碰撞前的动量为16kg·m/sC. 它们碰撞后轻弹簧压缩至最短时的速度为2m/sD. 当轻弹簧压缩至最短时其弹性势能为16 J9.如图所示,斜面和水平面之间通过小圆弧平滑连接,质量为m的物体(可视为质点)从斜面上h高处的A点由静止开始沿斜面下滑,最后停在水平地面上的B点.要使物体能原路返回A点,在B点物体需要的最小瞬时冲量是()A. 12m√gℎ B. m√gℎ C. 2m√gℎ D. 4m√gℎ10.如图所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则()A. 合力做的功为0B. 合力做的冲量为0C. 重力做的功为mgLD. 重力的冲量为m√2gL11.质量为m的小球被水平抛出,经过一段时间后小球的速度大小为v,若此过程中重力的冲量大小为Ⅰ,重力加速度为g,不计空气阻力的大小,则小球抛出时的初速度大小为()A. v−Im B. v−ImgC. √v2−I2m2D. √v2−I2m2g212.质量为1 kg的小球从空中自由下落,与水平地面相碰后弹到空中某一高度,其速度—时间图像如图所示,以竖直向上为正,重力加速度g取10 m/s2。
1.氢原子从基态跃迁到激发态时,下列论述中正确的是(B)A.动能变大,势能变小,总能量变小B.动能变小,势能变大,总能量变大C.动能变大,势能变大,总能量变大D.动能变小,势能变小,总能量变小2.下列叙述中,哪些符合玻尔理论(ABC)A.电子可能轨道的分布是不连续的B.电子从一条轨道跃迁到另一个轨道上时,原子将辐射或吸收一定的能量C.电子的可能轨道上绕核做加速运动,不向外辐射能量D.电子没有确定的轨道,只存在电子云3.大量原子从n=5的激发态向低能态跃迁时,产生的光谱线数是( B )A.4条B.10条C.6条D.8条4.对玻尔理论的评论和议论,正确的是(BC)A.玻尔理论的成功,说明经典电磁理论不适用于原子系统,也说明了电磁理论不适用于电子运动B.玻尔理论成功地解释了氢原子光谱的规律,为量子力学的建立奠定了基础C.玻尔理论的成功之处是引入量子观念D.玻尔理论的成功之处,是它保留了经典理论中的一些观点,如电子轨道的概念5.氢原核外电子分别在第1、2条轨道上运动时,其有关物理量的关系是(BC )A.半径r1>r2 B.电子转动角速度ω1>ω2C.电子转动向心加速度a1>a2 D.总能量E1>E26.已知氢原子基态能量为-13.6eV,下列说法中正确的有(D )A.用波长为600nm的光照射时,可使稳定的氢原子电离B.用光子能量为10.2eV的光照射时,可能使处于基态的氢原子电离C.氢原子可能向外辐射出11eV的光子D.氢原子可能吸收能量为1.89eV的光子7.氢原子从能级A跃迁到能级B,吸收频率v1的光子,从能级A跃迁到能级C 释放频率v2的光子,若v2>v1则当它从能级C跃迁到能级B将(D)A.放出频率为v2-v1的光子B.放出频率为v2+ v1的光子C.吸收频率为v2- v1的光子D.吸收频率为v2+v1的光子8.已知氢原子的基态能量是E1=-13.6eV,第二能级E2=-3.4eV.如果氢原子吸收______eV的能量,立即可由基态跃迁到第二能级.如果氢原子再获得1.89eV的能量,它还可由第二能级跃迁到第三能级,因此氢原子第三能级E3=_____eV.10.2 -1.511.玻尔在他的原子模型中所做的假设有(ABC)A.原子处于成为定态的能量状态时,虽然电子做变速运动,但并不向外辐射能量;B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的;C.电子从一个轨道跃迁到另一个轨道时,辐射或吸收一定频率的光子;D.电子跃迁时辐射的光子的频率等于绕核做圆周运动的频率。
选修3-5 动量守恒定律波粒二象性原子结构与原子核第1课时动量守恒定律及其运用►题组1动量守恒的判断1.如图1所示,一内外侧均光滑的半圆柱槽置于光滑的水平面上.槽的左侧有一竖直墙壁.现让一小球(可认为质点)自左端槽口A点的正上方从静止开始下落,与半圆柱槽相切并从A 点进入槽内.则下列说法正确的是()图1A.小球离开右侧槽口以后,将做竖直上抛运动B.小球在槽内运动的全过程中,只有重力对小球做功C.小球在槽内运动的全过程中,小球与槽组成的系统机械能守恒D.小球在槽内运动的全过程中,小球与槽组成的系统水平方向动量不守恒2.如图2所示,两物体A、B用轻质弹簧相连静止在光滑水平面上,现同时对A、B两物体施加等大反向的水平恒力F1、F2,使A、B同时由静止开始运动,在运动过程中,对A、B两物体及弹簧组成的系统,说法正确的是(弹簧不超过其弹性限度) ()图2A.