八年级数学下册18.1平行四边形18.2.3正方形特色训练题(新版)新人教版
- 格式:doc
- 大小:123.00 KB
- 文档页数:4
18.2.3正方形知识要点基础练知识点1正方形的性质1.矩形、菱形、正方形都一定具有的性质是(D)A.邻边相等B.四个角都是直角C.对角线相等D.对角线互相平分2.正方形ABCD的对角线AC的长是12,则边AB的长是(A)A.6B.2C.6D.83.如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于点F,则∠FAC的度数是(A)A.22.5°B.30°C.45°D.67.5°知识点2正方形的判定4.下列命题中,正确的是(C)A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线相等的菱形是正方形D.对角线垂直的平行四边形是正方形5.如图,在菱形ABCD中,对角线AC,BD交于点O,添加下列一个条件,能使菱形ABCD成为正方形的是(C) A.BD=AB B.AC=ADC.∠ABC=90°D.OD=AC综合能力提升练6.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是(B)A.30B.34C.36D.407.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是(B)A.45°B.22.5°C.67.5°D.75°8.将五个边长都为2 cm的正方形按如图所示摆放,点A,B,C,D分别是四个正方形的中心,则图中四块阴影面积的和为(B)A.2 cm2B.4 cm2C.6 cm2D.8 cm29.在一次数学课上,吴老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是(B)A.小青B.小何C.小夏D.小雨10.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是3.11.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离AE,CF分别是1 cm,2 cm,则线段EF的长为3 cm.【变式拓展】在直线l上依次放着三个正方形,已知斜放的正方形的面积为2,正放的两个正方形的面积分别为S1,S2,则S1+S2的值为2.12.如图,一张矩形的纸片,要折出一个正方形,只要把一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的依据是有一组邻边相等的矩形是正方形.13.如图,正方形纸片ABCD的边长为3,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都落在点G处,已知BE=1,则EF的长为5.14.如图,正方形ABCD的对角线AC,BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是正方形.证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形.∵四边形ABCD是正方形,∴OC=OB,AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.∵OC=OB,∴矩形OBEC是正方形.15.如图所示,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线相交于点D,且DE⊥BC于点E,DF⊥AC于点F.证明:四边形CEDF是正方形.证明:如图,过点D作DG⊥AB于点G.∵∠C=∠DEC=∠DFC=90°,∴四边形CEDF为矩形.∵AD平分∠CAB,DF⊥AC,DG⊥AB,∴DF=DG.同理,DE=DG,∴DE=DF,∴矩形CEDF为正方形.拓展探究突破练16.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为M,N,PE ⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形.∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,∴矩形MANP是正方形.(2)∵四边形MANP是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB.在△EPM和△BPN中,∠∠90°,,∠∠,∴△EPM≌△BPN(ASA),∴EM=BN.。
人教版数学八年级下册《18.2.3 正方形》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形2.小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.中选两个作为补充条件, 使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④3.已知正方形的边长为2cm,则其对角线长是()A.4cm B.8cm C.2cm D.22cm4.如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A.1 B.2 C.3 D.45.顶点为A(6,6),B(-4,3),C(-1,-7),D(9,-4)的正方形在第一象限的面积是()A.25 B.36 C.49 D.306.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个7.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4﹣2 2 D.32﹣48.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 2 B.42+4 C.8﹣4 2 D.2+1二、填空题9.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为.10.若正方形的面积是9,则它的对角线长是.11.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是____度.12.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC的周长为12,则EC的长为.13.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.14.