西南大学网络教育2020年春9102]《高等数学》作业标准答案
- 格式:docx
- 大小:378.02 KB
- 文档页数:16
西南大学培训与继续教育学院课程考试试题卷学期:2020年春季课程名称【编号】:高等数学【0917】 A卷考试类别:大作业满分:100 分(一)计算题(本大题共9小题,任意选做4个小题,每小题20分,共80分)1. 求.2. 求不定积分.3. 求定积分.4. 求函数的导数.5. 求函数的极值.6. 求函数的二阶偏导数及.7. 计算函数的全微分.8.求微分方程的通解.9. 计算,其中是抛物线及直线所围成的闭区域.(二)证明题(本大题共1小题,必做,共20分)1. 证明方程在区间(-1,0)内有且只有一个实根.计算题;1(1-x)^5*(1+x+x^2)^5=(1-x)^4(1+x+x^2)^4*(1-x)(1+x+x^2)=[(1-x)(1+x+x^2)]^4*(1-x)(1+x+x^2)=(1-x^3)^4*(1-x)(1+x+x^2)=[(1-x^3)^2]^2*(1-x)(1+x+x^2)=[(1-x^3)^2]^2*(1-x^3)=(1-X^3)^52∫x^4/(1+x²)² dx=∫[1+1/(1+x²)²-2/(1+x²)]dx,用综合除法=∫dx+∫dx/(1+x²)²-2∫dx/(1+x²)在第二项,令x=tanp,dx=sec²pdp=∫dx+∫sec²p/(1+tan²p)²-2∫dx/(1+x²)=∫dx+∫sec²p/(sec^4p)-2∫dx/(1+x²)=∫dx+∫cos²pdp-2∫dx/(1+x²)=∫dx+∫(1+cos2p)/2 dp-2∫dx/(1+x²)=∫dx+(1/2)∫dp+(1/4)∫cos2pd(2p)-2∫dx/(1+x²)- 1 -=x+(1/2)p+(1/4)sin2p-2arctanx+C=x+(1/2)p+(1/2)sinpcosp-2arctanx+C=x+(1/2)arctanx+(1/2)[x/√(1+x²)][1/√(1+x²)]-2arctanx+C=x-(3/2)arctanx+(1/2)[x/(1+x²)]=x+x/[2(1+x²)]-(3/2)arctanx+C4y′=2(1+cos2x)(1+cos2x)′=2(1+cos2x)(-sin2x)(2x)′=4(1+cos2x)(-sin2x)=-4sin2x-2sin4x5 令f′(x)=0,解得x1=−1,x2=0,x3=1当x变化时,f′(x),f(x)的变化如下表x (−∞,−1) −1 (−1,0) 0 (0,1) 1 (1,+∞)f′(x) − 0 − 0 + 0 +f(x) 减无极值减极小值增无极值增当x=0时,f(x)有极小值,极小值是0,无极大值二证明题- 2 -。
0950 20201单项选择题1、选择题、填空题、解答题的考查功能都包括()。
1. D. 考查运算能力2. E. 考查应用意识3.考查基本概念4.考查推理能力2、数学教育的评价主体以学校和()为主。
1. F. 学生2.班主任3.家长4.教师3、确立()在数学教学课堂教学评价活动中的主体地位。
1. B. 学科2.学生3.知识4.教师4、考查采用()制度。
1. C. 百分数2.等级3.分数4.无分数5、诊断性评价是在(),对学生的认知、情感和技能进行评估。
1.课后2.课程和学习结束时3.课程和学习开始前4.课堂上6、数学教师评价的基本方法除了课堂观察,还有学生的数学学业成就、()、同行评价、教师的自我评价1.家长评价2.数学教师成长记录袋3.学生评价4.绩效考评7、再测信度的计算方法是()。
1. A. 求两半试题分数的相关系数2.科隆巴赫系数公式3.求两次测试分数的相关系数4.求两个复本分数的相关系数多项选择题8、数学教育评价的常见模式有()。
1.目标本位评价模式2.形成性评价模式3.回应性评价模式4.实验定向评价模式9、试卷设计必须符合()的基本原则。
1.导向性2.适应性3.科学性4.全面性10、国际中小学数学教育评价的共同趋势有()。
1.评价主体的多元性2.学生是评价的主体3.评价方式的多样性4.评价内容的多元化与开放性11、教育评价领域通常按照评价的模式分为()方法和()方法。