动量始终守恒B.机械能不断增加C.当弹簧伸长到最长时,系统的机械能最大D.当弹簧弹力的大小与F1、F2的大小相等时,A、B两物体速度为零►题组2动量守恒定律的应用3.如图3所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()图3A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大4.(2012·福建·29(2))如图4所示,质量为M 的小船在静止水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后小船的速率为 ( )图4A .v 0+m M vB .v 0-m M vC .v 0+m M(v 0+v ) D .v 0+m M (v 0-v ) 5.如图5所示,某同学质量为60 kg ,在军事训练中要求他从岸上以大小为2 m /s 的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140 kg ,原来的速度大小是0.5 m/s ,该同学上船后又跑了几步,最终停在船上.则此过程该同学动量的变化大小为________ kg·m /s ,此时小船的速度大小为________ m/s.图56.如图6所示,光滑水平地面上依次放置着质量m =0.08 kg 的10块完全相同的长直木板.一质量M =1.0 kg 、大小可忽略的小铜块以初速度v 0=6.0 m /s 从长木板左侧滑上木板,当铜块滑离第一块木板时,速度大小为v 1=4.0 m/s.铜块最终停在第二块木板上.(取g =10 m/s 2,结果保留两位有效数字)求:图6(1)第一块木板的最终速度的大小;(2)铜块的最终速度的大小.7.如图7所示,甲车质量m 1=20 kg ,车上有质量M =50 kg 的人,甲车(连同车上的人)以v =3 m /s 的速度向右滑行.此时质量m 2=50 kg 的乙车正以v 0=1.8 m/s 的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长.图7►题组3 对碰撞问题的考查8.如图8所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m /s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg·m/s ,则( )图8A .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1∶10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶109.质量为m 的小球A 以速度v 0在光滑水平面上运动,与质量为2m 的静止小球B 发生对心碰撞,则碰撞后小球A 的速度大小v A 和小球B 的速度大小v B 可能为( ) A .v A =13v 0,v B =23v 0 B .v A =25v 0,v B =710v 0 C .v A =14v 0,v B =58v 0 D .v A =38v 0,v B =516v 0 10.如图9所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.图911.(2012·山东理综·38(2))如图10所示,光滑水平轨道上有三个木块A、B、C,质量分别为m A=3m、m B=m C=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.图10第2课时光电效应波粒二象性►题组1对光的波粒二象性的考查1.下列说法正确的是() A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.γ射线具有显著的粒子性,而不具有波动性2.物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度.使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片上只能出现一些不规则的点;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果下列认识正确的是() A.曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点B.