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为3,则HD的长为.三、解答题15.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM 的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD= 时,四边形MENF是正方形,并说明理由.16.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N (1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.17.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.18.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________°.参考答案1.D 2.B 3.D 4.C 5.B 6.C 7.C 8.A9.210.311.22.5;12.5.13.43﹣6.14.3﹣1.15.解:(1)由SAS 可证(2)理由:∵AB ∶AD=1∶2,∴AB=12AD , ∵AM=12AD , ∴AB=AM ,∴∠ABM=∠AMB ,∵∠A=90°,∴∠AMB=45°,∵△ABM ≌△DCM ,∴BM=CM ,∠DMC=∠AMB=45°,∴∠BMC=90°,∵E ,F ,N 分别是BM ,CM ,BC 的中点,∴EN ∥CM ,FN ∥BM ,EM=MF ,∴四边形MENF 是菱形,∵∠BMC=90°,∴菱形MENF 是正方形16.(1)证明:连接EC .∵四边形ABCD 是正方形,EM ⊥BC ,EN ⊥CD ,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN 为矩形.∴MN=CE .又∵BD 为正方形ABCD 的对角线,∴∠ABE=∠CBE .在△ABE 和△CBE 中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.17.证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.18.(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°.在△BCP和△DCP中,∴△BCP≌△DCP(SAS).(2)证明:如图,由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP.∵PE=PB,∴∠CBP=∠E,∴∠CDP=∠E.又∵∠1=∠2(对顶角相等),∴180°-∠1-∠CDP=180°-∠2-∠E,即∠DPE=∠DCE.∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC.(3)58.。
18.2.3 正方形同步练习一、选择题1.下列说法不正确的是()A.有一个角是直角的菱形是正方形B.四条边都相等的四边形是正方形C.对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形2.菱形,矩形,正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分3.已知四边形ABCD是平行四边形,下列说法正确的有()①当AB BC=时,它是矩形②AC BD⊥时,它是菱形③当90∠=︒时,它是菱形ABC④当AC BD=时,它是正方形A.①②B.②C.②④D.③④4.如图,两把完全一样的直尺叠放在-起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④二、填空题5.一个正方形的对角线长为2,则其面积为.6.如图,在ABC=,点D、E分别是边AB、AC的中点.延长DE到点F,使∆中,AC BCDE EF=,得四边形ADCF.当ACB∠=︒时,四边形ADCF是正方形.7.如图,两个正方形边长分别为2、(2)a a>,图中阴影部分的面积为.8.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME BC⊥于E,⊥于F,则EF的最小值为.MF CD9.如图,在四边形ABCD中,//()>,90AD BC BC AD=,若5∠=︒,BC CDAE=,D∠=︒,45ABECE=,则BC的长度为.210.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),45MAN∠=︒,下列四个结论:①当MN时,则22.5BAM∠-∠=︒;③MNC∆AMN MNC∠=︒;②290的周长不变;④60∠-∠=︒.其中正确结论的序号是.AMN AMB三、解答题11.如图,若在正方形ABCD 中,点E 为CD 边上一点,点F 为AD 延长线上一点,且DE DF = ,则AE 与CF 之间有怎样的数量关系和位置关系?请说明理由.12.正方形ABCD 的边长为6,E ,F 分别是AB ,BC 边上的点,且45EDF ∠=︒,将DAE ∆绕点D 逆时针旋转90︒,得到DCM ∆.(1)求证:EF CF AE =+;(2)当2AE =时,求EF 的长.13.如图,长方形OABC 的顶点A 、C 的坐标分别为(22,0)a +、(0 ,22)(2)a a -> ,正方形ADEF 的顶点D 在边AB 上,且点F 的坐标为(24,0)a +.(1)长方形OABC 的面积为 ;(用含a 的式子表示)(2)正方形ADEF 的边长为 ;(3)求阴影部分的面积.(用含a 的式子表示)14.如图,在矩形ABCD 中,BAD ∠的平分线交BC 于点E ,EF AD ⊥于点F ,DG AE ⊥于点G ,DG 与EF 交于点O .(1)求证:四边形ABEF 是正方形;(2)若AD AE =,求证:AB AG =;(3)在(2)的条件下,已知1AB =,求OD 的长.15.如图,已知四边形ABCD为正方形,AB=点E为对角线AC上一动点,连接DE,过点⊥,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.E作EF DE(1)求证:矩形DEFG是正方形;(2)探究:CE CG+的值是否为定值?若是,请求出这个定值;若不是,请说明理由.18.2.3 正方形同步练习参考答案与试题解析一、选择题1.下列说法不正确的是()A.有一个角是直角的菱形是正方形B.四条边都相等的四边形是正方形C.