-2016年陕西省咸阳市渭城区西藏民族学院附中七年级下学期数学期末试卷及解析答案
- 格式:doc
- 大小:1.01 MB
- 文档页数:16
2015-2016学年陕西省咸阳市渭城区西藏民族学院附中七年级(下)期末数学试卷一、选择题(每小题3分,共30分)(请将答案填入答題卡内)1.(3分)下列计算正确的是()A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a32.(3分)下列图案是轴对称图形的有()A.1个B.2个C.3个D.4个3.(3分)如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°.则∠BEG的度数是()A.70°B.80°C.90°D.60°4.(3分)变量x与y之间的关系是y=x2﹣1,当自变量x=2时,因变量y的值是()A.﹣2B.﹣1C.1D.25.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.126.(3分)一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是()A.B.C.D.7.(3分)已知a+=4,则a2+=()A.12B.14C.8D.168.(3分)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是()A.SSS B.AAS C.SAS D.HL9.(3分)若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cm B.3cm C.7cm D.16cm10.(3分)如图,由∠1=∠2,∠D=∠B,推出以下结论,其中错误的是()A.AB∥DC B.AD∥BC C.∠DAB=∠BCD D.∠DCA=∠DAC 二、填空题(每空2分,共20分)(请将答案填入答题卡内)11.(2分)计算:(x+5)(x﹣5)=.12.(2分)(1+x)(1﹣x)(1+x2)(1+x4)=.13.(2分)计算4x2y•(﹣x)=.14.(4分)已知∠1=35°,则它的余角为度,补角是度.15.(10分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC 的平分线吗?若是,请说明理由.解答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG∴∠1=∠E∠2=∠3∵∠E=∠3(已知)∴=∴AD是∠BAC的平分线(角平分线的定义).三、解答题(共50分)16.(20分)计算题(1)103×97(2)(2a﹣b)2+2a(2b﹣a)(3)(3﹣1﹣1)0﹣2﹣3+(﹣3)2﹣()﹣1(4)[(x+y)2﹣(x﹣y)2]÷(2xy)17.(6分)化简求值(2x﹣1)(x+2)﹣(x﹣2)2﹣(x+2)2,其中x=3.18.(6分)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.19.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠ABC=∠DCB,AB=DC.(1)求证:△ABC≌DCB;(2)当∠EBC=30°,求∠AEB的度数.20.(10分)小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况.(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方时什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他由离家最远的地方返回的平均速度是多少.2015-2016学年陕西省咸阳市渭城区西藏民族学院附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)(请将答案填入答題卡内)1.(3分)下列计算正确的是()A.a+a2=2a3B.a2•a3=a6C.(2a4)4=16a8D.(﹣a)6÷a3=a3【解答】解:A、a与a2不能合并,故本选项错误;B、a2•a3=a5,故本选项错误;C、(2a4)4=16a16,故本选项错误;D、(﹣a)6÷a3=a6÷a3=a3,故本选项正确.故选:D.2.(3分)下列图案是轴对称图形的有()A.1个B.2个C.3个D.4个【解答】解:第一个是轴对称图形;第二个不是轴对称图形;第三个是轴对称图形;第四个不是轴对称图形.故选:B.3.(3分)如图,已知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°.则∠BEG的度数是()A.70°B.80°C.90°D.60°【解答】解:∵EG平分∠BEF,∴∠FEG=∠BEG,∵AB∥CD,∠EFG=40°,∴∠FEB=180°﹣∠EFG=140°,∴∠BEG=∠EFG=70°,故选:A.4.(3分)变量x与y之间的关系是y=x2﹣1,当自变量x=2时,因变量y的值是()A.﹣2B.﹣1C.1D.2【解答】解:x=2时,y=×22﹣1=2﹣1=1.故选:C.5.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.12【解答】解:∵x3n=(x n)3,x n=2,∴原式=x3n=(x n)3=x3n=23=8.故选:B.6.(3分)一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是()A.B.C.D.【解答】解:10个黑球,8个白球,12个红球一共是30个,所以从中任意摸出一个球,摸到白球的概率是=.故选:C.7.(3分)已知a+=4,则a2+=()A.12B.14C.8D.16【解答】解:将a+=4两边平方得,a2+=16﹣2=14,故选:B.8.(3分)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFD的理由是()A.SSS B.AAS C.SAS D.HL【解答】解:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B.在△AEC和△BFD中,∴Rt△AEC≌Rt△BFC(AAS),故选:B.9.(3分)若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cm B.3cm C.7cm D.16cm【解答】解:设第三边长为xcm.由三角形三边关系定理得9﹣6<x<9+6,解得3<x<15.故选:C.10.(3分)如图,由∠1=∠2,∠D=∠B,推出以下结论,其中错误的是()A.AB∥DC B.AD∥BC C.∠DAB=∠BCD D.∠DCA=∠DAC 【解答】解:∵∠1=∠2,∴AB∥DC,故A选项结论正确;∴∠D+∠BAD=180°,∠B+∠BCD=90°,∵∠D=∠B,∴∠B+∠BAD=180°,∠DAB=∠BCD,故C选项结论正确;∴AD∥BC,故B选项结论正确;只有AC平分∠BAD时,∠DCA=∠DAC,故D选项结论错误.故选:D.二、填空题(每空2分,共20分)(请将答案填入答题卡内)11.(2分)计算:(x+5)(x﹣5)=x2﹣25.【解答】解:原式=x2﹣25.故答案为:x2﹣2512.(2分)(1+x)(1﹣x)(1+x2)(1+x4)=1﹣x8.【解答】解:(1+x)(1﹣x)(1+x2)(1+x4)=(1﹣x2)(1+x2)(1+x4)=(1﹣x4)(1+x4)=1﹣x8,故答案为:1﹣x813.(2分)计算4x2y•(﹣x)=﹣x3y.【解答】解:4x2y•(﹣x)=﹣x3y.故答案为:﹣x3y.14.(4分)已知∠1=35°,则它的余角为55度,补角是145度.【解答】解:∵∠1=35°,∴∠1的余角为90°﹣∠1=55°,∠1的补角为180°﹣∠1=145°,故答案为:55.145.15.(10分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC 的平分线吗?若是,请说明理由.解答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG同位角相等,两直线平行∴∠1=∠E两直线平行,同位角相等∠2=∠3两直线平行,内错角相等∵∠E=∠3(已知)∴∠1=∠2∴AD是∠BAC的平分线(角平分线的定义).【解答】解:是.∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠E,(两直线平行,同位角相等)∠2=∠3.(两直线平行,内错角相等)∵∠E=∠3,(已知)∴∠1=∠2,∴AD是∠BAC的平分线(角平分线的定义).故答案为:同位角相等,两直线平行,两直线平行,同位角相等,两直线平行,内错角相等,∠1,∠2.三、解答题(共50分)16.(20分)计算题(1)103×97(2)(2a﹣b)2+2a(2b﹣a)(3)(3﹣1﹣1)0﹣2﹣3+(﹣3)2﹣()﹣1(4)[(x+y)2﹣(x﹣y)2]÷(2xy)【解答】(1)解:原式=(100+3)(100﹣3)=1002﹣32=9991,(2)解:原式=4a2﹣4ab+b2+4ab﹣2a2=2a2十b2,(3)解:原式=1﹣+9﹣4=5,(4)解:原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)=(4xy)÷(2xy)=2.17.(6分)化简求值(2x﹣1)(x+2)﹣(x﹣2)2﹣(x+2)2,其中x=3.【解答】解:(2x﹣1)(x+2)﹣(x﹣2)2﹣(x+2)2=2x2+4x﹣x﹣2﹣x2+4x﹣4﹣x2﹣4x﹣4=3x﹣10,当x=3时,原式=3×3﹣10=﹣1.18.(6分)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.【解答】解:∵(a+b)2=25,(a﹣b)2=9,∴a2+2ab+b2=25①,a2﹣2ab+b2=9②,∴①+②得:2a2+2b2=34,∴a2+b2=17,①﹣②得:4ab=16,∴ab=4.19.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠ABC=∠DCB,AB=DC.(1)求证:△ABC≌DCB;(2)当∠EBC=30°,求∠AEB的度数.【解答】(1)证明:在△ABC和△DCB中,∴△ABC≌△DCB(SAS);(2)解:∵由(1)知,△ABC≌△DCB,∴∠EBC=∠ECB=30°,∴∠EBC+∠ECB=∠AEB=60°.20.(10分)小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况.(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方时什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他由离家最远的地方返回的平均速度是多少.【解答】解:(1)图象表示了距离与时间,时间是自变量,距离是因变量.(2)10时,他离家15千米,13时,他离家30千米;(3)他到达离家最远的地方是12时,离家30千米;(4)由图象可以看出从11时到12时他行驶了15千米;(5)共用了2时,因此平均速度为30÷2=15千米/时.第11页(共11页)。
一、填空题1.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.答案:【分析】将,转化为2ax=x 来解答.【详解】解:∵可转化为:2ax=x ,即,∵不论x 取何值,都成立,∴,解得:,故答案为:.【点睛】本题考查实数的运算,正确理解题目中的新运算是 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.2.将一副三角板中的两块直角三角板的顶点C 按如图方式放在一起,其中30A ∠=︒,45E ECD ∠=∠=︒,且B 、C 、D 三点在同一直线上.现将三角板CDE 绕点C 顺时针转动α度(0180α︒<<︒),在转动过程中,若三角板CDE 和三角板ABC 有一组边互相平行,则转动的角度α为__________.答案:或或【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若和只有一组边互相平行,分三种情况:①若,则;②若,则;③当时,,故答案为:或或.【点睛】本题考查了三角板的角度解析:30或45︒或90︒【分析】分三种情况讨论,由平行线的性质可求解.【详解】解:若CDE ∆和ABC ∆只有一组边互相平行,分三种情况:①若//DE AC ,则180********α=︒-︒-︒-︒=︒;②若//CE AB ,则180********α=︒-︒-︒-︒=︒;α=︒,③当//DE BC时,90故答案为:30或45︒或90︒.【点睛】本题考查了三角板的角度运算,平行线的性质,掌握旋转的性质是本题的关键.3.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)……依此规律A100坐标为________.答案:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律.4.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.答案:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有4⨯1=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有4⨯2=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有4⨯3=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有4⨯4=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有4⨯5=20个整点,...以此类推,第15个正方形,四条边上的整点共有4⨯15=60个.故答案为:60.