1.量化2.结果评价3.过程评价4.质性12、数学教育评价的基本功能有()。
1.甄别、选拔功能2.调控与教学功能3.激励、改进功能4.诊断功能13、数学知识包括()。
1.证明2.定理3.定义4.公式14、质性评价收集信息与资料的途径通常有()。
1.观察法2.谈话法3.调查法4.记录袋法15、数学教育发展性评价的目的在于促进发展,旨在建立()的评价新体系。
1.评价目标全面化2.评价方式多样化3.评价主体多元化4.评价标准分层化5.评价内容综合化16、数学学习评价,通常借助于()手段。
高等数学选讲 第四次作业答案1. (1)04590851707114272021571171102021504270202171102021502021427071102021502021427071100251020214214==----=-----=----=----=(2)21412141312150620123212325625062-==2.11112305811-11240561-11051290⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭AB058111213223230562111217202901114292-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=⨯--⨯-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭AB A⎪⎪⎪⎭⎫ ⎝⎛-==092650850AB B A T3.11112222111312632251126310001000100010001200010002001100213000100130201012140001021410011000100010001000010000010000001000030100004100140101⎛⎫⎛⎫⎪⎪- ⎪ ⎪→ ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪-- ⎪→→ ⎪---- ⎪---⎝⎭⎝⎭1122111263511182412410001000010000001000001⎪⎪⎪⎛⎫ ⎪- ⎪→ ⎪-- ⎪--⎝⎭ 所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=-4112124581316121212110000001A 4.714191921191971419192321019147186335421863018763000000010010000B -----⎛⎫⎛⎫⎛⎫⎪ ⎪⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎪→- ⎪⎪⎝⎭基础解系为T T )1,0,197,191(,)0,1,1914,192(=--=βα 5.解:设样本空间为U ,则U 所含基本事件的总数为n =350C 。
单项选择题1、设则在处( )A.不连续B.连续,但不可导C.连续,且有一阶导数D.有任意阶导数1 C2A3D4B2、已知在上连续,在内可导,且当时,有,又已知,则( )A.在上单调增加,且B.在上单调减少,且C.在上单调增加,且D.在上单调增加,但正负号无法确定5 D. D6C7B8A3、已知,在处可导,则( )A.,都必须可导B.必须可导C.必须可导D.和都不一定可导9B10 A11D12C4、函数在上有( )A.四个极值点;B.三个极值点C.二个极值点D.一个极值点13 C14A15B16D5、函数在某点处有增量,对应的函数增量的主部等于,则( )A.4 B.C.4 D.17 C18D19A20B6、若为内的可导奇函数,则( )A.必有内的奇函数B.必为内的偶函数C.必为内的非奇非偶函数D.可能为奇函数,也可能为偶函数21 B22A23C24D7、按给定的的变化趋势,下列函数为无穷小量的是( )A.() B.()C.() D.