对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形【解析】解:A、有一个角是直角的菱形是正方形,故A选项不符合题意;B、四条边都相等的四边形是菱形,故B选项符合题意;C、对角线互相垂直的矩形是正方形,故C选项不符合题意;D、两条对角线相等的菱形是正方形,故D选项不符合题意;故选:B.2.菱形,矩形,正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分【解析】解:菱形,矩形,正方形都具有的性质为对角线互相平分.故选:D.3.已知四边形ABCD是平行四边形,下列说法正确的有()①当AB BC=时,它是矩形②AC BD⊥时,它是菱形③当90∠=︒时,它是菱形ABC④当AC BD=时,它是正方形A.①②B.②C.②④D.③④【解析】解:①若AB BC=,则ABCD是菱形,选项说法错误;②若AC BD⊥,则ABCD是菱形,选项说法正确;③若90∠=︒,则ABCD是矩形,选项说法错误;ABC④若AC BD=,则ABCD是矩形,选项说法错误;故选:B.4.如图,两把完全一样的直尺叠放在-起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④【解析】解:过点D作DE AB⊥于E,DF BC⊥于F.两张长方形直尺的宽度相等,∴=,DE DF又平行四边形ABCD 的面积AB DE BC DF ==,AB BC ∴=,∴平行四边形ABCD 为菱形.当90DAB ∠=︒时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C .二、填空题5.一个正方形的对角线长为2,则其面积为 2 .【解析】解:方法一:四边形ABCD 是正方形,112AO BO AC ∴===,90AOB ∠=︒,由勾股定理得,AB =22S ==正.方法二:因为正方形的对角线长为2, 所以面积为:12222⨯⨯=. 故答案为:2.6.如图,在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点.延长DE 到点F ,使DE EF =,得四边形ADCF .当ACB ∠= 90 ︒时,四边形ADCF 是正方形.【解析】解:当90ACB ∠=︒时,四边形ADCF 是正方形,理由是:AC BC =,90ACB ∠=︒,45CAB CBA ∴∠=∠=︒,AC BC =,D 为AB 的中点,CD AB ∴⊥,CD 平分ACB ∠,90ADC ∴∠=︒,11904522ACD ACB CAB ∠=∠=⨯︒=︒=∠, AD CD ∴=, E 为AC 的中点,AE CE ∴=,DE EF =,∴四边形ADCF 是平行四边形,90CDA ∠=︒,AD CD =,∴四边形ADCF 是正方形,即当90ACB ∠=︒时,四边形ADCF 是正方形,故答案为:90.7.如图,两个正方形边长分别为2、(2)a a >,图中阴影部分的面积为 2122a a -+ .【解析】解:阴影部分的面积222211122(2)2222a a a a a =+--⨯+=-+ 8.如图,在边长为6的正方形ABCD 中,点M 为对角线BD 上一动点,ME BC ⊥于E ,MF CD ⊥于F ,则EF 的最小值为【解析】解:连接MC ,如图所示:四边形ABCD 是正方形,∠=︒,90DBC∴∠=︒,45C⊥于E,MF CD⊥于F,ME BC∴四边形MECF为矩形,∴=,EF MC当MC BD⊥时,MC取得最小值,此时BCM∆是等腰直角三角形,MC∴===,6∴的最小值为EF故答案为:9.如图,在四边形ABCD中,//()>,90AD BC BC AD∠=︒,BC CDAE=,=,若5ABED∠=︒,45CE=,则BC的长度为6.2【解析】解:过点B作BF AD⊥于点F,延长DF使FG EC=,连接BG,∠=︒,DAD BC,90//⊥∴∠=∠=︒,BF ADC D90∴四边形CDFB是矩形=BC CD∴四边形CDFB是正方形CBF C BFG∠=︒=∠=∠,∴===,90CD BC DF BF=∠=∠=︒,CE FG=,90BC BFBFG C()BCE BFG SAS ∴∆≅∆BE BG ∴=,CBE FBG ∠=∠45ABE ∠=︒,45CBE ABF ∴∠+∠=︒,45ABF FBG ABG ∴∠+∠=︒=∠ABG ABE ∴∠=∠,且AB AB =,BE BG =()ABE ABG SAS ∴∆≅∆5AE AG ∴==,523AF AG FG ∴=-=-=在Rt ADE ∆中,222AE AD DE =+,2225(3)(2)DF DF ∴=-+-,6DF ∴=6BC ∴=故答案为:610.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒,下列四个结论:①当MN 时,则22.5BAM ∠=︒;②290AMN MNC ∠-∠=︒;③MNC ∆的周长不变;④60AMN AMB ∠-∠=︒.其中正确结论的序号是 ①②③ .【解析】解:①:正方形ABCD 中,AB AD =,90B ADC C ∠=∠=∠=︒ 222MN MC NC ∴=+当MN =时,222MN MC =,22MC NC ∴=,MC NC ∴=,BM DN ∴=,()ABM ADN SAS ∴∆≅∆BAM DAN ∴∠=∠,45MAN ∠=︒,22.5BAM ∴∠=︒,故①正确;②:如图,将ABM ∆绕点A 顺时针旋转90︒得ADE ∆,则904545EAN EAM MAN ∠=∠-∠=︒-︒=︒, 则在EAN ∆和MAN ∆中,AE AM EAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,()EAN MAN SAS ∴∆≅∆AMN AED ∴∠=∠,360AED EAM ENM AMN ∴∠+∠+∠+∠=︒, 290(180)360AMN MNC ∴∠+︒+︒-∠=︒,290AMN MNC ∴∠-∠=︒,故②正确;③:EAN MAN ∆≅∆,MN EN DE DN BM DN ∴==+=+,MNC ∴∆的周长为:()()MC NC MN MC BM NC DN DC BC ++=+++=+, DC 和BC 均为正方形ABCD 的边长,故MNC ∆的周长不变.故③正确; ④如图,将ADN ∆绕点A 逆时针旋转90︒得ABF ∆,9045MAF MAN ∴∠=︒-∠=︒,MAN MAF ∴∠=∠,在MAN ∆和MAF ∆中,AF AN FAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,()MAN MAF SAS ∴∆≅∆,AMN AMB ∴∠=∠,故④错误.