【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.5.如图,动点P在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0)A,第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P的坐标是________.答案:【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点在平面直角坐标系中按图中箭头所示方向运动解析:(4042,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),⋯,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,202145051÷=⋅⋅⋅,故动点P的纵坐标为2,∴经过第2021次运动后,动点P的坐标是(4042,2).故答案为:(4042,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.6.一只电子玩具在第一象限及x,y轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点______.答案:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次解析:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,⨯次,(0,5)用(0,3)用的次数是9次,即23次,(0,4)用的次数是24次,即46的次数是25次,即25次,以此类推,(0,45)用的次数是2025次,即245次,后退4次可得2021次所对应的坐标.【详解】由题可知,电子玩具是每次跳一个单位长度,则(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,(0,3)用的次数是9次,即23次,⨯次,(0,4)用的次数是24次,即46(0,5)用的次数是25次,即25次,…以此类推,(0,45)用的次数是2025次,即245次,2025-1-3=2021,∴第2021次时电子玩具所在位置的坐标是(3,44).故答案为:(3,44).【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而确定次数的规律.7.请先在草稿纸上计算下列四个式子的值:3++=__________.26答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3++=1+2+3+nn∴3+=351++=1+2+32626故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.8.观察下列各式:_____.答案:n.【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】解:=n.故答案为:n.【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析:【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】故答案为:【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.9.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).答案:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.10.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.答案:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 答案:8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a1)(1-a2)…(1-a n),则通过计算推测出表达式b n=________ (用含n的代数式表示).答案:.【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根据以上分析bn=2(1-a1)(1-a2)…(1-an)=.“点睛”本题解析:21nn++.【详解】根据题意按规律求解:b1=2(1-a1)=131221-4211+⎛⎫⨯==⎪+⎝⎭,b2=2(1-a1)(1-a2)=314221-29321+⎛⎫⨯==⎪+⎝⎭,…,所以可得:b n=21nn++.解:根据以上分析b n=2(1-a1)(1-a2)…(1-a n)=21nn++.“点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b值时要先算出a的值,要注意a中n的取值.13.我们可以用符号f(a)表示代数式.当a是正整数时,我们规定如果a为偶数,f(a)=0.5a;如果a为奇数,f(a)=5a+1.例如:f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2)…;依此规律进行下去,得到一列数:a1,a2,a3,a4…(n为正整数),则2a1﹣a2+a3﹣a4+a5﹣a6+…+a2013﹣a2014+a2015=_____.答案:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6 ,a7的值,根据规律找出部分an的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论解析:7【分析】本题可以根据代数式f(a)的运算求出a1,a2,a3,a4,a5,a6,a7的值,根据规律找出部分a n的值,进而发现数列每7个数一循环,根据数的变化找出变化规律,依照规律即可得出结论.【详解】解:观察,发现规律:a1=6,a2=f(a1)=3,a3=f(a2)=16,a4=f(a3)=8,a5=f(a4)=4,a6=f(a5)=2,a7=f(a6)=1,a8=f(a7)=6,…,∴数列a1,a2,a3,a4…(n为正整数)每7个数一循环,∴a1-a2+a3-a4+…+a13-a14=0,∵2015=2016-1=144×14-1,∴2a 1-a 2+a 3-a 4+a 5-a 6+…+a 2013-a 2014+a 2015=a 1+a 2016+(a 1-a 2+a 3-a 4+a 5-a 6+…+a 2015-a 2016)=a 1+a 7=6+1=7.故答案为7.【点睛】本题考查了规律型中的数字的变化类以及代数式求值,解题的关键是根据数的变化找出变换规律,并且巧妙的借助了a 1-a 2+a 3-a 4+…+a 13-a 14=0来解决问题.14.如图,在平面直角坐标系中,已知长方形ABCD 的顶点坐标:A (-4,-4),B (12,6),D (-8,2),则C 点坐标为______.答案:(8,12)【分析】设点C 的坐标为(x ,y),根据矩形的对角线互相平分且相等,利用中点公式列式计算即可得解.【详解】解:设点C 的坐标为(x ,y),根据矩形的性质,AC 、BD 的中点为矩形的中解析:(8,12)【分析】设点C 的坐标为(x ,y ),根据矩形的对角线互相平分且相等,利用中点公式列式计算即可得解.【详解】解:设点C 的坐标为(x ,y ),根据矩形的性质,AC 、BD 的中点为矩形的中心, 所以,42x -+=1282-, 42y -+=622+, 解得x =8,y =12,所以,点C 的坐标为(8,12).故答案为:(8,12).【点睛】本题考查了坐标与图形性质,主要利用了矩形的对角线互相平分且相等的性质,以及中点公式.15.若()2210a b -+=.则a b =______.【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入求值即可.【详解】∵,∴,∴a-2=0, b+1=0,∴a=2,b=-1,∴=,故答案为:1【点睛】本题主要考解析:1【分析】根据平方数和算术平方根的非负性即可求得a、b的值,再带入a b求值即可.【详解】∵()2a-,20∴()2a-==,20∴a-2=0, b+1=0,∴a=2,b=-1,∴a b=2-=,(1)1故答案为:1【点睛】本题主要考查非负数的性质,解题的关键是掌握偶次乘方的非负性和算数平方根的非负性. 16.在平面直角坐标系中,对于P(x,y)作变换得到P′(﹣y+1,x+1),例如:A1(3,1)作上述变换得到A2(0,4),再将A2做上述变换得到A3___________,这样依次得到A1,A2,A3,…A n;…,则A2018的坐标为___________.答案:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.【详解】解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣解析:(﹣3,1) (0,4)【分析】按照变换规则可以推出各点坐标每4次一个循环,则2018在一个循环的第二次变换.解:按照变换规则,A3坐标为(﹣3,1),A4坐标(0,﹣2),A5坐标(3,1)则可知,每4次一个循环,∵2018=504×4+2,∴A2018坐标为(0,4),故答案为:(﹣3,1),(0,4)【点睛】本题为平面直角坐标系中的动点坐标探究题,考查了点坐标的变换,解答关键是理解变换规则.17.定义运算“@”的运算法则为:2@6 =____.答案:4【分析】把x=2,y=6代入x@y=中计算即可.【详解】解:∵x@y=,∴2@6==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.解析:4【分析】把x=2,y=6代入【详解】解:∵∴,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.18.对任意两个实数a,b定义新运算:a⊕b=()()a a bb a b≥⎧⎨⎩若若<,并且定义新运算程序仍然是先2)⊕3=___.答案:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关 解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】 (5⊕2)⊕3=5⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).答案:【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.20.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .答案:9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB=3cm ,BC=4cm ,AC=2cm ,将△ABC 沿BC 方向平解析:9【分析】根据平移的特点,可直接得出AC 、DE 、AD 的长,利用EC=BC -BE 可得出EC 的长,进而得出阴影部分周长.【详解】∵AB =3cm ,BC =4cm ,AC =2cm ,将△ABC 沿BC 方向平移a cm∴DE=AB=3cm ,BE=a cm∴EC=BC -BE=(4-a )cm∴阴影部分周长=2+3+(4-a )+a =9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC -BE .21.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B的度数为____________.答案:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.22.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.答案:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.23.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.答案:【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.24.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.答案:①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE =∠BOE =12∠BOF ,∴∠FOC =∠AOC =12∠AOF ,∴∠EOC =∠FOE +∠FOC =12(∠BOF +∠AOF )=12×80°=40°.故②错误;∵∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,∴∠OCB :∠OFB =1:2.故③错误;∵∠OEB =∠OCA =∠AOE =∠BOC ,∴∠AOE -∠COE =∠BOC -∠COE ,∴∠BOE =∠AOC ,∴∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,∴∠OCA =∠BOC =3∠BOE =60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.25.如图,△ABC 沿AB 方向平移3个单位长度后到达△DEF 的位置,BC 与DF 相交于点O ,连接CF ,已知△ABC 的面积为14,AB =7,S △BDO ﹣S △COF =___.答案:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =求解即可.【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于解析:2【分析】如图,连接CD ,过点C 作CG ⊥AB 于G .