高考数学二轮复习一三角函数解三角形专练文
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
解三角形[明考情]高考中主要考查正弦定理、余弦定理在解三角形中的应用.求三角形的面积问题一般在解答题的17题位置. [知考向]1.利用正弦、余弦定理解三角形.2.三角形的面积.3.解三角形的综合问题.考点一 利用正弦、余弦定理解三角形方法技巧 (1)公式法解三角形:直接利用正弦定理或余弦定理,其实质是将几何问题转化为代数问题,适用于求三角形的边或角.(2)边角互化法解三角形:合理转化已知条件中的边角关系,适用于已知条件是边角混和式的解三角形问题.1.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B 及a sin A =bsin B ,得a =2b .由ac =5(a 2-b 2-c 2)及余弦定理,得cos A =b 2+c 2-a 22bc=-55ac ac=-55. (2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝ ⎛⎭⎪⎫-55-35×255=-255.2.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan∠PBA .解 (1)由已知得∠PBC =60°,∠PBA =30°.在△PBA 中,由余弦定理,得PA 2=3+14-2×3×12cos 30°=74,∴PA =72. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得3sin 150°=sin αsin (30°-α),化简得3cos α=4sin α,故tan α=34,即tan∠PBA =34. 3.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且1a +b +1a +c =3a +b +c. (1)求角A 的大小;(2)若c b =12+3,a =15,求b 的值.解 (1)由题意,可得a +b +c a +b +a +b +c a +c =3,即c a +b +ba +c=1, 整理得b 2+c 2-a 2=bc ,由余弦定理知,cos A =b 2+c 2-a 22bc =12,因为0<A <π,所以A =π3.(2)根据正弦定理,得cb =sin C sin B =sin (A +B )sin B =sin A cos B +cos A sin B sin B =sin Atan B+cos A =32tan B +12=12+3, 解得tan B =12,所以sin B =55.由正弦定理得,b =a sin Bsin A=15×5532=2.4.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)∵b sin A =3a cos B ,由正弦定理得sin B sin A =3sin A cos B . 在△ABC 中,sin A ≠0, 即得tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵sin C =2sin A ,由正弦定理得c =2a , 由余弦定理b 2=a 2+c 2-2ac cos B , 即9=a 2+4a 2-2a ·2a cos π3,解得a =3,∴c =2a =2 3. 考点二 三角形的面积方法技巧 三角形面积的求解策略(1)若所求面积的图形为不规则图形,可通过作辅助线或其他途径构造三角形,转化为三角形的面积.(2)若所给条件为边角关系,则运用正弦、余弦定理求出其两边及其夹角,再利用三角形面积公式求解.5.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cosA )=c .(1)求角C 的大小;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .因为0<C <π,所以cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25,可得a +b =5.所以△ABC 的周长为5+7.6.在△ABC 中,已知C =π6,向量m =(sin A ,1),n =(1,cos B ),且m ⊥n .(1)求A 的大小;(2)若点D 在边BC 上,且3BD →=BC →,AD =13,求△ABC 的面积. 解 (1)由题意知m ·n =sin A +cos B =0,又C =π6,A +B +C =π,所以sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0. 所以sin A -32cos A +12sin A =0,即sin ⎝⎛⎭⎪⎫A -π6=0.又0<A <5π6,所以A -π6∈⎝ ⎛⎭⎪⎫-π6,2π3,所以A -π6=0,即A =π6.(2)设|BD →|=x ,由3BD →=BC →,得|BC →|=3x , 由(1)知,A =C =π6,所以|BA →|=3x ,B =2π3.在△ABD 中,由余弦定理,得(13)2=(3x )2+x 2-2·3x ·x cos 2π3,解得x =1,所以AB =BC =3,所以S △ABC =12BA ·BC ·sin B =12·3·3·sin 2π3=934.7.(2017·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B 的值;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去)或cos B =1517.