综上①②③正确.故答案为:①②③.三、解答题11.如图,若在正方形ABCD 中,点E 为CD 边上一点,点F 为AD 延长线上一点,且DE DF =,则AE 与CF 之间有怎样的数量关系和位置关系?请说明理由.【解析】解:AE CF =,AE CF ⊥,理由如下:如图,延长AE 交CF 于点G ,四边形ABCD 是正方形,AD CD ∴=,90ADC CDE ∠=∠=︒,在ADE ∆和CDF ∆中,AD CD ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩,()ADE CDF SAS ∴∆≅∆,AE CF ∴=,DAE DCF ∠=∠,90DCF F ∠+∠=︒,90DAE F ∴∠+∠=︒,AG CF ∴⊥,即AE CF ⊥.AE CF ∴=,AE CF ⊥.12.正方形ABCD 的边长为6,E ,F 分别是AB ,BC 边上的点,且45EDF ∠=︒,将DAE ∆绕点D 逆时针旋转90︒,得到DCM ∆.(1)求证:EF CF AE =+;(2)当2AE =时,求EF 的长.【解析】(1)证明:DAE ∆逆时针旋转90︒得到DCM ∆,180FCM FCD DCM ∴∠=∠+∠=︒,AE CM =,F ∴、C 、M 三点共线,DE DM ∴=,90EDM ∠=︒,90 EDF FDM∴∠+∠=︒,45EDF∠=︒,45 FDM EDF∴∠=∠=︒,在DEF∆和DMF∆中,DE DMEDF MDFDF DF=⎧⎪∠=∠⎨⎪=⎩,()DEF DMF SAS∴∆≅∆,EF MF∴=,EF CF AE∴=+;(2)解:设EF MF x==,2AE CM==,且6BC=,628BM BC CM∴=+=+=,8BF BM MF BM EF x∴=-=-=-,624EB AB AE=-=-=,在Rt EBF∆中,由勾股定理得222EB BF EF+=,即2224(8)x x+-=,解得:5x=,则5EF=.13.如图,长方形OABC的顶点A、C的坐标分别为(22,0)a+、(0,22)(2)a a->,正方形ADEF的顶点D在边AB上,且点F的坐标为(24,0)a+.(1)长方形OABC的面积为244a-;(用含a的式子表示)(2)正方形ADEF的边长为;(3)求阴影部分的面积.(用含a的式子表示)【解析】解:(1)长方形OABC 的顶点A 、C 的坐标分别为(22,0)a +、(0,22)(2)a a ->, 22OA a ∴=+,22OC a =-,长方形OABC 的面积2(22)(22)44OA OC a a a =⋅=+-=-,故答案为:244a -;(2)A 的坐标为(22)a +,点F 的坐标为(24,0)a +,24(22)2AF OF OA a a ∴=-=+-+=,故答案为:2;(3)解:COF ADEF OABC S S S S ∆=+-正方形长方形21(22)(22)2(22)(24)2a a a a =+-+--+ 22444(224)a a a =-+-+-2224a a =-+.14.如图,在矩形ABCD 中,BAD ∠的平分线交BC 于点E ,EF AD ⊥于点F ,DG AE ⊥于点G ,DG 与EF 交于点O .(1)求证:四边形ABEF 是正方形;(2)若AD AE =,求证:AB AG =;(3)在(2)的条件下,已知1AB =,求OD 的长.【解析】(1)证明:矩形ABCD ,90BAF ABE ∴∠=∠=︒,EF AD ⊥,∴四边形ABEF 是矩形,AE 平分BAD ∠,EF EB ∴=,∴四边形ABEF 是正方形;(2)AE 平分BAD ∠,DAG BAE ∴∠=∠,在AGD ∆和ABE ∆中,DAG BAE AGD ABE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AGD ABE AAS ∴∆≅∆,AB AG ∴=;(3)四边形ABEF 是正方形,1AB AF ∴==,AGD ABE ∆≅∆,1DG AB AF AG ∴====,AD AE =,AD AF AE AG ∴-=-,即DF EG =,在DFO ∆和EGO ∆中,90FOD GOE DFO EGO DF EG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()DFO EGO AAS ∴∆≅∆,FO GO ∴=,FD EG =45DAE AEF ∠=∠=︒,90AFE AGD ∠=∠=︒, DF FO OG EG ∴===,DO ∴=,1DG DO OG OG ∴=+=+=,1OG ∴=,1)2OD ∴==.15.如图,已知四边形ABCD 为正方形,AB =点E 为对角线AC 上一动点,连接DE ,过点E 作EF DE ⊥,交BC 于点F ,以DE 、EF 为邻边作矩形DEFG ,连接CG .(1)求证:矩形DEFG 是正方形;(2)探究:CE CG +的值是否为定值?若是,请求出这个定值;若不是,请说明理由.【解析】解:(1)如图,作EM BC ⊥于M ,EN CD ⊥于N ,90MEN ∴∠=︒,点E 是正方形ABCD 对角线上的点,EM EN ∴=,90DEF ∠=︒,DEN MEF ∴∠=∠,90DNE FME ∠=∠=︒,在DEN ∆和FEM ∆中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()DEN FEM ASA ∴∆≅∆,EF DE ∴=,四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)CE CG +的值是定值,定值为6,理由如下: 正方形DEFG 和正方形ABCD ,DE DG ∴=,AD DC =,90CDG CDE ADE CDE ∠+∠=∠+∠=︒, CDG ADE ∴∠=∠,在ADE ∴∆和CDG ∆中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,()ADE CDG SAS ∴∆≅∆,AE CG ∴=,6CE CG CE AE AC ∴+=+==是定值.。