()25D26B27 C28A8、设,若在上是连续函数,则( )A.0 B.1 C.D.329D30B31 C32A9、设函数,则( )A.当时,是无穷大B.当时,是无穷小C.当时,是无穷大D.当时,是无穷小33A34D35 B36C10、若,则方程( )A.无实根B.有唯一的实根C.有三个实根D.有重实根37A38 B39D40C11、下列各式中的极限存在的是( )A.B.C.D.41D42A43B44 C12、函数的极大值是( )A.17 B.11 C.10 D.945D46B47 A48C13、下列函数与相等的是( A )A.,B.,C.,D.,49D50C51B52 A14、数列,,,,,…是( )A.以0为极限B.以1为极限C.以为极限D.不存在在极限53 B54D55A56C15、指出曲线的渐近线( )A.没有水平渐近线,也没有斜渐近线B.为其垂直渐近线,但无水平渐近线C.即有垂直渐近线,又有水平渐近线D.只有水平渐近线57D58A59B60 C16、的值为( )A.1 B.C.不存在D.061C62B63 D64A17、如果与存在,则( )A.存在且B.存在,但不一定有C.不一定存在D.一定不存在65D66A67 C68B18、,其中,则必有( ) A.B.C.D.69 E. C70B71A72 D19、设在上有定义,函数在点左、右极限都存在且相等是函数在点连续的( )A.充分条件B.充分且必要条件C.必要条件D.非充分也非必要条件73 C74A75B76D20、两个无穷小量与之积仍是无穷小量,且与或相比( )A.是高阶无穷小B.是同阶无穷小C.可能是高阶,也可能是同阶无穷小D.与阶数较高的那阶同阶77 A78D79C80B21、设()且,则在处( )A.令当时才可微B.在任何条件下都可.当且仅当时才可微D.因为在处无定义,所以不可微81A82D83B84 C22、设函数,则点0是函数的( )A.第一类不连续点B.第二类不连续点C.可去不连续点D.连续点85B86 D87C88A23、在下列四个函数中,在上满足罗尔定理条件的函数是( )A.B.C.D.89A90D91 B92C24、函数它在内( )A.不满足拉格朗日中值定理的条件B.满足拉格朗日中值定理的条件,且C.满足中值定理条件,但无法求出的表达式D.不满足中值定理条件,但有满足中值定理结论93A94 B95D96C25、与函数的图象完全相同的函数是( )A.B.C.D.97B98C99D100 A26、要使函数在处的导函数连续,则应取何值( )A.B.C.D.101C102B103A104 D27、若在区间内,函数的一阶导数,二阶导数,则函数在此区间内是( )A.单调减少,曲线上凹B.单调增加,曲线上凹C.单调减少,曲线下凹D.单调增加,曲线下凹105C106A107B108 D28、在点处的导数是( )A.1 B.0 C.-1 D.不存在109C110 D111A112B29、若为可导函数,为开区间内一定点,而且有,,则在闭区间上必有( )A.B.C.D.113A114 D115B116C30、设其中是有界函数,则在处( )A.极限不存在B.极限存在,但不连续C.连续,但不可导D.可导117C118A119B120 D31、函数满足拉格朗日中值定理条件的区间是( )A.B.C.D.121 C122D123B124A32、设可导,,若使在处可导,则必有( )A.B.C.D.125 F. A126D127B128C33、设函数,则( )A.0 B.24 C.36 D.48129C130A131 B132D34、设函数,在( )A.单调增加, B.单调减少,C.单调增加,其余区间单调减少,D.单调减少,其余区间单调增加.133 C134A135B136D35、若,则( )A.-3 B.6 C.-9 D.-12137D138A139C140 B36、设函数,,则为( )A.30 B.15 C.3 D.1141D142A143C144 B37、设函数在处有,在处不存在,则( )A.及一定都是极值点B.只有是极值点C.与都可能不是极值点D.