故cos B =1517.(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6, 得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝ ⎛⎭⎪⎫1+1517=4.所以b =2.8.(2017·延边州一模)已知函数f (x )=sin 2ωx -sin 2⎝⎛⎭⎪⎫ωx -π6⎝ ⎛⎭⎪⎫x ∈R ,ω为常数且12<ω<1,函数f (x )的图象关于直线x =π对称. (1)求函数f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,f ⎝ ⎛⎭⎪⎫35A =14,求△ABC 面积的最大值.解 (1)f (x )=12-12cos 2ωx -⎣⎢⎡⎦⎥⎤12-12cos ⎝ ⎛⎭⎪⎫2ωx -π3=12cos ⎝ ⎛⎭⎪⎫2ωx -π3-12cos 2ωx =-14cos 2ωx +34sin 2ωx =12sin ⎝ ⎛⎭⎪⎫2ωx -π6.令2ωx -π6=π2+k π,解得x =π3ω+k π2ω,k ∈Z .∴f (x )的对称轴为x =π3ω+k π2ω,k ∈Z .令π3ω+k π2ω=π, 解得ω=2+3k6,k ∈Z .∵12<ω<1, ∴当k =1时,ω=56,∴f (x )=12sin ⎝ ⎛⎭⎪⎫53x -π6.∴f (x )的最小正周期T =2π53=6π5.(2)∵f ⎝ ⎛⎭⎪⎫35A =12sin ⎝⎛⎭⎪⎫A -π6=14,∴sin ⎝⎛⎭⎪⎫A -π6=12.∴A =π3.由余弦定理得,cos A =b 2+c 2-a 22bc =b 2+c 2-12bc =12,∴b 2+c 2=bc +1≥2bc , ∴bc ≤1.∴S △ABC =12bc sin A =34bc ≤34,∴△ABC 面积的最大值是34. 考点三 解三角形的综合问题方法技巧 (1)题中的关系式可以先利用三角变换进行化简.(2)和三角形有关的最值问题,可以转化为三角函数的最值问题,要注意其中角的取值. (3)和平面几何有关的问题,不仅要利用三角函数和正弦、余弦定理,还要和三角形、平行四边形的一些性质结合起来.9.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值. 解 (1)在△ABC 中,因为a >b , 所以由sin B =35,得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =bsin B , 得sin A =a sin Bb =31313. 所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.所以sin ⎝⎛⎭⎪⎫2A +π4=sin 2A cos π4+cos 2A sin π4=7226.10.△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,1+tan A tan B =2c3b .(1)求角A 的大小;(2)若△ABC 为锐角三角形,求函数y =2sin 2B -2sin B cosC 的取值范围.解 (1)因为1+tan A tan B =2c 3b ,所以由正弦定理,得1+sin A cos B cos A sin B =sin (A +B )cos A sin B =2sin C3sin B .因为A +B +C =π,所以sin(A +B )=sin C ,所以sin C cos A sin B =2sin C3sin B ,因为sin C ≠0,sin B ≠0,所以cos A =32,故A =π6. (2)因为A +B +C =π,A =π6,所以B +C =5π6. 所以y =2sin 2B -2sin B cosC =1-cos 2B -2sin B cos ⎝ ⎛⎭⎪⎫5π6-B=1-cos 2B +3sin B cos B -sin 2B =1-cos 2B +32sin 2B -12+12cos 2B =12+32sin 2B -12cos 2B =sin ⎝ ⎛⎭⎪⎫2B -π6+12.又△ABC 为锐角三角形,所以π3<B <π2⇒π2<2B -π6<5π6,所以y =sin ⎝⎛⎭⎪⎫2B -π6+12∈⎝ ⎛⎭⎪⎫1,32.故函数y =2sin 2B -2sin B cosC 的取值范围是⎝ ⎛⎭⎪⎫1,32.11.(2017·咸阳二模)设函数f (x )=sin x cos x -sin 2⎝ ⎛⎭⎪⎫x -π4(x ∈R ), (1)求函数f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫C 2=0,c =2,求△ABC 面积的最大值.解 (1)函数f (x )=sin x cos x -sin 2⎝⎛⎭⎪⎫x -π4(x ∈R ).化简可得f (x )=12sin 2x -12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x -12. 令2k π-π2≤2x ≤2k π+π2(k ∈Z ),则k π-π4≤x ≤k π+π4(k ∈Z ),即f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),则k π+π4≤x ≤k π+3π4(k ∈Z ),即f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫C 2=0,得sin C =12, 又因为△ABC 是锐角三角形, 所以C =π6.