第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定14.(·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .1815.(·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对.18.(·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4. 7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ). ∴∠OBM =∠ODN. ∴BM ∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD=4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为2.15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.22D.4218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B) A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点,求证:四边形AECF是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°. ∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD =20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2 B .2 C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A) A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF =CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF⊥DF,∴∠DFE=90°.∴∠BFE+∠CFD=90°.∴∠BEF=∠CFD.在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm . 12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.217.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为25cm.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB ∥CD ,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.33C.4 D.43第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。
18.2.3正方形1、下列说法错误的是( )A 正方形的四条边相等B 正方形的四个角相等C 平行四边形对角线互相垂直D 正方形的对角线相等2、如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的 点E ,使DE =5,折痕为PQ ,则PQ 的长为( )(A)12 (B)13 (C)14 (D)153、如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( )A .3cm B.4cm C.5cm D.6cm4、正方形具备而矩形不一定具备的性质是( )A 四个角都是直角 C 四条边相等B 对角线相等 D 对角线互相平分5、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )A .AC=BD ,AB∥CD,AB=CDB. AD∥BC,∠A=∠CC. AO=BO=CO=DO ,AC⊥BDD. AO=CO ,BO=DO ,AB=BC6、正方形具有而菱形不一定具有的性质是( )A 对角线互相平分 C 对角线相等B 内角和为360º D 对角线平分内角7、如图,在正方形ABCD 中,对角线AC 与BD 相交于O 点,3AB cm =, 则_________AC =,正方形ABCD 的周长是 ,正方形的面积是 。
8、如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,则_______ABD ∠=,________DAC ∠=,________DOC ∠=。
9、(1)已知正方形的对角线长是42cm ,则它的边长是_____cm(2)已知正方形的边长是42cm ,则它的对角线长是_____cm10、正方形的边长是5cm 时,它的周长是 ,面积是 。
11、在下列图中,有多少个正方形?有多少个矩形? A DB C O 正方形分别有 ;矩形分别有 。
第7、8题12、在正方形ABCD中,AO=5,则BO=,BD=;∠ABC= °13、如图,已知矩形ABCD的四个内角的平分线组成四边形EMFN,求证:四边形EMFN是正方形14、已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE 于G,DG交OA于F.求证:OE=OF.15、已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.16、如图,在正方形ABCD是,E为对角线AC上一点,连结EB、ED。
18.2.3 正方形知能演练提升能力提升1.四个角相等,四条边也相等的四边形一定是()A.正方形B.菱形C.矩形D.平行四边形2.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.10C.2D.83.小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD成为正方形,如图,现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④4.如图,将n个边长都为1 cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形对角线的交点,则n个这样的正方形重叠部分的面积和为()A. cm2B. cm2C. cm2D. cm25.矩形各内角平分线若能围成一个四边形,则这个四边形一定是.★6.以边长为2的正方形的对角线的交点O为端点,引两条相互垂直的射线,分别与正方形的边交于A,B两点,则线段AB的最小值是.7.如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE 的延长线交DF于点M.求证:AM⊥DF.8.如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.9.