利用三角形面积公式求出CG ,再根据S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1122DB CG CF CG ⋅⋅-⋅⋅求解即可. 【详解】解:如图,连接CD ,过点C 作CG ⊥AB 于G .∵S △ABC =12•AB •CG ,∴CG =2147⨯=4, ∵AD =CF =3,AB =7,∴BD =AB ﹣AD =7﹣3=4,∴S △BDO ﹣S △COF =S △CDB ﹣S △CDF =1111443422222DB CG CF CG ⋅-⋅⋅=⨯⨯-⨯⨯=, 故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题.26.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.答案:【分析】连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,根据平行线性质得出∠BAC +∠ACD =180°,求出∠CAE +∠ACE =180°−(2x +2y ),求出∠AEC =2解析:129︒【分析】连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,根据平行线性质得出∠BAC +∠ACD =180°,求出∠CAE +∠ACE =180°−(2x +2y ),求出∠AEC =2(x +y ),∠AFC ═2(x +y ),即可得出答案.【详解】解:连接AC ,设∠EAF =x ,∠ECF =y ,∠EAB =3x ,∠ECD =3y ,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠CAE +3x +∠ACE +3y =180°,∴∠CAE +∠ACE =180°−(3x +3y ),∠FAC +∠FCA =180°−(2x +2y )∴∠AEC =180°−(∠CAE +∠ACE )=180°−[180°−(3x +3y )]=3x +3y=3(x +y ),∠AFC =180°−(∠FAC +∠FCA )=180°−[180°−(2x +2y )]=2x +2y=2(x +y ),∴∠AEC =32∠AFC =129°. 故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.27.如图,已知40ABC ∠=︒,点D 为ABC ∠内部的一点,以D 为顶点,作EDF ∠,使得//DE BC ,//DF AB ,则EDF ∠的度数为___________.答案:或【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵,,∴,∵,∴;②如图,∵,,∴,∵,∴,∴;综上所述解析:40︒或140︒【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴40DFC EDF ∠=∠=︒;②如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴180DFC EDF ∠+∠=︒,∴140EDF ∠=︒;综上所述:EDF ∠的度数为40︒或140︒;故答案为40︒或140︒.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,注意分类讨论. 28.如图,将一副三角板按如图放置(60E ∠=︒,45B ∠=︒),则下列结论: ①13∠=∠;②如果230∠=︒,则有//BC AE ;③如果123∠=∠=∠,则有//BC AE ;④如果//AB ED ,必有30EAC ∠=︒.其中正确的有___(填序号).答案:①③④【分析】根据三角板的性质以及平行线的判定一一判断即可.【详解】解:,,故①正确,当时,,,,故与不平行,故②错误,当时,可得,,故③正确,取与的交点为,,,,,解析:①③④【分析】根据三角板的性质以及平行线的判定一一判断即可.【详解】解:90EAD CAB ∠=∠=︒,13∠∠∴=,故①正确,当230∠=︒时,360∠=︒,445∠=︒,34∴∠≠∠,故AE 与BC 不平行,故②错误,当123∠=∠=∠时,可得3445∠=∠=︒,//BC AE ∴,故③正确,取AC 与ED 的交点为F ,60E ∠=︒,//AB ED ,90FAB EFA ∴∠=∠=︒,906030EAC ∴∠=︒-︒=︒,故④正确,故答案是:①③④.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握三角板的性质.29.如图,//AB CD ,2P E 平分1PEB ∠,2P F 平分1PFD ∠,若设1PEB x ∠=︒,1PFD y ∠=︒则1P ∠=______度(用x ,y 的代数式表示),若3PE 平分2P EB ∠,3PF 平分2P FD ∠,可得3P ∠,4P E 平分3P EB ∠,4P F 平分3P FD ∠,可得4P ∠…,依次平分下去,则n P ∠=_____度.答案:【分析】过点P1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得,再根据角平分线的定义总结规律可得.【详解】解:过点作∥AB ,可得∥CD ,设,,∴,,解析:()x y + 12n x y -+⎛⎫⎪⎝⎭【分析】过点P 1作PG ∥AB ∥CD ,根据平行线的性质:两直线平行,内错角相等即可证得1E x PF y ︒=∠︒+,再根据角平分线的定义总结规律可得n P ∠. 【详解】解:过点1P 作1PG ∥AB ,可得1PG ∥CD ,设1PEB x ∠=︒,1PFD y ∠=︒, ∴11G x PEB EP =︒∠=∠,11G y PFD FP =︒∠=∠,∴11111P EP FP PEB P E F G G x y FD ∠=+=︒∠∠∠=︒++∠;同理可得:222P P EB P FD ∠+∠∠=,333P P EB P FD ∠+∠∠=,...,∵2P E 平分1PEB ∠,2P F 平分1PFD ∠, ∴()22212P P EB P FD x y ∠+∠=︒+︒∠=,()33314P P EB P FD x y ∠+∠=︒+︒∠=,..., ∴12n n n n x y P P EB P FD -∠︒+︒∠+∠==, 故答案为:()x y +,12n x y -+⎛⎫ ⎪⎝⎭.【点睛】本题考查了平行线性质的应用和角平分线的定义,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会探究规律,利用规律解决问题,属于中考常考题型.30.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键. 31.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________答案:【分析】设每只雀有x 两,每只燕有y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x 两,每只燕有y 两,由题意得,【解析:45561x y y x x y +=+⎧⎨+=⎩【分析】设每只雀有x 两,每只燕有y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x 两,每只燕有y 两,由题意得,45561x y y x x y +=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.32.定义运算22a b a ab ⊗=-,下列给出了关于这种运算的几个结论:(1)2516⊗=-;(23)方程0x y ⊗=不是二元一次方程;(4)不等式组(3)10250x x -⊗+>⎧⎨⊗->⎩的解集是5134x -<<-.其中正确的是________(填序号). 答案:(1)(3)(4)【分析】根据题中所给定义运算,依次将新定义的运算化为一般运算,再进一步分析即可.【详解】解:(1),故(1)正确;(2)是有理数,故(2)错误;(3)方程得是二元二次方解析:(1)(3)(4)【分析】根据题中所给定义运算,依次将新定义的运算化为一般运算,再进一步分析即可.【详解】解:(1)225222516⊗=-⨯⨯=-,故(1)正确;(22是有理数,故(2)错误;(3)方程0x y ⊗=得220x xy -=是二元二次方程,故(3)正确;(4)不等式组(3)10250x x -⊗+>⎧⎨⊗->⎩等价于22(3)2(3)1022250x x ⎧--⨯-+>⎨-⨯->⎩,解得 5134x -<<-,故(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查新定义的实数运算,立方根,二元一次方程的定义,解一元一次不等式组.能理解题中新的定义,并根据题中的定义将给定运算化为一般运算是解决此题的关键.33.已知关于x 的不等式组114()324x m x x +>⎧⎪⎨-≤+⎪⎩有2019个整数解,则m 的取值范围是_______.答案:【分析】先求出不等式组的解集为,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】解:解不等式①得, ,解不等式②得解析:20162017m【分析】先求出不等式组的解集为13m x ,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】 解:114()324x m x x ①②+>⎧⎪⎨-≤+⎪⎩解不等式①得,1x m >- ,解不等式②得,3x ≤,。
陕西省咸阳市七年级下学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A . (0,3)B . (5,0)C . (1,4)D . (8,3)2. (2分)对校对八年级甲、乙两个班的学生进行一分钟跳绳次数测试,测试的有关数据如下表:则下列判断中错误的是()班级测试人数平均次数中位数众数方差甲班50 136 120 132 151乙班50 135 123 132 128A . 甲班学生成绩比乙班学生成绩波动大B . 若跳120次/min作为达标成绩,则乙班的达标率不低于甲班的达标率C . 甲班学生成绩按从高到低的顺序排列,则处在中间位置的成绩是跳132次/minD . 甲班成绩数据的标准差比乙班成绩的标准差大3. (2分)用数轴表示不等式x﹣2<0的解集正确的是()A .B .C .D .4. (2分)如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是()A . m<0B . m<-1C . m>-1D . m是任意实数.5. (2分)估计的值在()A . 1.4和1.5之间B . 1.5和1.6之间C . 1.6和1.7之间D . 1.7和1.8之间6. (2分)一次数学活动课上,小聪将一副三角板按图中方式叠放,则等于()A . 30°B . 45°C . 60°D . 75°7. (2分)在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A . (1,2)B . (3,0)C . (3,4)D . (5,2)8. (2分)如图的方格纸中,左边图形到右边图形的变换是()A . 向右平移7格B . 绕AB的中点旋转1800 ,再以AB为对称轴作轴对称C . 以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称D . 以AB为对称轴作轴对称,再向右平移7格9. (2分)如图,直线a∥b,直线a、b被直线c所截,∠1=40°,则∠2的度数为()A . 40°B . 80°C . 140°D . 160°10. (2分)用四个完全一样的长方形和一个小正方形拼成如图所示的大长方形的长和宽,已知大正方形的面积是121,小正方形的面积是9,若用x,y(x>y)表示长方形的长和宽,则下列关系中不正确的是()A . x+y=11B . x2+y2=180C . x﹣y=3D . x•y=28二、填空题 (共6题;共6分)11. (1分)化简: =________.12. (1分)已知不等式5(x﹣2)+8<6(x﹣1)+7的最小整数解是方程2x﹣ax=4的解,则a=________.13. (1分) (2018九上·丰台期末) 在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为________.14. (1分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=________15. (1分)(2016·南山模拟) 已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E,若OD=2,则△OCE的面积为________.16. (1分) (2017七上·柯桥期中) 下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数是________.三、计算题 (共3题;共20分)17. (10分)(2019·海门模拟)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程: +1= .18. (5分)解二元一次方程组.19. (5分)(2018·随州) 先化简,再求值:,其中x为整数且满足不等式组.四、解答题 (共6题;共35分)20. (5分)如图,已知A(-2,-3),B(-3,-1),C(-1,-2)是平面直角坐标系中三点.(1)请你画出ABC关于原点O对称的A1B1C1;(2)请写出点A关于y轴对称的点A2的坐标.若将点A2向上平移h个单位,使其落在A1B1C1内部,指出h的取值范围.21. (5分)(2019·三明模拟) 惠好商场用24000元购进某种玩具进行销售,由于深受顾客喜爱,很快脱销,惠好商场又用50000元购进这种玩具,所购数量是第一次购进数量的2倍,但每套进价比第一次多了10元.(Ⅰ)惠好商场第一次购进这种玩具多少套?(Ⅱ)惠好商场以每套300元的价格销售这种玩具,当第二次购进的玩具售出时,出现了滞销,商场决定降价促销,若要使第二次购进的玩具销售利润率不低于12%,剩余的玩具每套售价至少要多少元?22. (5分)学习完统计知识后,小兵就本班同学的上学方式进行调查统计、他通过收集数据后绘制的两幅不完整的统计图如下图所示.请你根据图中提供的信息解答下列问题:(1)求该班共有多少名学生;(2)请将表示“步行”部分的条形统计图补充完整;(3)在扇形统计图中,“骑车”部分扇形所对应的圆心角是多少度;(4)若全年级共1000名学生,估计全年级步行上学的学生有多少名?23. (5分)如图,一个“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由24. (10分)(2017·宁波) 2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?25. (5分)如图,在△ABC中,AD是∠BAC的平分线,BE⊥AD交AD的延长线于E,求证:∠ABE<∠ACB.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共3题;共20分)17-1、17-2、18-1、19-1、四、解答题 (共6题;共35分)20-1、21-1、22-1、23-1、24-1、24-2、25-1、第11 页共11 页。