由余弦定理得c 2=a 2+b 2-2ab cos C ,将c =2,C =π6代入得4=a 2+b 2-3ab ,由基本不等式得a 2+b 2=4+3ab ≥2ab ,即ab ≤4(2+3), 所以S △ABC =12ab sin C ≤12·4(2+3)·12=2+3,即△ABC 面积的最大值为2+ 3.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2a -c ,cos C ),n =(b ,cos B ),m ∥n .(1)求角B 的大小;(2)若b =1,当△ABC 的面积取得最大值时,求△ABC 内切圆的半径.解 (1)由已知可得(2a -c )cos B =b cos C ,结合正弦定理可得(2sin A -sin C )cos B =sinB cosC ,即2sin A cos B =sin(B +C ),又sin A =sin(B +C )>0,所以cos B =12,所以B =π3.(2)由(1)得B =π3,又b =1,在△ABC 中,b 2=a 2+c 2-2ac cos B ,所以12=a 2+c 2-ac ,即1+3ac =(a +c )2.又(a +c )2≥4ac ,所以1+3ac ≥4ac , 即ac ≤1,当且仅当a =c =1时取等号.从而S △ABC =12ac sin B =34ac ≤34,当且仅当a =c =1时,S △ABC 取得最大值34.设△ABC 内切圆的半径为r ,由S △ABC =12(a +b +c )r ,得r =36.例 (12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n . (1)求角B 的大小;(2)设BC 的中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积. 审题路线图向量m ∥n ―→边角关系式――――→利用正弦定理转化△ABC 三边关系式――――→余弦定理求得角B ――――→引进变量(设角θ)用θ表示a +2c (目标函数)―→辅助角公式求最值―→求S △ABC 规范解答·评分标准 解 (1)因为m ∥n ,所以(a +b )(sin A -sin B )-c (sin A -sin C )=0,………………………………………………………………………………………………1分 由正弦定理,可得(a +b )(a -b )-c (a -c )=0,即a 2+c 2-b 2=ac . ……………………3分由余弦定理可知,cos B =a 2+c 2-b 22ac =ac 2ac =12.因为B ∈(0,π),所以B =π3.…………5分(2)设∠BAD =θ,则在△BAD 中,由B =π3可知,θ∈⎝ ⎛⎭⎪⎫0,2π3.由正弦定理及AD =3,有BDsin θ=ABsin ⎝ ⎛⎭⎪⎫2π3-θ=3sinπ3=2,所以BD =2sin θ,AB =2sin ⎝⎛⎭⎪⎫2π3-θ=3cos θ+sin θ,所以a =2BD =4sin θ,c =AB =3cos θ+sin θ,………………………………………8分 从而a +2c =23cos θ+6sin θ=43sin ⎝ ⎛⎭⎪⎫θ+π6.由θ∈⎝⎛⎭⎪⎫0,2π3可知,θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当θ+π6=π2,即当θ=π3时,a +2c 取得最大值4 3 (11)分此时a =23,c =3,所以S △ABC =12ac sin B =332.………………………………………………………………………………………………12分 构建答题模板[第一步] 找条件:分析寻找三角形中的边角关系.[第二步] 巧转化:根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化. [第三步] 得结论:利用三角恒等变换进行变形,得出结论. [第四步] 再反思:审视转化过程的合理性.1.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan Acos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. (1)证明 由题意知,2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B.化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B ,因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c .(2)解 由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝ ⎛⎭⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,A 为锐角,向量m =(2sin A ,-3),n =⎝⎛⎭⎪⎫cos 2A ,2cos 2A 2-1,且m ∥n .(1)求A 的大小;(2)如果a =2,求△ABC 面积的最大值.解 (1)由m ∥n ,可得2sin A ·⎝ ⎛⎭⎪⎫2cos 2A 2-1+3cos 2A =0,即2sin A ·cos A +3cos 2A =0,所以sin 2A =-3cos 2A ,即tan 2A =- 3.因为A 为锐角,故0°<2A <180°,所以2A =120°,A =60°.(2)如果a =2,在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A ,可得4=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤4,所以S =12bc sin A ≤12×4×32=3, 故△ABC 面积的最大值为 3.3.