已知正方形ABCD的边长为a,两条对角线AC,BD相交于点O,P是射线AB上任意一点,过点P分别作直线AC,BD的垂线PE,PF,垂足为E,F.(1)如图①,当点P在线段AB上时,求PE+PF的值;(2)如图②,当点P在线段AB的延长线上时,求PE-PF的值.图①图②★10.如图,在边长为5的正方形ABCD中,点E,F分别是BC,DC边上的点,且AE⊥EF,BE=2.(1)延长EF交正方形外角平分线CP于点P(如图),试判断AE与EP的大小关系,并说明理由;(2)在AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.创新应用11.如图①,在正方形ABCD中,P是BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.图①图②(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP 与线段CE的数量关系,并说明理由.参考答案能力提升1.A四个角相等的四边形是矩形,四条边相等的四边形是菱形,既是菱形又是矩形的四边形一定是正方形,故选A.2.B连接BM交AC于点N(图略),此时DN+MN有最小值,且DN+MN=BM==10.3.B4.C5.正方形6.如图,∵四边形CDEF是正方形,∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD.∵AO⊥OB,∴∠AOB=90°,∴∠COA+∠AOD=90°,∠AOD+∠DOB=90°,∴∠COA=∠DOB.∵在△COA和△DOB中,∴△COA≌△DOB,∴OA=OB.∵∠AOB=90°,∴△AOB是等腰直角三角形,由勾股定理,得AB=OA,要使AB最小,只要OA取最小值即可,根据垂线段最短,OA⊥CD时,OA最小.∵O是正方形CDEF的对角线的交点,且正方形边长为2,∴OA=CD=1,即AB=.7.证明在正方形ABCD中,AO=DO=OC,AC⊥BD,∴∠AOE=∠DOF=90°,∠OAE+∠AEO=90°.又DE=CF,∴OE=OF,∴△AOE≌△DOF.∴∠AEO=∠DFO,∠OAE+∠DFO=90°.∴∠AMF=90°,∴AM⊥DF.8.证明(1)∵四边形ABCD是平行四边形, ∴AO=CO.又△ACE是等边三角形,∴EO⊥AC,即DB⊥AC.∴▱ABCD是菱形.(2)∵△ACE是等边三角形,∴∠AEC=60°.∵EO⊥AC,∴∠AEO=∠AEC=30°.∵∠AED=2∠EAD,∴∠EAD=15°.∴∠ADO=∠EAD+∠AED=45°.∵四边形ABCD是菱形,又∠ADC=2∠ADO=90°.∴四边形ABCD是正方形.9.解(1)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC.同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB.在Rt△OBC中,OB2+OC2=BC2,∴2OB2=a2.∴OB=,即PE+PF=.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC.同理PE∥BD.∴四边形PFOE为矩形,∴PE=OF.又∠PBF=45°,∴PF=BF.∴PE-PF=OF-BF=OB.由(1)得OB=,∴PE-PF=.10.解(1)AE=EP.理由:在AB上取一点G,使BG=BE,连接GE,∵AB=BC,∴AG=EC.∵AE⊥EF,∴∠2+∠3=90°.∵四边形ABCD为正方形,∴∠B=∠BCD=90°.∴∠1+∠3=90°,∴∠1=∠2.又∠AGE=∠ECP=135°,∴△AGE≌△ECP.∴AE=EP.(2)在AB边上存在一点M,使四边形DMEP是平行四边形.证明过程如下:在AB边上取一点M,使AM=BE,连接ME,MD,DP.在正方形ABCD中,AD=BA,∠DAM=∠ABE=90°,∴Rt△DAM≌Rt△ABE.∴DM=AE,∠1=∠4.∴DM=EP.∵∠1+∠5=90°,∴∠4+∠5=90°.∴AE⊥DM.∵AE⊥EP,∴DM∥EP.∴四边形DMEP为平行四边形.创新应用11.(1)证明∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP.∵DP=DP,∴△ADP≌△CDP.∴PA=PC.又PA=PE,∴PC=PE.(2)解∵△ADP≌△CDP,∴∠DAP=∠DCP.∵PA=PE,∴∠DAP=∠E.∴∠FCP=∠E.∵∠PFC=∠DFE,∠EDF=90°,∴∠CPE=∠EDF=90°.(3)解AP=CE.理由:∵四边形ABCD是菱形,∠ABC=120°,∴∠ADC=120°.∴∠EDC=60°.同理可得∠CPE=∠EDF=60°.又PC=PE,∴△PCE是等边三角形.∵PA=PE,∴AP=CE.。
人教版数学八年级下册18.2.3 《正方形》同步练习一、选择题1.菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长为2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为 ( )A.3a+2bB.3a+4bC.6a+2bD.6a+4b4.下列说法中,错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.邻边相等的菱形是正方形5.已知四边形ABCD是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④6.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为( )A.1;B.2;C.3;D.;7.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕C点顺时针方向旋转90°后,A点的坐标为()A.(,0)B.(0,7)C.(,1)D.(7,0)8.如图,四边形ABCD是正方形,以CD为边作等边△CDE,BE与AC相交于点M,则∠AMD度数是()A.75°B.60°C.54°D.67.5°9.顶点为A(6,6),B(-4,3),C(-1,-7),D(9,-4)的正方形在第一象限的面积是()A.25B.36C.49D.3010.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线BD上有一点P,使PC+PE的和最小,则这个最小值为()A.4B.2C.2D.2二、填空题11.若正方形的面积是9,则它的对角线长是 .12.已知正方形ABCD在直角坐标系内,点A(0,1),点B(0,0),则点C,D坐标分别为和 .