与至少有一个点是极值点145 C146B147A148D38、区间表示不等式( )A.B.C.D.149 B150D151A152C主观题39、求下列函数的自然定义域参考答案:40、参考答案:41、求下列函数的自然定义域参考答案:42、参考答案:43、求下列函数的自然定义参考答案:44、求下列函数的自然定义域参考答案:45、参考答案:46、参考答案:47、参考答案:48、参考答案:49、参考答案:50、求由和所围成的图形的面积.参考答案:51、参考答案:52、求下列函数的自然定义域参考答案:53、参考答案:54、参考答案:55、求下列函数的自然定义域参考答案:56、参考答案:57、参考答案:58、试证下列函数在指定区间内的单调性参考答案:59、参考答案:60、参考答案:。
西南大学培训与继续教育学院课程一、单项选择题(本大题共15小题,每道题4.0分,共60.0分)1.设()且,则在处 ( )A..B..C..D..2.函数在处( )A.不连续B.连续不可导C.连续且仅有一阶导数D.连续且有二阶导数3.曲线在点处切线斜率等于( )A.8B.12C.-6D.64.设时,与是同阶无穷小,则为( )A.1B.2C.3D.45.设在处可,则( )A..B..C..D..6.函数的反函数是( )A..B..C..D..7.设有二阶连续导数,且,则 ( )A..B..C..D..8.两个无穷小量与之积仍是无穷小量,且与或相比( )A.是高阶无穷小B.是同阶无穷小C.可能是高阶,也可能是同阶无穷小D.与阶数较高的那阶同阶9.若在区间上二次可微,且,,(),则方程在上 ( )A.没有实根B.有重实根C.有无穷多个实根D.有且仅有一个实根10.任意给定,总存在,当时,,则( )A..B..C..D..11.设在上有定义,函数在点左、右极限都存在且相等是函数在点连续的( )A.充分条件B.充分且必要条件C.必要条件D.非充分也非必要条件12.设在内连续,且,则在点处( )A..B..C..D..13.已知函数在任意点处的增量且当时,是的高阶无穷小,,则( )A..B..C..D..14.下列函数中在上满足拉格朗日定理条件的是( )A..B..C..D..15.在下列四个函数中,在上满足罗尔定理条件的函数是( )A..B..C..D..二、计算题(本大题共4小题,每道题5.0分,共20.0分)1.2.求下列函数的自然定义域3.4.求在点(1, 2)处的偏导数三、证明题(本大题共1小题,每道题20.0分,共20.0分) 1.。
9102 20192单项选择题1、函数与在处都没有导数,则,在处( )D.至多一个有导数2、若函数在上连续,在可导,则( )3、设,而处连续但不可导,则在处( ) C.仅有一阶导数4、函数的图形,在( )B.处处是凹的5、,如果在处连续,那么k=()D.1.6、曲线( )D 既无极值点,又无拐点7、设,若在上是连续函数,则a=( )C.8、下列函数中为奇函数的是( )A.9、设函数有连续的二阶导数,且则极限等于( )D.-110、( )A..11、设为奇函数,且( )C.212、下列各式中的极限存在的是( )C.13、若函数在点a连续,则在点a( )D.有定义14、若为可微分函数,当时,则在点x处的是关于的( ) A.高阶无穷小15、设,则它的连续区间是( )B.16、下列函数相等的是( A )A.17、设函数在区间内有定义,若当时,恒有,则x=0是的( )C.可导的点,且.18、可微的周期函数其导数( )A.一定仍是周期函数,且周期相同19、指出曲线的渐近线( )C.即有垂直渐近线,又有水平渐近20、若对任意则( D ).21、求极限时,下列各种解法正确的是( )C.原式,22、设函数,当自变量x由改变到时,相应函数的改变量( )C..23、,则它的连续区间为( )C.24、( )C.125、无穷小量是( )C.以零为极限的一个变量26、,则=( )A.27、设其中是有界函数,则处( ) D.可导28、函数满足拉格朗日中值定理条件的区间是( ).29、在函数的可去间断点处,下面结论正确的是( )C.函数在左、右极限存在相等30、设要使在处连续,则( )B.1.31、若函数的定义域为R,则k的取值范围是( )A..32、已知时,是x的等价无穷小量,则( )C.2.33、设可导,若使在x=0处可导,则必有( ) A.34、设函数在点0可导,且( )B..35、已知在区间上单调递减,则的单调递减区间是( ) C..36、点x=1是函数的( )C.