咸阳市七年级下册数学期末试卷-百度文库一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形3.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 4.下列图形可由平移得到的是( ) A . B . C . D .5.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 6.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .4 7.下列说法中,正确的个数有( )①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,④两个角的两边分别平行,则这两个角相等A .1个B .2个C .3 个D .4个8.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150° 9.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .7 10.下列调查中,适宜采用全面调查方式的是( )A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件 二、填空题11.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.12.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.13.计算(﹣2xy )2的结果是_____.14.若29x kx -+是完全平方式,则k =_____.15.计算24a a ⋅的结果等于__.16.计算:5-2=(____________)17.()7(y x -+________ 22)49y x =-.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______19.已知代数式2x-3y 的值为5,则-4x+6y=______.20.计算:22020×(12)2020=_____. 三、解答题21.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一 裁法二 裁法三 A 型板材块数1 2 0 B 型板材块数 3 m n则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)22.解方程组:(1)2338y x x y =-⎧⎨-=⎩(2) 743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 23.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解?24.如图,在方格纸内将△ABC 经过一次平移得到A B C ''',图中标出了点B 的对应点B '.(1)在给定的方格纸中画出平移后的A B C ''';(2)画出BC 边上的高AE ;(3)如果P 点在格点上,且满足S △PAB =S △ABC (点P 与点C 不重合),满足这样条件的P 点有 个.''',25.如图,在边长为1个单位长度的小正方形网格中,ΔABC经过平移后得到ΔA B C图中标出了点B的对应点B',点A'、C'分别是A、C的对应点.''';(1)画出平移后的ΔA B C(2)连接BB'、CC',那么线段BB'与CC'的关系是_________;(3)四边形BCC B''的面积为_______.26.某口罩加工厂有,A B两组工人共150人,A组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B两组工人每小时一共可加工口罩9300只.、两组工人各有多少人?(1)求A B、两组工人均提高了工作效率,一名A组工人和一名B组工人每(2)由于疫情加重,A B、两组工人每小时至少加工15000只口罩,那么A组工人小时共可生产口罩200只,若A B每人每小时至少加工多少只口罩?27.如图,一个三角形的纸片ABC,其中∠A=∠C,(1)把△ABC纸片按 (如图1) 所示折叠,使点A落在BC边上的点F处,DE是折痕.说明BC∥DF;(2)把△ABC纸片沿DE折叠,当点A落在四边形BCED内时 (如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时 (如图3),探索∠C与∠1、∠2之间的大小关系.(直接写出结论)28.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.3.D解析:D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等 22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D .【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.4.A解析:A【详解】解:观察可知A 选项中的图形可以通过平移得到,B 、C 选项中的图形需要通过旋转得到,D 选项中的图形可以通过翻折得到,故选:A5.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.6.A解析:A【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.7.A解析:A【分析】根据同位角的定义、三角形垂心的定义及多边形内角和公式、平行线的性质逐一判断可得.【详解】解:①只有两平行直线被第三条直线所截时,同位角才相等,故此结论错误;②只有锐角三角形的三条高在三角形的内部,故此结论错误;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,此结论正确; ④两个角的两边分别平行,则这两个角可能相等,也可能互补,故此结论错误. 故选A .【点睛】本题主要考查同位角、三角形垂心及多边形内角和、平行线的性质,熟练掌握基本定义和性质是解题的关键.8.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.9.C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得4-2<x<4+2,∴2<x<6,∴第三边的长可能是4.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.10.D解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A、考察南通市民的环保意识,人数较多,不适合全面调查;B、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查,故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题11.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多解析:6【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=6.故答案为:6.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.13.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.14.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键15..【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式.故答案为:.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键. 解析:6a .【分析】直接利用同底数幂的乘法运算法则求出答案.【详解】原式246a a +==.故答案为:6a .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x --【分析】根据平方差公式进行解答.【详解】解:∵49y 2-x 2 =(-7y)2-x 2,∴(-7x+y)(-7x-y)=49y 2-x 2.故答案为-7x-y.本题考查了平方差公式,掌握平方差公式的特征是解题的关键.18.4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.19.-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.【点睛】本题解析:-10【分析】原式前两项提取-2变形后,将已知代数式的值代入计算即可求出值.【详解】解:∵2x-3y=5,∴原式=-2(2x-3y)=-2×5=-10.故答案为:-10.本题考查了代数式求值,熟练掌握运算法则是解题的关键.20.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.三、解答题21.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.22.(1)57xy=⎧⎨=⎩;(2)6024xy=⎧⎨=-⎩【分析】(1)2338y xx y=-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x,将x值代入①可得y值,即可求得方程组的解.(2)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)23 38 y xx y=-⎧⎨-=⎩①②由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;23.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21 x xy y==⎧⎧⎨⎨==⎩⎩(2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260 x yx y+=⎧⎨+-=⎩和解得66 xy=-⎧⎨=⎩把66xy=-⎧⎨=⎩代入x-2y+mx+5=0,解得m=136-(3)∵无论实数m取何值,方程x-2y+mx+5=0总有一个固定的解,∴x=0时,m的值与题目无关∴y=2.5∴2.5 xy=⎧⎨=⎩点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.24.(1)见解析;(2)见解析;(3)8【分析】(1)由点B及其对应点B′的位置得出平移的方向和距离,据此作出点A、C平移后的对应点,再首尾顺次连接即可得;(2)根据三角形高线的概念作图即可;(3)由S△PAB=S△ABC知两个三角形共底、等高,据此可知点P在如图所示的直线m、n上,再结合图形可得答案.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,垂线段AE即为所求;(3)如图所示,满足这样条件的点P有8个,故答案为:8.【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,据此得出变换后的对应点及三角形高线的概念、共底等高的三角形面积问题.25.(1)见解析;(2)平行且相等;(3)28【分析】''';(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】'''即为所求;解:(1)如图,ΔA B C(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.26.(1)A组工人有90人、B组工人有60人(2)A组工人每人每小时至少加工100只口罩【分析】(1)设A组工人有x人、B组工人有(150−x)人,根据题意列方程健康得到结论;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意列不等式健康得到结论.【详解】(1)设A组工人有x人、B组工人有(150−x)人,根据题意得,70x+50(150−x)=9300,解得:x=90,150−x=60,答:A组工人有90人、B组工人有60人;(2)设A组工人每人每小时加工a只口罩,则B组工人每人每小时加工(200−a)只口罩;根据题意得,90a+60(200−a)≥15000,解得:a≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.27.(1)见解析;(2)∠1+∠2=2∠C ;(3)∠1-∠2=2∠C.【分析】(1)根据折叠的性质得∠DFE=∠A ,由已知得∠A=∠C ,于是得到∠DFE=∠C ,即可得到结论;(2)先根据四边形的内角和等于360°得出∠A+∠A′=∠1+∠2,再由图形翻折变换的性质即可得出结论;(3)∠A′ED=∠AED (设为α),∠A′DE=∠ADE (设为β),于是得到∠2+2α=180°,∠1=β-∠BDE=β-(∠A+α),推出∠2-∠1=180°-(α+β)+∠A ,根据三角形的内角和得到∠A=180°-(α+β),证得∠2-∠1=2∠A ,于是得到结论.【详解】解:(1) 由折叠知∠A=∠DFE,∵∠A=∠C ,∴∠DFE=∠C ,∴BC ∥DF ;(2)∠1+∠2=2∠A.理由如下:∵∠1+2∠AED =180°, ∠2+2∠ADE =180°,∴∠1+∠2+2(∠ADE +∠AED)=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1+∠2+2(180°-A)=360°,即∠1+∠2=2∠C.(3)∠1-∠2=2∠A.∵2∠AED +∠1=180°,2∠ADE -∠2=180°,∴2(∠ADE +∠AED)+∠1-∠2=360°.∵∠A +∠ADE +∠AED =180°,∴∠ADE +∠AED =180°-∠A ,∴∠1-∠2+2(180°-∠A)=360°,即∠1-∠2=2∠C.【点睛】考查了翻折变换的性质,三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和等于180°,综合题,但难度不大,熟记性质准确识图是解题的关键.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。