(只写一组)13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.14.如图所示,正方形ABCD的周长为8cm,顺次连结正方形ABCD各边的中点,得到正方形EFGH,则EFGH的周长等于_____cm,面积等于______cm2.15.如图,已知正方形ABCD,点E在边DC上,DE=4,EC=2,则AE的长为.三、解答题16.如图,已知在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE=DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.17.如图,已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.18.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.19.如图,在正方形ABCD中,BC=2,E是对角线BD上的一点,且BE=AB.求△EBC的面积.20.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.参考答案1.C2.A3.A4.D5.B6.C;7.D8.B9.B10.A11.答案为:312.答案为:(1,0)和(1,1);13.答案为:6514.答案为:;215.答案为.16.17.证明:∵∠FAB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠FAB=∠DAE,∵∠AB=AD,∠ABF=∠ADE,∴△AFB≌△ADE,∴DE=BF.18.(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.19.解:作EF⊥BC于F,如图所示:则∠EFB=90°,∵四边形ABCD是正方形,∴AB=BC=2,∠DAB=∠ABC=90°,∴∠ABD=∠DBC=0.5∠ABC=45°,∴△BEF是等腰直角三角形,∴EF=BF,∵BE=AB,∴BE=BC=2,∴EF=BF=BE=,∴△EBC的面积=0.5BC•EF=0.5×2×=.20.解:。
第十八章平行四边形18.2.3 正方形一、选择题1、正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2、四边形ABCD的对角线AC = BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形3、下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A.3:4B.5:8C.9:16D.1:25、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF∠AB,垂足为F,则EF的长为()A.1B.C. D.二、填空题6、如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=________.第6题图第7题图7、如图,已知正方形ABCD的边长为10,点P是对角线BD上的一个动点,M、N分别是BC、CD边上的中点,则PM+PN的最小值是___________.8、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.9、正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为.10、如图,在Rt△ABC中,△C=90°,DE垂直平分AC,DF△BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题11、如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。
12、如右图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF.(2)只添加一个条件,使四边形EDFA是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)13、已知:如图,△ABC中,△ABC=90°,BD是△ABC的平分线,DE△AB于点E,DF△BC于点F.求证:四边形DEBF是正方形.14、如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.15、如右图,要把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的59,请说明理由.16、如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(8,8),将正方形ABCO绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG .(1)求证:∠CBG∠∠CDG ;(2)求∠HCG 的度数;判断线段HG 、OH 、BG 的数量关系,并说明理由; (3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.参考答案:一、1、C 2、D 3、B 4、B 5、C 二、6、7、10、 8、1ab 49、2a10、考点: 正方形的判定. 专题: 计算题;开放型.分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF 是正方形推出.解答:解:设AC=BC ,即△ABC 为等腰直角三角形,△△C=90°,DE 垂直平分AC ,DF △BC , △△C=△CED=△EDF=△DFC=90°, DF=AC=CE ,DE=BC=CF ,11A1A 图3-21△DF=CE=DE=CF,△四边形DECF是正方形,故答案为:AC=BC.点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、11、∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=°°°12、(1)提示:证△DEB≌△DFC,(2)∠A=900167,四边形AFDE是平行四边形等(方法很多)13、考点:正方形的判定.专题:证明题.分析:由DE△AB,DF△BC,△ABC=90°,先证明四边形DEBF是矩形,再由BD是△ABC 的平分线,DE△AB于点E,DF△BC于点F得出DE=DF判定四边形DEBF是正方形.