单个光子的运动没有确定的规律C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才表现出波动性►题组2对光电效应理解的考查3.光电效应实验中,下列表述正确的是() A.光照时间越长光电流越大B.入射光足够强就可以有光电流C .遏止电压与入射光的频率有关D .入射光频率大于极限频率时才能产生光电子4.用一束紫外线照射某金属时不能产生光电效应,可能使该金属发生光电效应的措施是( )A .改用频率更小的紫外线照射B .改用X 射线照射C .改用强度更大的原紫外线照射D .延长原紫外线的照射时间6.入射光照射到某金属表面上发生光电效应,若入射光的强度减弱,而频率保持不变,下列说法中正确的是 ( )A .有可能不发生光电效应B .从光照射到金属表面上至发射出光电子之间的时间间隔将明显增加C .逸出的光电子的最大初动能将减小D .单位时间内从金属表面逸出的光电子数目将减少7.对光电效应的理解正确的是 ( )A .金属钠的每个电子可以吸收一个或一个以上的光子,当它积累的动能足够大时,就能逸出金属B .如果入射光子的能量小于金属表面的电子克服原子核的引力而逸出时所需做的最小功,便不能发生光电效应C .发生光电效应时,入射光越强,光子的能量就越大,光电子的最大初动能就越大D .由于不同金属的逸出功是不相同的,因此使不同金属发生光电效应,入射光的最低频率也不同►题组3 对光电效应方程应用的考查8.如图1是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象.由图象可知 ( )图1A .该金属的逸出功等于EB .该金属的逸出功等于hνcC .入射光的频率为2νc 时,产生的光电子的最大初动能为ED .入射光的频率为νc 2时,产生的光电子的最大初动能为E 29.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子的最大初动能E k随入射光频率ν变化的E k—ν图象.已知钨的逸出功是3.28 eV,锌的逸出功是3.34 eV,若将二者的图线画在同一个坐标图中,以实线表示钨,虚线表示锌,如图所示,则正确反映这一过程的图象是()10.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图2所示,则可判断出()图2A.甲光的频率大于乙光的频率B.乙光的波长大于丙光的波长C.乙光的频率大于丙光的频率D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能11.如图3所示是光电管的原理图,已知当有波长为λ0的光照到阴极K上时,电路中有光电流,则()图3A.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路中一定没有光电流B.若换用波长为λ2(λ2<λ0)的光照射阴极K时,电路中一定有光电流C.增加电路中电源电压,电路中光电流一定增大D.若将电源极性反接,电路中一定没有光电流产生12.现有a、b两种单色光,其波长关系为λa>λb,用a光照射某种金属时,恰好发生光电效应.则:(1)用b光照射该金属时,________发生光电效应;(填“能”或“不能”)(2)增加a光的强度,释放出光电子的最大初动能________增大.(填“会”或“不会”)13.(2012·江苏物理·12C(3))A、B两种光子的能量之比为2∶1,它们都能使某种金属发生光电效应,且所产生的光电子最大初动能分别为E A、E B.求A、B两种光子的动量之比和该金属的逸出功.第3课时原子与原子核氢原子光谱►题组1原子的核式结构模型1.关于原子结构,下列说法正确的是() A.玻尔原子模型能很好地解释氢原子光谱的实验规律B.卢瑟福核式结构模型可以很好地解释原子的稳定性C.卢瑟福的α粒子散射实验表明原子内部存在带负电的电子D.卢瑟福的α粒子散射实验否定了汤姆孙关于原子结构的“西瓜模型”2.卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是()►题组2玻尔理论与氢原子跃迁3.下列说法中正确的是() A.氢原子由较高能级跃迁到较低能级时,电子动能增加,原子势能减少B.原子核的衰变是原子核在其他粒子的轰击下发生的C.β衰变所释放的电子是原子核内的中子转化成质子而产生的D.放射性元素的半衰期随温度和压强的变化而变化4.下列说法正确的是() A.根据玻尔理论,氢原子在辐射光子的同时,轨道也在连续地减小B.放射性物质的温度升高,则半衰期减小C.