咸阳市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 2.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种 3.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 4.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°5.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 6.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 7.已知,()()212x x x mx n +-=++,则m n +的值为( )A .3-B .1-C .1D .38.若关于x 的不等式组2034x x a x -<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( )A .1B .3C .4D .69.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 10.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10 二、填空题11.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.12.若24x mx ++是完全平方式,则m =______.13.若多项式29x mx ++是一个完全平方式,则m =______.14.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.15.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 16.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________.17.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 18.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.19.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.20.计算:22020×(12)2020=_____. 三、解答题21.计算:(1)(y 3)3÷y 6;(2)2021()(3)2π--+-.22.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).23.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.24.如图(1),在平面直角坐标系中,点A 在x 轴负半轴上,直线l x ⊥轴于B ,点C 在直线l 上,点C 在x 轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由.25.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.27.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.28.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c的下侧,且∠1和∠2在直线a、b之内∴∠1和∠2是同旁内角的关系故选:C.【点睛】本题考查同旁内角的理解,紧抓定义来判断.2.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.3.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.4.B解析:B【详解】解:根据题意得:∠1=180°-60°=120°.故选:B【点睛】本题考查直角三角板中的角度的计算,难度不大.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.6.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.7.A解析:A【解析】【分析】根据多项式的乘法法则即可化简求解.【详解】∵()()2212222x x x x x x x +-=-+-=-- ∴m=-1,n=-2,故m n +=-3故选A.【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.8.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.9.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10.D解析:D【分析】一个外角的度数是:180°-140°=40°,则多边形的边数为:360°÷40°=9;故选C.【详解】二、填空题11.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.12.【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公解析:4±【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x和2积的2倍,故4m=±,故答案为:4±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.15.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.16.【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,,故答案为:.【解析:541403276x y x y +=⎧⎨+=⎩【分析】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x 立方米,乙车辆一次运土y 立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.17.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.18.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 19.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵2a b-1x +y =3是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a =1,b-1=1,解得a =12,b =2, 则ab =122⨯=1, 故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.20.1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×)2020=1,故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键.解析:1【分析】根据积的乘方计算法则进行计算即可.【详解】解:原式=(2×12)2020=1, 故答案为:1.【点睛】本题主要考查了积的乘方的逆运算,准确计算是解题的关键. 三、解答题21.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.22.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.23.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.24.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=,∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C ,∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1, ∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.25.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案;(2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.26.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 27.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC 的面积是3,得出格点△ABP 的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S △ABC =13232⨯⨯= S △ABP =2S △ABC =6 画格点△ABP 如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.28.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.。
咸阳市人教版七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >>2.下列运算结果正确的是( ) A .32a a a ÷= B .()225a a = C .236a a a =D .()3326a a =3.x 2•x 3=( ) A .x 5 B .x 6 C .x 8D .x 9 4.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD5.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106C .3.8×105D .38×104 6.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定7.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩8.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4B .5C .6D .8 9.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 10.比较255、344、433的大小( )A .255<344<433B .433<344<255C .255<433<344D .344<433<255 二、填空题11.已知等腰三角形的两边长分别为4和8,则它的周长是_______.12.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 13.若24x mx ++是完全平方式,则m =______.14.计算:2202120192020⨯-=__________15.计算(﹣2xy )2的结果是_____.16.已知()223420x y x y -+--=,则x=__________,y=__________.17.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .18.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .19.若(x ﹣2)x =1,则x =___.20.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.三、解答题21.因式分解:(1)a 3﹣a ;(2)4ab 2﹣4a 2b ﹣b 3;(3)a 2(x ﹣y )﹣9b 2(x ﹣y );(4)(y 2﹣1)2+6 (1﹣y 2)+9.22.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;(2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.23.先化简,再求值:(x ﹣2y )(x +2y )﹣(x ﹣2y )2,其中x =3,y =﹣1.24.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直.25.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2.(1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.26.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。