在海岸A 处,发现北偏东45°方向距A 为3-1海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间.(注:6≈2.449)解 设缉私船追上走私船所需时间为t 小时,如图所示,则CD =103t 海里,BD =10t 海里.在△ABC 中,因为AB =(3-1)海里,AC =2海里,∠BAC =45°+75°=120°, 根据余弦定理,可得BC =(3-1)2+22-2·2·(3-1)cos 120°=6(海里). 根据正弦定理,可得sin∠ABC =AC ·sin 120°BC =2·326=22. 所以∠ABC =45°,易知CB 方向与正北方向垂直,从而∠CBD =90°+30°=120°. 在△BCD 中,根据正弦定理,可得sin∠BCD =BD ·sin∠CBD CD =10t ·sin 120°103t=12, 所以∠BCD =30°,∠BDC =30°, 所以DB =BC =6海里.则有10t =6,t =610≈0.245(小时)=14.7(分钟).故缉私船沿北偏东60°方向,最快需约14.7分钟才能追上走私船.4.(2017·济南一模)已知f (x )=23sin x cos x -cos(π+2x ).(1)求f (x )的单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,c =3,a +b =23,求△ABC 的面积.解 (1)f (x )=23sin x cos x -cos(π+2x ).化简可得f (x )=3sin2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6. 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 得-π3+k π≤x ≤π6+k π,k ∈Z . ∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)由(1)可知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. ∵f (C )=1,即2sin ⎝⎛⎭⎪⎫2C +π6=1, 0<C <π,可得2C +π6=5π6,∴C =π3. 由a +b =23,可得a 2+b 2=12-2ab . ∵c =3,根据余弦定理cos C =a 2+b 2-c 22ab, 可得12-2ab -c 22ab =12,解得ab =3. 故△ABC 的面积S =12ab sin C =12×3×32=334. 5.已知向量a =⎝⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎪⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22, 所以A =π4或A =3π4,因为b >a ,所以A =π4, f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6=2sin ⎝ ⎛⎭⎪⎫2x +π4-12. 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12, 所以32-1≤f (x )+4cos ⎝⎛⎭⎪⎫2A +π6≤2-12. 所以所求取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.。
第二讲 三角函数的图象与性质1.(2019·豫南九校联考)将函数y =sin ⎝⎛⎭⎪⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝ ⎛⎭⎪⎫x 2-5π24B .y =sin ⎝ ⎛⎭⎪⎫x 2-π3C .y =sin ⎝ ⎛⎭⎪⎫x 2-5π12 D.y =sin ⎝⎛⎭⎪⎫2x -7π12 解析:函数y =sin ⎝ ⎛⎭⎪⎫x -π4经伸长变换得y =sin ⎝ ⎛⎭⎪⎫x 2-π4,再作平移变换得y =sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x -π6-π4=sin ⎝ ⎛⎭⎪⎫x 2-π3.答案:B2.(2019·某某亳州一中月考)函数y =tan ⎝ ⎛⎭⎪⎫12x -π3在一个周期内的图象是( )解析:由题意得函数的周期为T =2π,故可排除B ,D.对于C ,图象过点⎝ ⎛⎭⎪⎫π3,0,代入解析式,不成立,故选A. 答案:A3.(2019·某某某某十校期末测试)要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x的图象( )A .向左平移π3个单位长度B .向左平移π6个单位长度C .向右平移π6个单位长度D .向右平移π3个单位长度解析:∵y =cos ⎝ ⎛⎭⎪⎫2x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,∴要得到函数y =cos ⎝ ⎛⎭⎪⎫2x +π3的图象,只需将函数y =cos 2x 的图象向左平移π6个单位长度.答案:B4.(2019·东北三省三校一模)已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象的相邻两条对称轴之间的距离是π2,则该函数的一个单调增区间为( )A.⎣⎢⎡⎦⎥⎤-π3,π6 B.