可去间断点.37、设函数的定义域是( )C..38、设函数,则( )B.2439、设函数,在( )40、若,则( )B.6.41、设函数,,则为( ) B.15.42、在区间内,方程( )C.有且仅有两个实根.43、若,则( )44、函数在点连续,是在点可导的( )A.必要不充分条件45、函数与其反函数的图形对称于直线( ) C.46、区间表示不等式( )B.主观题47、参考答案:48、参考答案:49、求下列函数的自然定义域参考答案:50、求下列函数的自然定义域参考答案:51、参考答案:52、参考答案:53、参考答案:54、求三元函数的偏导数参考答案:55、参考答案:56、参考答案:57、参考答案:58、参考答案:59、参考答案:60、参考答案:。
分数: 100.0完成日期:2011年01月29日 21点00分说明:每道小题括号里的答案是学生的答案,选项旁的标识是标准答案。
一、单项选择题。
本大题共20个小题,每小题 4.0 分,共80.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.( C )A.B.C.D.2.( B )A.连续点B.可去间断点C.跳跃间断点D.无穷间断点3.( A )A.B.C.D.4.( A )A.单调递增B.单调递减C.部分递增,部分递减D.不可计算5.( C )A.有界B.单调上升C.无界D.单调下降6.( A )A. 2B.-2C.1/2D.-1/27.( C )A. 1B.0C. bD.-b8.( B )A.B.C.0D.9.( B )A.处处单调减小B.处处单调增加C.具有最大值D.具有最小值10.( B )A.必要条件B.充分条件C.充分必要条件D.无关条件11.( C )A.两个根B.没有根C.唯一的根D.三个根12.( D )A.B.C.D.13.( D )A.B.C.D.14.下列算式正确的是( B )A.B.C.D.15.( A )A.B.C.D. 16.( C )A.0B.-1C. 1D. 217.( A )A.B.C.D.18.( B )A. 3B.-3C. 1D.-119.( B )A.B.C.D.20.( A )A.B.C.D.三、判断题。
本大题共5个小题,每小题 4.0 分,共20.0分。
1.(正确)2.(正确)3.(正确)4.(正确)5.(错误)分数: 100.0完成日期:2011年01月29日 21点05分说明:每道小题括号里的答案是学生的答案,选项旁的标识是标准答案。
一、单项选择题。
本大题共20个小题,每小题 4.0 分,共80.0分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.( C )A.(0,1)B.(0,-1)C.(0,0)D.(1,0)2.( A )A. AB. BC. CD. D3.( C )A. AB. BC. CD. D4.( C )A. AB. BC. CD. D5.( D )A. AB. BC. CD. D6.( B )A. AB. BC. CD. D7.( D )A. AB. BC. CD. D8.( C )A. AB. BC. CD. D9.( B )A. AB. BC. CD. D10.( B )A.绝对收敛B.条件收敛C.发散D.敛散性不确定11.( A )A. AB. BC. CD. D12.( B )A. 1B. 2C.1/2D. 313.( B )A. AB. BC. CD. D14.( D )A. AB. BC. CD. D15.( B )A. 1B. 2C. 3D. 416.( B )A.1/2B.1/3C.1/6D. 117.( C )A. AB. BC. CD. D18.( D )A. AB. BC. CD. D19.( C )A.10B.20C.30D.4020.( D )A. AB. BC. CD. D三、判断题。