2015-2016学年陕西省西藏民族学院附中七年级(下)月考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列运算中,正确的是()A.3a﹣a=3 B.a2+a3=a5C.(﹣2a)3=﹣6a3D.ab2÷a=b22.下列各式正确的是()A.(a+b)2=a2+b2B.(x+6)(x﹣6)=x2﹣6 C.(x+2)2=x2+2x+4 D.(x﹣y)2=(y﹣x)23.下列多项式乘法,能用平方差公式计算的是()A.(﹣3x﹣2)(3x+2)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x)D.(3x+2)(2x﹣3)4.ab减去a2﹣ab+b2等于()A.a2+2ab+b2 B.﹣a2﹣2ab+b2C.﹣a2+2ab﹣b2D.﹣a2+2ab+b25.计算32013•()2015的结果是()A.9 B.C.2 D.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣67.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±68.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a﹣b,则长方形的周长为()A.6a B.6a+b C.3a D.10a﹣b9.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b310.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④二、填空题(共6小题,每小题3分,满分18分)11.计算(﹣2a2b)2= .12.已知x+y=﹣5,xy=3,则x2+y2= .13.已知a+b=2,ab=﹣1,则3a+ab+3b= ;a2+b2= .14.若x2﹣3x﹣6=﹣2,则2x2﹣6x+6= .15.(x﹣2y+1)(x﹣2y﹣1)=()2﹣()2= .16.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.三、计算(共2小题,满分24分)17.计算:(1)x2•x3+x7•x2(2)(2a﹣3b)2(2a+3b)2(3)(a2bc)2÷(ab2c)(4)(2a﹣3b)2(2a+3b)2.18.用简便方法计算:(1)982;(2)899×901+1.四、解答(共5小题,满分28分)19.先化简,再求值:(x+1)2﹣x(2﹣x),其中x=2.20.求代数式(a+2b)(a﹣2b)+(a+2b)2﹣4ab的值,其中a=1,b=.21.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.22.黄老师把一个正方形的边长增加了4cm得到的正方形的面积增加了64cm2,求这个正方形的面积.23.如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=BC,现打算在阴影部分种植一片草坪,求这片草坪的面积.2015-2016学年陕西省西藏民族学院附中七年级(下)月考数学试卷(4月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列运算中,正确的是()A.3a﹣a=3 B.a2+a3=a5C.(﹣2a)3=﹣6a3D.ab2÷a=b2【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】根据整式的除法,合并同类项,幂的乘方与积的乘方分别进行计算,对各选项分析判断后利用排除法求解即可.【解答】解:A、4a﹣a=3a,故本选项错误;B、a2+a3不能进行计算,故本选项错误;C(﹣2a)3=﹣8a3,故本选项错误;D、ab2÷a=b2,故本选项正确;故选D.2.下列各式正确的是()A.(a+b)2=a2+b2B.(x+6)(x﹣6)=x2﹣6 C.(x+2)2=x2+2x+4 D.(x﹣y)2=(y﹣x)2【考点】完全平方公式;平方差公式.【分析】根据完全平方公式和平方差公式依次计算可判断.【解答】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、(x+6)(x﹣6)=x2﹣62,故此选项错误;C、(x+2)2=x2+4x+4,故此选项错误;D、(x﹣y)2=[﹣(y﹣x)]2=(y﹣x)2,故此选项正确;故选:D.3.下列多项式乘法,能用平方差公式计算的是()A.(﹣3x﹣2)(3x+2)B.(﹣a﹣b)(﹣b+a)C.(﹣3x+2)(2﹣3x)D.(3x+2)(2x﹣3)【考点】平方差公式.【分析】根据平方差公式对各选项进行逐一分析即可.【解答】解:A、原式可化为﹣(3x+2)(3x+2),不能用平方差公式计算,故本选项错误;B、原式可化为﹣(a+b)(a﹣b),能用平方差公式计算,故本选项正确;C、原式可化为(2﹣3x)(2﹣3x),不能用平方差公式计算,故本选项错误;D、不符合两个数的和与这两个数的差相乘,不能用平方差公式计算,故本选项错误.故选B.4.ab减去a2﹣ab+b2等于()A.a2+2ab+b2 B.﹣a2﹣2ab+b2C.﹣a2+2ab﹣b2D.﹣a2+2ab+b2【考点】整式的加减.【分析】本题考查整式的加减运算,解答时根据整式的加减运算,去括号、合并同类项即可求得结果.【解答】解:ab﹣(a2﹣ab+b2)=ab﹣a2+ab﹣b2=﹣a2+2ab﹣b2.故选C.5.计算32013•()2015的结果是()A.9 B.C.2 D.【考点】幂的乘方与积的乘方.【分析】首先根据积的乘方的运算方法,求出32013•()2013的值是多少;然后用它乘()2,求出32013•()2015的结果是多少即可.【解答】解:32013•()2015=32013•()2013•()2=(3×)2013•=1×=.故选:D.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.7.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±6【考点】完全平方公式.【分析】根据题意可知:将(x+3)2展开,再根据对应项系数相等求解.【解答】解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.8.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a﹣b,则长方形的周长为()A.6a B.6a+b C.3a D.10a﹣b【考点】整式的加减.【分析】根据长方形的周长公式以及整式的加减进行计算即可.【解答】解:2(2a+b+a﹣b)=2×3a=6a,故选A.9.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2a2b)3=﹣8a6b3.故选B.10.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④【考点】多项式乘多项式.【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.二、填空题(共6小题,每小题3分,满分18分)11.计算(﹣2a2b)2= 4a4b2.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣2a2b)2=4a4b2.故答案为:4a4b2.12.已知x+y=﹣5,xy=3,则x2+y2= 19 .【考点】完全平方公式.【分析】把x2+y2化成(x+y)2﹣2xy,再整体代入即可.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=(﹣5)2﹣2×3=19,故答案为:19.13.已知a+b=2,ab=﹣1,则3a+ab+3b= 5 ;a2+b2= 6 .【考点】完全平方公式.【分析】由3a+ab+3b=3(a+b)+ab与a2+b2=(a+b)2﹣2ab,将a+b=2,ab=﹣1代入即可求得答案.【解答】解:∵a+b=2,ab=﹣1,∴3a+ab+3b=3a+3b+ab=3(a+b)+ab=3×2+(﹣1)=5;a2+b2=(a+b)2﹣2ab=22﹣2×(﹣1)=6.故答案为:5,6.14.若x2﹣3x﹣6=﹣2,则2x2﹣6x+6= 14 .【考点】代数式求值.【分析】由x2﹣3x﹣6=﹣2得x2﹣3x=4,通过观察,把x2﹣3x当成一个整体代入即可解答.【解答】解:∵x2﹣3x﹣6=﹣2,∴x2﹣3x=4,∴2x2﹣6x+6=2(x2﹣3x)+6=2×4+6=14,故答案为:14.15.(x﹣2y+1)(x﹣2y﹣1)=(x﹣2y )2﹣( 1 )2= x2﹣4xy+4y2﹣1 .【考点】平方差公式;完全平方公式.【分析】根据平方差公式可以解答本题.【解答】解:(x﹣2y+1)(x﹣2y﹣1)=(x﹣2y)2﹣12=x2﹣4xy+4y2﹣1,故答案为:x﹣2y,1,x2﹣4xy+4y2﹣1.16.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).三、计算(共2小题,满分24分)17.计算:(1)x2•x3+x7•x2(2)(2a﹣3b)2(2a+3b)2(3)(a2bc)2÷(ab2c)(4)(2a﹣3b)2(2a+3b)2.【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】(1)原式利用同底数幂的乘法法则计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则变形,再利用单项式除以单项式法则计算即可得到结果;(4)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【解答】解:(1)原式=x5+x9;(2)原式=[(2a﹣3b)(2a+3b)]2=(4a2﹣9b2)2=16a4﹣72a2b2+81b4;(3)原式=(a4b2c2)÷(ab2c)=a3c;(4)原式=[(2a﹣3b)(2a+3b)]2=(4a2﹣9b2)2=16a4﹣72a2b2+81b4.18.用简便方法计算:(1)982;(2)899×901+1.【考点】完全平方公式;平方差公式.【分析】(1)原式变形后,利用完全平方公式计算即可得到结果;(2)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2=10000﹣400+4=9604;(2)原式=×+1=9002﹣1+1=810000.四、解答(共5小题,满分28分)19.先化简,再求值:(x+1)2﹣x(2﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x+x2=2x2+1,当x=2时,原式=8+1=9.20.求代数式(a+2b)(a﹣2b)+(a+2b)2﹣4ab的值,其中a=1,b=.【考点】整式的混合运算—化简求值.【分析】先用平方差公式、完全平方公式去括号,再合并同类项,然后把a、b的值代入计算即可.【解答】解:原式=a2﹣4b2+a2+4ab+4b2﹣4ab=2a2,当a=1,b=时,原式=2×12=2.21.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【考点】整式的混合运算.【分析】长方形的面积等于:(3a+b)•(2a+b),中间部分面积等于:(a+b)•(a+b),阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b的值代入计算.【解答】解:S阴影=(3a+b)(2a+b)﹣(a+b)2,=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).22.黄老师把一个正方形的边长增加了4cm得到的正方形的面积增加了64cm2,求这个正方形的面积.【考点】完全平方公式.【分析】设这个正方形的边长为x厘米,根据等量关系:新正方形的面积=原正方形的面积+64,得出方程,解答即可.【解答】解:设这个正方形的边长为x厘米,根据题意得:(x+4)2=x2+64x2+8x+16=x2+648x+16=648x+16﹣16=64﹣168x=488x÷8=48÷8x=6这个正方形的边长为6cm,这个正方形的面积为36cm2.23.如图所示,长方形ABCD是“阳光小区”内一块空地,已知AB=2a,BC=3b,且E为AB边的中点,CF=BC,现打算在阴影部分种植一片草坪,求这片草坪的面积.【考点】整式的混合运算.【分析】阴影部分的面积=矩形的面积﹣三角形BEF的面积﹣三角形ACD面积,化简即可得到结果.【解答】解:根据题意得:S阴影=6ab﹣×6ab﹣a×2b=6ab﹣3ab﹣ab=2ab.。