⎣⎢⎡⎦⎥⎤-5π12,π12 C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤-π3,2π3解析:由题意得2πω=2×π2,解得ω=2,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z),解得-π3+k π≤x ≤π6+k π.当k =0时,有x ∈⎣⎢⎡⎦⎥⎤-π3,π6.故选A.答案:A5.(2019·高考全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( ) A .2B.32 C .1D.12解析:由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A. 答案:A6.(2019·某某某某一模)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,其中ω为常数,且ω∈(1,3).若对任意的实数x ,总有f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最小值是( ) A .1 B.π2C .2D.π解析:∵函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π3的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,∴π3ω+π3=k π,k ∈Z ,∴ω=3k -1,k ∈Z ,由ω∈(1,3),得ω=2.由题意得|x 1-x 2|的最小值为函数的半个周期,即T 2=πω=π2.答案:B7.(2019·某某平遥中学调研)已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝ ⎛⎭⎪⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( ) A .x =π12B.x =π4C .x =π3D.x =2π3解析:由题意知图象过A (0,3),B ⎝ ⎛⎭⎪⎫π6,0, 即f (0)=2sin φ=3,f ⎝ ⎛⎭⎪⎫π6=2sin ⎝ ⎛⎭⎪⎫π6·ω+φ=0,又ω>0,|φ|<π,并结合图象知φ=2π3,π6·ω+φ=π+2k π(k ∈Z),得ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3, 移动后g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3,所以对称轴满足2x +π3=π2+k π(k ∈Z),解得x =π12+k π2(k ∈Z),所以满足条件的一条对称轴方程是x =π12,故选A.答案:A8.(2019·某某某某适应性统考)已知A ,B ,C ,D ,E 是函数y =sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2一个周期内的图象上的五个点,如图所示,A ⎝ ⎛⎭⎪⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B.ω=2,φ=π6C .ω=12,φ=π3D.ω=12,φ=π12解析:由题意知T =4×⎝⎛⎭⎪⎫π12+π6=π,所以ω=2.因为A ⎝ ⎛⎭⎪⎫-π6,0,所以0=sin ⎝ ⎛⎭⎪⎫-π3+φ. 又0<φ<π2,所以φ=π3.答案:A9.(2019·某某某某3月模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2,若f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,则ω的可能取值为( )A.23 B.2 C.143D.263解析:∵函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f (0)=-f ⎝ ⎛⎭⎪⎫π2, ∴sin ⎝ ⎛⎭⎪⎫-π6=-sin ⎝ ⎛⎭⎪⎫π2ω-π6=-12,∴π2ω-π6=2k π+π6或π2ω-π6=2k π+5π6,k ∈Z ,∴ω=4k +23或ω=4k +2,k ∈Z.∵函数f (x )在⎝⎛⎭⎪⎫0,π2上有且仅有三个零点,∴ωx -π6∈⎝ ⎛⎭⎪⎫-π6,ωπ2-π6,∴2π<ωπ2-π6≤3π,∴133<ω≤193,∴ω=143或ω=6.故选C.答案:C10.(2019·贺州一模)已知函数f (x )=sin(2x +φ)(φ∈R),若f ⎝ ⎛⎭⎪⎫π3-x =f (x ),且f (π)>f ⎝ ⎛⎭⎪⎫π2,则函数f (x )取得最大值时x 的可能值为( )A.π6B.π5C.π3D.π2解析:因为f ⎝ ⎛⎭⎪⎫π3-x =f (x ), 即y =f (x )的图象关于直线x =π6对称,即函数f (x )在x =π6时取得最值,①当函数f (x )在x =π6时取得最大值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π3=f (π),满足题意, ②当函数f (x )在x =π6时取得最小值时,又因为函数f (x )的周期为π,所以f ⎝ ⎛⎭⎪⎫π2>f ⎝ ⎛⎭⎪⎫π3=f (π),不满足题意, 综合①②得:函数f (x )取得最大值时x 的可能值为π6.故选A. 答案:A11.(2019·某某一模)若函数f (x )=sinωx2·sin ⎝⎛⎭⎪⎫ωx 2+π2(ω>0)在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,则ω的取值X 围是( ) A .(0,5)B.[1,5)C.⎝ ⎛⎭⎪⎫0,92 D.