西南科技大学网络教育高等数学题目解答一、单项选择题lim 11.极限宀2 +农的结果是()A.0B.不存在1C.51D.2答案:D2.若f(x)的定义域为[0,1],A.[-1,1]B.(-1,1)C.[0,1]D.[-1,0]答案:A2a A lna + e J+ -j3<J T IIC?+M-2C.D.答案:Dy sineixy = 3宀尹丄A空dx=()3.设B.的定义域为()4.求叭)A.0B.SbC.倉D.1 答案:B5.由叫=灼可知,在积分曲线族肋Fg+Cd仕忌吊御上横坐标相同的点处作切线,这些切线彼此是()的。
A.无规律B.存在C.相交D.平行答案:D17 = 2工* + ?丈2 — 1 Q6.求函数丿一》几丁5 的二阶导数()\smxdx7.求=()。
A一COS 2TB CDS XC COS X+ CD - COS JT+ C答案:DB.11C J1J答案:C9.求A.OB.1sin nt dj1+ COS MX=()。
1n一1算y2-2x的间断点是()。
B.C.D.答案:A11.已知A.1B.2C.3D.4 答案:A12.求占:伽叮)A.1B.0C.D.答案:BC.D. 答案:D10.函数13L ——2fsin fSr + J'ldx14.求」 工 丿 =()COS (5A + 7) | cJ cos(5x +7)+ cB. 5—cos(5^r + 7) + CC.D cos(5x+ 7)+ C答案:BZV 貫1二3工卩亠%15.判断函数八丿 的奇偶性()A. 奇函数B. 偶函数C. 奇偶函数D. 非奇非偶函数 答案:B16.假定 限,指出2广%)A. B.C. 了懐0‘存在,按照导数的定义观察=()-2广(孔) -八叼)D. 答案:Af(x D + ^)-f(x 0-^)_A o答案:D17.若在某区间上(),贝恠该区间上了〔忑)的原函数一定存在A.可导B.可微C.连续D.可积答案:C-^3驚毋的几何意义是()18.积分中值公式A.曲边梯形各部分面积的代数和等于/鹭)与b-a为邻边的矩形面积B.曲边梯形各部分面积的和等于■' ' 1:-1与b-a为邻边的矩形面积C.曲边梯形面积等于与b-a为邻边的矩形面积D.曲边梯形各部分面积的代数和答案:A二、判断题19.如果函数在区间』上的导数恒为零,那么力在区间』上是一个常数。
《高等数学(二)》练习题一参考答案一、是非题1、⨯;2、⨯;3、∨;4、∨;5、⨯;6、⨯;7、∨;8、∨;9、⨯;10、⨯;11、⨯;12、⨯。
二、选择题 BCCAB ABBBB 三、填空题1、常数;2、减少;3、0;4、(1)1f =-;5、.6、0;7、(0,0);8、(4)80y =;9、1; 10、,t x .四、解答题1.先求函数()f x 。
因为2(1)35f x x x +=++,令221,1,()(1)3(1)53t x x t f t t t t t =+⇒=-=-+-+=++,故 2()3f x x x =++。
再来求函数()f x 的单调区间与极值。
令1()2102f x x x '=+=⇒=-为唯一的驻点。
又()20f x ''=>,故函数有唯一的极小值111()24f -=,从而得单调减少区间为1(,)2-∞-,单调增加区间1(,)2-+∞。
2.00sin 33cos333lim lim 4ln(14)4414x x x x x x→→===-----。
3.设两个直角边长分别是,(,0)x y x y >,则有222x y l y +=⇒=。
从而周长函数为(0)y x l x l =<<。
令10,y x '==⇒=。
由此可知,斜边之长为l 的一切直角三角形中,有最大周长的直角三角形是等腰直角三角形。
4. 设该曲线方程为()y f x =,则由题设,有2y x '=,得2y x C =+。
代入条件(1)0y =,可得1C =-,故所求曲线方程为21y x =-.5.首先(,)D =-∞+∞。
令//2/1(66)1266(21)02y x x x x x =-=-=-=⇒=为可能的拐点的横坐标。
将其代入二阶导数式检验可知,在该点的左右两侧二阶导数符号变号,故有拐点为11(,)22-,而凹、凸区间分别为11(,),(,)22+∞-∞. 6. 由于函数处处可导,故由26600,1y x x x '=-=⇒=为两个驻点。