2015-2016学年陕西省咸阳市西藏民族学院附中高一(下)期末数学试卷一、选择题:(每小题5分,共计60分)1.(5分)已知集合A={x|x2﹣x﹣6<0},.若A∩B≠∅,则实数m的取值范围是()A.(﹣∞,3)B.(﹣2,3)C.(﹣∞,﹣2)D.[3,+∞)2.(5分)从学号为1号至50号的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A.1,2,3,4,5B.5,15,25,35,45C.2,4,6,8,10D.4,13,22,31,403.(5分)已知=(5,3),=(4,2),则=()A.26B.22C.14D.24.(5分)已知一个扇形的周长是6cm,该扇形的中心角是1弧度,则该扇形的面积为()cm2.A.2B.4C.6D.75.(5分)函数的图象的一条对称轴方程是()A.x=B.x=C.D.6.(5分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图,如图所示,则甲乙的中位数分别为()A.17和17B.17和17.3C.16.8和17D.169和171.5 7.(5分)要得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度8.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积为()A.3B.C.D.39.(5分)运行如图的程序框图,输出的第4个y是()A.3B.﹣1C.0D.﹣310.(5分)盒中有10个大小、形状完全相同的小球,其中8个白球、2个红球,则从中任取2球,至少有1个白球的概率是()A.B.C.D.11.(5分)若x log52≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()A.﹣4B.﹣3C.﹣1D.012.(5分)使函数y=sin(2x+θ)+cos(2x+θ)为奇函数,且在[0,]上是减函数的θ一个值为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)若=(2,﹣2),则与垂直的单位向量的坐标为.14.(5分)若tan x=,则=.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<)图象的一部分如图所示,其解析式为.三、解答题17.(10分)已知f(α)=.(1)化简f(α);(2)若α是第三象限角,且cos(α﹣)=,求f(α)的值.18.(12分)已知向量=(1,2),=(x,1).(1)若,求x的值;(2)若<,>为锐角,求x的范围;(3)当()⊥(2)时,求x的值.19.(12分)抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率,(2)事件“点数之和小于7”的概率,(3)事件“点数之和等于或大于11”的概率.20.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a,b是方程x2﹣2x+4=0的两个根,且2cos(A+B)=1,求:(1)∠C的度数;(2)边c的长度.21.(12分)已知函数,(1)求f(x)的最小正周期;(2)求f(x)的单调区间;(3)求f(x)图象的对称轴,对称中心.22.(12分)已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.2015-2016学年陕西省咸阳市西藏民族学院附中高一(下)期末数学试卷参考答案与试题解析一、选择题:(每小题5分,共计60分)1.(5分)已知集合A={x|x2﹣x﹣6<0},.若A∩B≠∅,则实数m的取值范围是()A.(﹣∞,3)B.(﹣2,3)C.(﹣∞,﹣2)D.[3,+∞)【考点】1E:交集及其运算.【解答】解:由A中不等式变形得:(x+2)(x﹣3)<0,解得:﹣2<x<3,即A=(﹣2,3),由B中y=,得到x≥m,即B=[m,+∞),∵A∩B≠∅,∴实数m的取值范围是(﹣∞,3),故选:A.2.(5分)从学号为1号至50号的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是()A.1,2,3,4,5B.5,15,25,35,45C.2,4,6,8,10D.4,13,22,31,40【考点】B4:系统抽样方法.【解答】解:系统抽样的抽取间隔为=10,由此可得所选5名学生的学号间隔为10,由此判定B正确,故选:B.3.(5分)已知=(5,3),=(4,2),则=()A.26B.22C.14D.2【考点】9J:平面向量的坐标运算.【解答】解:=5×4+3×2=26,故选:A.4.(5分)已知一个扇形的周长是6cm,该扇形的中心角是1弧度,则该扇形的面积为()cm2.A.2B.4C.6D.7【考点】G8:扇形面积公式.【解答】解:∵扇形圆心角1弧度,所以扇形周长和面积为整个圆的.弧长l=2πr•=r故扇形周长C=l+2r=3r=6cm∴r=2cm扇形面积S=π•r2•=2cm2故选:A.5.(5分)函数的图象的一条对称轴方程是()A.x=B.x=C.D.【考点】GP:两角和与差的三角函数;H6:正弦函数的奇偶性和对称性.【解答】解:根据和差公式可得,=2(sin+cos)=2sin(+),而y=sin x的对称轴为y=kπ+π,k∈Z,令+=kπ+π,可得x=2kπ+,且k∈Z,显然C正确故选:C.6.(5分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图,如图所示,则甲乙的中位数分别为()A.17和17B.17和17.3C.16.8和17D.169和171.5【考点】BA:茎叶图.【解答】解:甲班同学中位数x甲=(168+170)=169,乙班同学中位数x乙=(170+173)=171.5,故选:D.7.(5分)要得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【解答】解:∵y=sin(2x﹣)=sin2(x﹣),∴要得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R图象上所有的点向右平行移动个单位长度.故选:B.8.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,若c2=(a﹣b)2+6,C=,则△ABC的面积为()A.3B.C.D.3【考点】HR:余弦定理.【解答】解:∵c2=(a﹣b)2+6,∴c2=a2﹣2ab+b2+6,即a2+b2﹣c2=2ab﹣6,∵C=,∴cos===,解得ab=6,则三角形的面积S=ab sin C==,故选:C.9.(5分)运行如图的程序框图,输出的第4个y是()A.3B.﹣1C.0D.﹣3【考点】EF:程序框图.【解答】解:模拟执行程序,可得x=﹣3,满足条件x≤3,执行循环体,y=3,第1次输出y的值为3,x=﹣2满足条件x≤3,执行循环体,y=0,第2次输出y的值为0,x=﹣1满足条件x≤3,执行循环体,y=﹣1,第3次输出y的值为﹣1,x=0满足条件x≤3,执行循环体,y=0,第4次输出y的值为0,x=1…故选:C.10.(5分)盒中有10个大小、形状完全相同的小球,其中8个白球、2个红球,则从中任取2球,至少有1个白球的概率是()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【解答】解:从中随机取出2个球,每个球被取到的可能性相同,是古典概型从中随机取出2个球,所有的取法共有C102=45所取出的2个球至少有1个白球,所有的取法有C81•C21+C82•C20=16+28=44由古典概型概率公式知P=故选:A.11.(5分)若x log52≥﹣1,则函数f(x)=4x﹣2x+1﹣3的最小值为()A.﹣4B.﹣3C.﹣1D.0【考点】3H:函数的最值及其几何意义.【解答】解:x log52≥﹣1,即为x≥﹣log25,2x≥,令t=2x(t≥),即有y=t2﹣2t﹣3=(t﹣1)2﹣4,当t=1≥,即x=0时,取得最小值﹣4.故选:A.12.(5分)使函数y=sin(2x+θ)+cos(2x+θ)为奇函数,且在[0,]上是减函数的θ一个值为()A.B.C.D.【考点】H5:正弦函数的单调性;H6:正弦函数的奇偶性和对称性.【解答】解:∵函数=2sin(2x+θ+)是奇函数,故θ+=kπ,k∈Z,θ=kπ﹣,故排除C.若θ=,f(x)=2sin(2x+),不满足f(x)为奇函数,故排除A.若θ=,f(x)=2sin(2x+π)=﹣2sin2x是奇函数;在[0,]上,2x∈[0,],满足f(x)在[0,]上是减函数,故B满足条件.若θ=,f(x)=2sin(2x+2π)=2sin2x是奇函数;在[0,]上,2x∈[0,],f(x)在[0,]上是增函数,不满足在[0,]上是减函数,故排除D,故选:B.二、填空题(本大题共4小题,每小题5分,共20分.)13.(5分)若=(2,﹣2),则与垂直的单位向量的坐标为()或(﹣,﹣).【考点】91:向量的概念与向量的模;9T:数量积判断两个平面向量的垂直关系.【解答】解:与垂直的单位向量的坐标为(x,y)则解得故答案为14.(5分)若tan x=,则=﹣.【考点】GG:同角三角函数间的基本关系.【解答】解:∵tan x=,则===﹣,故答案为:﹣.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是x≤8.【考点】5B:分段函数的应用.【解答】解:x<1时,e x﹣1≤2,∴x≤ln2+1,∴x<1;x≥1时,≤2,∴x≤8,∴1≤x≤8,综上,使得f(x)≤2成立的x的取值范围是x≤8.故答案为:x≤8.16.(5分)函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<)图象的一部分如图所示,其解析式为y=sin(2x+).【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【解答】解:根据函数y=A sin(ωx+φ)图象的最高点的纵坐标为1,得A=1;又该图象的T=﹣(﹣)=,所以周期T==π,所以ω=2;又x=时,2x+φ=+2kπ,k∈Z,解得φ=+2kπ,k∈Z,应取φ=;所以函数的解析式为y=sin(2x+).故答案为:y=sin(2x+).三、解答题17.(10分)已知f(α)=.(1)化简f(α);(2)若α是第三象限角,且cos(α﹣)=,求f(α)的值.【考点】GO:运用诱导公式化简求值.【解答】解:(1)f(α)===﹣cosα;(2)∵α为第三象限角,且cos(α﹣)=﹣sinα=,∴sinα=﹣,∴cosα=﹣=﹣,则f(α)=﹣cosα=.18.(12分)已知向量=(1,2),=(x,1).(1)若,求x的值;(2)若<,>为锐角,求x的范围;(3)当()⊥(2)时,求x的值.【考点】9J:平面向量的坐标运算.【解答】解:(1)∵向量=(1,2),=(x,1),且,∴1×1﹣2x=0,解得x=;(2)当<,>为锐角时,,且不同向,即•=x+2>0,解得x>﹣2;又当时,同向,∴x的取值范围是x>﹣2且;(3),;当()⊥(2)时,(2x+1)(2﹣x)+3×4=0,即﹣2×2+3x+14=0,解得:或x=﹣2.19.(12分)抛掷两颗骰子,计算:(1)事件“两颗骰子点数相同”的概率,(2)事件“点数之和小于7”的概率,(3)事件“点数之和等于或大于11”的概率.【考点】CC:列举法计算基本事件数及事件发生的概率.【解答】解:(1)易得每个骰子掷一次都有6种情况,那么共有6×6=36种可能,两颗骰子点数相同的情况有(1,1);(2,2);(3,3);(4,4);(5,5);(6,6),共6种,所以,所求的概率是=.(2)事件“点数之和小于7”的基本事件有:(1,1);(2,1);(1,2);(1,3);(3,1);(1,4);(4,1);(1,5);(5,1);(2,2);(2,3);(3,2);(2,4);(4,2);(3,3),共计15个,而所有的基本事件共有36个,故事件“点数之和小于7”的概率为=.(3)事件“点数之和等于或大于11”的基本事件有:(5,6);(6,5);(6,6),共计3个,而所有的基本事件共有36个,故事件“点数之和等于或大于11”的概率为=.20.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a,b是方程x2﹣2x+4=0的两个根,且2cos(A+B)=1,求:(1)∠C的度数;(2)边c的长度.【考点】HR:余弦定理.【解答】解:(1)∵2cos(A+B)=1,∴cos(A+B)=,∵C为三角形的内角,∴0<A+B<180°,∴A+B=60°,则C=120°;(2)∵a,b是方程x2﹣2x+4=0的两个根,∴a+b=2,ab=4,由余弦定理得:c2=a2+b2﹣2ab cos C=a2+b2+ab=(a+b)2﹣ab=20﹣4=16,则c=4.21.(12分)已知函数,(1)求f(x)的最小正周期;(2)求f(x)的单调区间;(3)求f(x)图象的对称轴,对称中心.【考点】H1:三角函数的周期性;H5:正弦函数的单调性;H6:正弦函数的奇偶性和对称性.【解答】解:(1)==T=π;(2)由,可得单调增区间,(k∈z),由,可得单减区间;(3)由得对称轴为由得对称中心为.22.(12分)已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.【考点】9K:平面向量共线(平行)的坐标表示;9T:数量积判断两个平面向量的垂直关系.【解答】解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.。