解答:解:△DE△AB,DF△BC,△△DEB=△DFB=90°,又△△ABC=90°,△四边形BEDF为矩形,△BD是△ABC的平分线,且DE△AB,DF△BC,△DE=DF,△矩形BEDF为正方形.点评:本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.14、(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.15、提示:AA1 = BB1 = CC1 = DD1 =13(或=23).16、(1)∠正方形ABCO绕点C旋转得到正方形CDEF,∠CD=CB,∠CDG=∠CBG=90°.在Rt∠CDG和Rt∠CBG中,,∠∠CDG∠∠CBG(HL)1 (180 2120-)30=(2)解:∠∠CDG∠∠CBG,∠∠DCG=∠BCG,DG=BG.在Rt∠CHO和Rt∠CHD中,∠ ,∠∠CHO∠∠CHD(HL),∠∠OCH=∠DCH,OH=DH,∠∠HCG=∠HCD+∠GCD= ∠OCD+ ∠DCB= ∠OCB=45°,∠HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB 中点的时候.∠DG=BG,∠DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∠当G点为AB中点时,四边形AEBD为矩形.∠四边形DAEB为矩形,∠AG=EG=BG=DG.∠AB=6,∠AG=BG=3.设H点的坐标为(x,0),则HO=x∠OH=DH,BG=DG,∠HD=x,DG=3.在Rt∠HGA中,∠HG=x+3,GA=3,HA=6﹣x,∠(x+3)2=32+(6﹣x)2,解得x=2.∠H点的坐标为(2,0).。
第十八章平行四边形18.2.3正方形基础导练1.正方形具有而菱形不一定具有的性质是()A.对角线互相平分 B.对角线相等C.内角和为360º D.对角线平分内角2.正方形具备而矩形不一定具备的性质是()A.四个角都是直角 B.四条边相等C.对角线相等 D.对角线互相平分3.下列说法错误的是()A.正方形的四条边相等 B.正方形的四个角相等C.平行四边形对角线互相垂直 D.正方形的对角线相等4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC5.判断下列命题是否正确.(1)对角线互相垂直且相等的平行四边形是正方形.()(2)对角线互相垂直的矩形是正方形.()(3)对角线相等的菱形是正方形.()(4)对角线互相垂直平分且相等的四边形是正方形.()6.如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点.a.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是矩形.b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.能力提升7.如图,正方形ABCD 的边长为4,点P 在DC 边上,且DP =1,点Q 是 AC 上一动点,则DQ +PQ 的最小值为____________.8.如图,正方形ABCD 中,E 为BC 上一点,AF 平分∠DAE ,求证:BE +DF =AE .ABCD EF9.如图,BF 平行于正方形ADCD 的对角线AC ,点E 在BF 上,且AE =AC ,CF ∥AE ,求∠BCF .ACD EF参考答案1.B 2.B 3.C 4.C 5.√ √ √ √6.a.AC⊥BD b.AC=BD c.AC⊥BD且AC=BD7.58.解:延长CD到H,使得DH=BE,由BE+FD=FH,AE=AH,只要证明AH=FH即可.由△ABE≌△ADH,(SAS)∴AE=AH(1)由∠BAF=∠HAF,又AB∥CD,∴∠ABF=∠AFH,得:∠HAF=∠AFH,∴HF=AH=AE,即AE=BE+DF正确.9.解:作AO⊥FB的延长线,BQ⊥AC∵BF∥AC,∴AO∥BQ 且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC/2∵AE=AC∴AO=AE/2∴∠AEO=30°∵BF∥AC∴∠CAE∠AEO=30°∵BF∥AC ,CF∥AE∴∠CFE∠CAE=30°∵BF∥AC∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180-45-30=105°。
18.2.3 正方形(特色训练题)
1.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
2.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
3.如图,在△ABC中,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形.
(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.
参考答案1.证明:(1)∵对角线BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四边形MPND是矩形,
∵∠ADB=∠CD B,
∴∠ADB=45°
∴PM=MD,
∴四边形M PND是正方形.
2.解:(1)证明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)四边形BECD是菱形,
理由是:∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=BD,
∴四边形BECD是菱形;
(3)当∠A=45°时,四边形BECD是正方形,理由是:
∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D为BA中点,
∴CD⊥AB,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
即当∠A=45°时,四边形BECD是正方形.
3.解:(1)证明:∵△CFE是由△ADE绕点E旋转180°得到,∴点A、E、C三点共线,点D、E、F三点共线,
且AE=CE,DE=FE,
故四边形ADCF是平行四边形.
(2)当∠ACB=90°,AC=BC时,四边形ADCF是正方形.
理由如下:
在△ABC中,∵AC=BC,AD=BD,
∴CD⊥AB,即∠ADC=90°.
而由(1)知,四边形ADCF是平行四边形,
∴四边形ADCF是矩形.
又∵∠ACB=90°,
∴,
故四边形ADCF是正方形.。