用能量等于氘核结合能的光子照射静止氘核不可能使氘核分解为一个质子和一个中子D.某放射性原子核经过2次α衰变和一次β衰变,核内质子数减少3个E.根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小5.如图1所示是某原子的能级图,a、b、c为原子跃迁时所发出的三种波长的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是()图16.如图2为氢原子能级图,现有一群处于n=3激发态的氢原子,则这些原子()图2A.发出的光子最小能量是0.66 eVB.发出的光子最大能量是12.75 eVC.能发出3种不同频率的光子D.由n=3跃迁到n=1时发出的光子频率最高►题组3原子核的衰变、人工核反应7.能源是社会发展的基础,发展核能是解决能源问题的途径之一.下列释放核能的反应方程,表述正确的有()A.31H+21H→42He+10n是核聚变反应B.31H+21H→42He+10n是β衰变C.23592U+10n→14456Ba+8936Kr+310n是核裂变反应D.23592U+10n→14054Xe+9438Sr+210n是α衰变8.下列说法正确的是() A.发现中子的核反应方程是94Be+42He→126C+10nB.20个23892U的原子核经过两个半衰期后剩下5个23892UC.23592U在中子轰击下生成9438Sr和14054Xe的过程中,原子核中的平均核子质量变小D.原子从一种定态跃迁到另一种定态时,一定辐射出一定频率的光子9.一个氘核和一个氚核经过反应后生成一个氦核和一个中子,同时放出一个γ光子.已知氘核、氚核、中子、氦核的质量分别为m1、m2、m3、m4,普朗克常量为h,真空中的光速为c.下列说法中正确的是()A.这个反应的核反应方程是21H+31H→42He+10n+γB.这个反应既不是聚变反应也不是裂变反应C.辐射出的γ光子的能量E=(m3+m4-m1-m2)c2D.辐射出的γ光子的波长λ=h(m1+m2-m3-m4)c2►题组4关于核能的计算问题10.氘核21H和氚核31H结合成氦核42He的核反应方程如下:21H+31H→42He+10n+17.6 MeV①这个核反应称为__________________.②要发生这样的核反应,需要将反应物质的温度加热到几百万开尔文.式中17.6 MeV是核反应中____________(选填“放出”或“吸收”)的能量,核反应后生成物的总质量比核反应前物质的总质量________(选填“增加”或“减少”)了________kg.(结果保留两位有效数字)11.太阳能屋顶、太阳能幕墙、太阳能汽车、太阳能动态景观……科学研究发现太阳发光是由于其内部不断发生从氢核到氦核的核聚变反应,即在太阳内部4个氢核(11H)转化成一个氦核(42He)和两个正电子(01e)并放出能量.已知质子质量m p=1.007 3 u,α粒子的质量mα=4.001 5 u,电子的质量m e=0.000 5 u,1 u的质量相当于931.5 MeV的能量.(1)写出该热核反应方程;(2)一次这样的热核反应过程中释放出多少兆电子伏特的能量?(结果保留四位有效数字)►题组5动量守恒定律与原子物理的结合12.(1)下列说法中正确的是________.A.光电效应现象说明光具有粒子性B.普朗克在研究黑体辐射问题时提出了能量子假说C.玻尔建立了量子理论,成功解释了各种原子的发光现象D.运动的宏观物体也具有波动性,其速度越大,物质波的波长越长(2)氢原子的能级图如图3所示,一群处于n=4能级的氢原子向较低能级跃迁,能产生________种不同频率的光子,其中频率最大的光子是从n=4的能级向n=________的能级跃迁所产生的.图3(3)如图4所示,质量均为m的小车与木箱紧挨着静止在光滑的水平冰面上,质量为2m的小明站在小车上用力向右迅速推出木箱,木箱相对于冰面的速度为v,接着木箱与右侧竖直墙壁发生弹性碰撞,反弹后被小明接住,求小明接住木箱后三者共同速度的大小.图4实验验证动量守恒1.在利用悬线悬挂等大小球进行验证动量守恒定律的实验中,下列说法正确的是() A.悬挂两球的线长度要适当,且等长B.由静止释放小球以便较准确地计算小球碰前的速度C.两小球必须都是刚性球,且质量相同D.两小球碰后可以粘合在一起共同运动2.在做“验证动量守恒定律”实验时,入射球a的质量为m1,被碰球b的质量为m2,小球的半径为r,各小球的落地点如图6所示,下列关于这个实验的说法正确的是()图6A.入射球与被碰球最好采用大小相同、质量相等的小球B.