咸阳市七年级下册数学期末试卷-百度文库一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=3.下列运算正确的是 ()A .()23524a a -=B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅=4.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6 C .(x+2)2=x 2+4 D .(2x )3=2x 3 5.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy6.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩7.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭8.x 2•x 3=( ) A .x 5B .x 6C .x 8D .x 99.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =610.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④二、填空题11.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.12.如图,直线//AB CD ,直线GE 交直线AB 于点E ,EF 平分AEG ∠.若∠1=58°,则AEF ∠的大小为____.13.若(2x +3)x +2020=1,则x =_____. 14.已知方程组,则x+y=_____.15.如图,在△ABC 中,点D 为BC 边上一点,E 、F 分别为AD 、CE 的中点,且ABC S ∆=8cm 2,则BEF S ∆=____.16.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.17.计算:5-2=(____________)18.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.19.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.20.分解因式:ab ﹣ab 2=_____.三、解答题21.计算: (1)(12)﹣3﹣20160﹣|﹣5|; (2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2; (3)(x+5)2﹣(x ﹣2)(x ﹣3); (4)(2x+y ﹣2)(2x+y+2). 22.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+23.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系. 24.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭;(2)52342322)(a a a a a +÷-. 25.因式分解: (1)12abc ﹣9a 2b ; (2)a 2﹣25; (3)x 3﹣2x 2y +xy 2; (4)m 2(x ﹣y )﹣(x ﹣y ).26.已知m 2,3n a a ==,求①m n a +的值; ②3m-2n a 的值27.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 . (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .28.已知:如图EF ∥CD ,∠1+∠2=180°. (1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据三角形的高的概念判断.解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C . 【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.B解析:B 【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确; C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。
2015-2016学年陕西省咸阳市渭城区西藏民族学院附中七年级(下)期末数学试卷一、选择题(每小题3分,共30分)(请将答案填入答題卡内)1.(3分)下列计算正确的是()A.a+a2=2a3B.a2•a3=a6 C.(2a4)4=16a8D.(﹣a)6÷a3=a32.(3分)下列图案是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.(3分)如图,己知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°.则∠BEG的度数是()A.70°B.80°C.90°D.60°4.(3分)变量x与y之间的关系是y=x2﹣1,当自变量x=2时,因变量y的值是()A.﹣2 B.﹣1 C.1 D.25.(3分)若x n=2,则x3n的值为()A.6 B.8 C.9 D.126.(3分)一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是()A.B.C.D.7.(3分)已知a+=4,则a2+=()A.12 B.14 C.8 D.168.(3分)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是()A.SSS B.AAS C.SAS D.HL9.(3分)若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cm B.3cm C.7cm D.16cm10.(3分)如图,由∠1=∠2,∠D=∠B,推出以下结论,其中错误的是()A.AB∥DC B.AD∥BC C.∠DAB=∠BCD D.∠DCA=∠DAC二、填空题(每空2分,共20分)(请将答案填入答题卡内)11.(2分)计算:(x+5)(x﹣5)=.12.(2分)(1+x)(1﹣x)(1+x2)(1+x4)=.13.(2分)计算4x2y•(﹣x)=.14.(4分)已知∠1=35°,则它的余角为度,补角是度.15.(10分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG∴∠1=∠E∠2=∠3∵∠E=∠3(已知)∴=∴AD是∠BAC的平分线(角平分线的定义).三、解答题(共50分)16.(20分)计算题(1)103×97(2)(2a﹣b)2+2a(2b﹣a)(3)(3﹣1﹣1)0﹣2﹣3+(﹣3)2﹣()﹣1(4)[(x+y)2﹣(x﹣y)2]÷(2xy)17.(6分)化简求值(2x﹣1)(x+2)﹣(x﹣2)2﹣(x+2)2,其中x=3.18.(6分)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.19.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠ABC=∠DCB,AB=DC.(1)求证:△ABC≌DCB;(2)当∠EBC=30°,求∠AEB的度数.20.(10分)小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况.(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方时什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他由离家最远的地方返回的平均速度是多少.2015-2016学年陕西省咸阳市渭城区西藏民族学院附中七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)(请将答案填入答題卡内)1.(3分)下列计算正确的是()A.a+a2=2a3B.a2•a3=a6 C.(2a4)4=16a8D.(﹣a)6÷a3=a3【解答】解:A、a与a2不能合并,故本选项错误;B、a2•a3=a5,故本选项错误;C、(2a4)4=16a16,故本选项错误;D、(﹣a)6÷a3=a6÷a3=a3,故本选项正确.故选D.2.(3分)下列图案是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个是轴对称图形;第二个不是轴对称图形;第三个是轴对称图形;第四个不是轴对称图形.故选B.3.(3分)如图,己知AB∥CD,直线l分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°.则∠BEG的度数是()A.70°B.80°C.90°D.60°【解答】解:∵EG平分∠BEF,∴∠FEG=∠BEG,∵AB∥CD,∠EFG=40°,∴∠FEB=180°﹣∠EFG=140°,∴∠BEG=∠EFG=70°,故选A.4.(3分)变量x与y之间的关系是y=x2﹣1,当自变量x=2时,因变量y的值是()A.﹣2 B.﹣1 C.1 D.2【解答】解:x=2时,y=×22﹣1=2﹣1=1.故选C5.(3分)若x n=2,则x3n的值为()A.6 B.8 C.9 D.12【解答】解:∵x3n=(x n)3,x n=2,∴原式=x3n=(x n)3=x3n=23=8.故选B.6.(3分)一个暗箱里装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是()A.B.C.D.【解答】解:10个黑球,8个白球,12个红球一共是30个,所以从中任意摸出一个球,摸到白球的概率是=.故选C.7.(3分)已知a+=4,则a2+=()A.12 B.14 C.8 D.16【解答】解:将a+=4两边平方得,a2+=16﹣2=14,故选B.8.(3分)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是()A.SSS B.AAS C.SAS D.HL【解答】解:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B.在△AEC和△BFD中,∴Rt△AEC≌Rt△BFC(AAS),故选B.9.(3分)若三角形的两边长分别为6cm,9cm,则其第三边的长可能为()A.2cm B.3cm C.7cm D.16cm【解答】解:设第三边长为xcm.由三角形三边关系定理得9﹣6<x<9+6,解得3<x<15.故选C.10.(3分)如图,由∠1=∠2,∠D=∠B,推出以下结论,其中错误的是()A.AB∥DC B.AD∥BC C.∠DAB=∠BCD D.∠DCA=∠DAC【解答】解:∵∠1=∠2,∴AB∥DC,故A选项结论正确;∴∠D+∠BAD=180°,∠B+∠BCD=90°,∵∠D=∠B,∴∠B+∠BAD=180°,∠DAB=∠BCD,故C选项结论正确;∴AD∥BC,故B选项结论正确;只有AC平分∠BAD时,∠DCA=∠DAC,故D选项结论错误.故选D.二、填空题(每空2分,共20分)(请将答案填入答题卡内)11.(2分)计算:(x+5)(x﹣5)=x2﹣25.【解答】解:原式=x2﹣25.故答案为:x2﹣2512.(2分)(1+x)(1﹣x)(1+x2)(1+x4)=1﹣x8.【解答】解:(1+x)(1﹣x)(1+x2)(1+x4)=(1﹣x2)(1+x2)(1+x4)=(1﹣x4)(1+x4)=1﹣x8,故答案为:1﹣x813.(2分)计算4x2y•(﹣x)=﹣x3y.【解答】解:4x2y•(﹣x)=﹣x3y.故答案为:﹣x3y.14.(4分)已知∠1=35°,则它的余角为55度,补角是145度.【解答】解:∵∠1=35°,∴∠1的余角为90°﹣∠1=55°,∠1的补角为180°﹣∠1=145°,故答案为:55.145.15.(10分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.解答:是,理由如下:∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG同位角相等,两直线平行∴∠1=∠E两直线平行,同位角相等∠2=∠3两直线平行,内错角相等∵∠E=∠3(已知)∴∠1=∠2∴AD是∠BAC的平分线(角平分线的定义).【解答】解:是.∵AD⊥BC,EG⊥BC(已知)∴∠4=∠5=90°(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠E,(两直线平行,同位角相等)∠2=∠3.(两直线平行,内错角相等)∵∠E=∠3,(已知)∴∠1=∠2,∴AD是∠BAC的平分线(角平分线的定义).故答案为:同位角相等,两直线平行,两直线平行,同位角相等,两直线平行,内错角相等,∠1,∠2.三、解答题(共50分)16.(20分)计算题(1)103×97(2)(2a﹣b)2+2a(2b﹣a)(3)(3﹣1﹣1)0﹣2﹣3+(﹣3)2﹣()﹣1(4)[(x+y)2﹣(x﹣y)2]÷(2xy)【解答】(1)解:原式=(100+3)(100﹣3)=1002﹣32=9991,(2)解:原式=4a2﹣4ab+b2+4ab﹣2a2=2a2十b2,(3)解:原式=1﹣+9﹣4=5,(4)解:原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)=(4xy)÷(2xy)=2.17.(6分)化简求值(2x﹣1)(x+2)﹣(x﹣2)2﹣(x+2)2,其中x=3.【解答】解:(2x﹣1)(x+2)﹣(x﹣2)2﹣(x+2)2=2x2+4x﹣x﹣2﹣x2+4x﹣4﹣x2﹣4x﹣4=3x﹣10,当x=3时,原式=3×3﹣10=﹣1.18.(6分)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.【解答】解:∵(a+b)2=25,(a﹣b)2=9,∴a2+2ab+b2=25①,a2﹣2ab+b2=9②,∴①+②得:2a2+2b2=34,∴a2+b2=17,①﹣②得:4ab=16,∴ab=4.19.(8分)如图,△ABC与△DCB中,AC与BD交于点E,且∠ABC=∠DCB,AB=DC.(1)求证:△ABC≌DCB;(2)当∠EBC=30°,求∠AEB的度数.【解答】(1)证明:在△ABC和△DCB中,∴△ABC≌△DCB(SAS);(2)解:∵由(1)知,△ABC≌△DCB,∴∠EBC=∠ECB=30°,∴∠EBC+∠ECB=∠AEB=60°.20.(10分)小明每天上午9时骑自行车离开家,15时回家,他描绘了离家的距与时间的变化情况.(1)图象表示哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方时什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他由离家最远的地方返回的平均速度是多少.【解答】解:(1)图象表示了距离与时间,时间是自变量,距离是因变量.(2)10时,他离家15千米,13时,他离家30千米;(3)他到达离家最远的地方是12时,离家30千米;(4)由图象可以看出从11时到12时他行驶了15千米;(5)共用了2时,因此平均速度为30÷2=15千米/时.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。