让入射球与被碰球连续10次相碰,每次都要使入射球从斜槽上不同的位置滚下C.要验证的表达式是m1ON=m1OM+m2OPD.要验证的表达式是m1OP=m1OM+m2ONE.要验证的表达式是m1(OP-2r)=m1(OM-2r)+m2ON3.在实验室里为了验证动量守恒定律,一般采用如图7甲、乙所示的两种装置:图7(1)若入射小球质量为m1,半径为r1;被碰小球质量为m2,半径为r2,则()A.m1>m2,r1>r2B.m1>m2,r1<r2C.m1>m2,r1=r2D.m1<m2,r1=r2(2)若采用图乙所示装置进行实验,以下所提供的测量工具中必需的是________.A.直尺B.游标卡尺C.天平D.弹簧测力计E.秒表(3)设入射小球的质量为m1,被碰小球的质量为m2,则在用图甲所示装置进行实验时(P为碰前入射小球落点的平均位置)所得“验证动量守恒定律”的结论为________________.(用装置图中的字母表示)4.如图8(a)所示,在水平光滑轨道上停着甲、乙两辆实验小车,甲车系一穿过打点计时器的纸带,当甲车受到水平向右的冲量时,随即启动打点计时器.甲车运动一段距离后,与静止的乙车发生正碰并粘在一起运动.图8纸带记录下碰撞前甲车和碰撞后两车运动情况如图(b)所示,电源频率为50 Hz,则碰撞前甲车运动速度大小为________m/s,甲、乙两车的质量比m甲∶m乙=________. 5.气垫导轨上有A、B两个滑块,开始时两个滑块静止,它们之间有一根被压缩的轻质弹簧,滑块间用绳子连接(如图9甲所示),绳子烧断后,两个滑块向相反方向运动,图乙为它们运动过程的频闪照片,频闪的频率为10 Hz,由图可知:图9(1)A、B离开弹簧后,应该做________运动,已知滑块A、B的质量分别为200 g、300 g,根据照片记录的信息,从图中可以看出闪光照片有明显与事实不相符合的地方是____________________________________________.(2)若不计此失误,分开后,A的动量大小为____kg·m/s,B的动量的大小为________kg·m/s.本实验中得出“在实验误差允许范围内,两滑块组成的系统动量守恒”这一结论的依据是__________________________________________.6.某同学利用打点计时器和气垫导轨做“验证动量守恒定律”的实验,气垫导轨装置如图10甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差.图10(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;②向气垫导轨通入压缩空气;③把打点计时器固定在紧靠气垫导轨左端弹射架的外侧,将纸带穿过打点计时器和弹射架并固定在滑块1的左端,调节打点计时器的高度,直至滑块拖着纸带移动时,纸带始终在水平方向;④使滑块1挤压导轨左端弹射架上的橡皮绳;⑤把滑块2放在气垫导轨的中间;⑥先________,然后________,让滑块带动纸带一起运动;⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图乙所示;⑧测得滑块1(包括撞针)的质量为310 g,滑块2(包括橡皮泥)的质量为205 g;试着完善实验步骤⑥的内容.(2)已知打点计时器每隔0.02 s打一个点,计算可知,两滑块相互作用前质量与速度的乘积之和为________ kg·m/s;两滑块相互作用以后质量与速度的乘积之和为______kg·m/s(保留三位有效数字).(3)试说明(2)问中两结果不完全相等的主要原因是__________________________.7.如图11是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点下方桌子的边缘有一竖直立柱.实验时,调节悬点,使弹性球1静止时恰与立柱上的球2右端接触且两球等高.将球1拉到A点,并使之静止,同时把球2放在立柱上.释放球1,当它摆到悬点正下方时与球2发生对心碰撞,碰后球1向左最远可摆到B点,球2落到水平地面上的C点.测出有关数据即可验证1、2两球碰撞时动量守恒.现已测出A点离水平桌面的距离为a、B点离水平桌面的距离为b,C点与桌子边缘间的水平距离为c.图11(1)还需要测量的量是_________________、____________________和______________.(2)根据测量的数据,该实验中动量守恒的表达式为__________________________.(忽略小球的大小)。