⎣⎢⎡⎭⎪⎫1,92 解析:f (x )=sinωx2sin ⎝⎛⎭⎪⎫ωx 2+π2=12sin ωx ,当ωx =2k π+π2,即x =2k π+π2ω(k ∈Z)时函数取最大值,又函数f (x )在⎣⎢⎡⎦⎥⎤-π3,π2内有且仅有一个最大值,即有两种情况,一是区间⎣⎢⎡⎦⎥⎤-π3,π2内只有一个极值点,二是函数f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π2内单调递增,所以有⎩⎪⎨⎪⎧π2≤ωπ2<5π2,-3π2<-ωπ3或⎩⎪⎨⎪⎧π2≥ωπ2,-π2≤-ωπ3,解得ω∈⎣⎢⎡⎭⎪⎫1,92或ω∈(-∞,1],又∵ω>0,所以ω∈⎝ ⎛⎭⎪⎫0,92,故选C. 答案:C12.(2019·某某一模)函数f (x )=sin(2x +θ)+cos 2x ,若f (x )最大值为G (θ),最小值为g (θ),则( )A .∃θ0∈R ,使G (θ0)+g (θ0)=πB .∃θ0∈R ,使G (θ0)-g (θ0)=πC .∃θ0∈R ,使|G (θ0)·g (θ0)|=πD .∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π解析:f (x )=sin(2x +θ)+cos 2x =cos θ·sin 2x +⎝ ⎛⎭⎪⎫sin θ+12·cos 2x +12=54+sin θsin(2x +φ)+12,所以G (θ)=54+sin θ+12,g (θ)=-54+sin θ+12, ①对于选项A ,G (θ0)+g (θ0)=54+sin θ+12-54+sin θ+12=1,显然不满足题意,即A 错误,②对于选项B ,G (θ0)-g (θ0)=54+sin θ+12+54+sin θ-12=254+sin θ∈[1,3],显然不满足题意,即B 错误, ③对于选项C ,G (θ0)·g (θ0)=⎝ ⎛⎭⎪⎫54+sin θ+12·⎝ ⎛⎭⎪⎫54+sin θ-12=1+sin θ∈[0,2],显然不满足题意,即C 错误,④对于选项D ,⎪⎪⎪⎪⎪⎪G (θ)g (θ)=⎪⎪⎪⎪⎪⎪⎪⎪154+sin θ-12+1∈[2,+∞),即∃θ0∈R ,使⎪⎪⎪⎪⎪⎪G (θ0)g (θ0)=π,故D 正确, 故选D. 答案:D13.(2019·某某模拟)函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1(x ∈R)的最大值为________.解析:∵f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=23sin x cos x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,∴f (x )max =2. 答案:214.设函数f (x )=A sin(ωx +φ)(A >0,ω>0).若函数f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则函数f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3, ∴x =π2和x =2π3均不是f (x )的极值点,其极值应该在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π6也不是函数f (x )的极值点,又f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性, ∴x =π6-⎝⎛⎭⎪⎫7π12-π2=π12为f (x )的另一个相邻的极值点,故函数f (x )的最小正周期T =2×⎝⎛⎭⎪⎫7π12-π12=π.答案:π15.(2019·某某某某武邑中学模拟)将f (x )=2sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则ω的最大值为________.解析:将f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π4ω个单位,得到y =g (x )=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π4ω+π4=2sin ωx 的图象,若y =g (x )在⎣⎢⎡⎦⎥⎤-π6,π4上为增函数,则满足T 4≥π4,即T ≥π,即2πω≥π,所以0<ω≤2,即ω的最大值为2.答案:216.已知函数f (x )=2a sin(πωx +φ)⎝ ⎛⎭⎪⎫a ≠0,ω>0,|φ|≤π2,直线y =a 与f (x )的图象的相邻两个距离最近的交点的横坐标分别是2和4,现有如下命题: ①该函数在[2,4]上的值域是[a ,2a ];②在[2,4]上,当且仅当x =3时函数取得最大值; ③f (x )的图象可能过原点. 其中真命题的个数为________.解析:对于①,∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴结合图象可以看出,当a >0时,f (x )在[2,4]上的值域为[a ,2a ],当a <0时,f (x )在[2,4]上的值域为[2a ,a ],①错误;对于②,根据三角函数图象的对称性,显然x =2和x =4的中点是x =3,即当a >0时,f (x )在x =3处有最大值f (3)=2a ,当a <0时,f (x )在x =3处有最小值f (3)=2a ,②错误; 对于③,f (0)=2a sin φ,令f (0)=0,得φ=0,此时f (x )=2a sin πωx ,由2a sin πωx =a 得sin πωx =22,则πωx =2k π+π4(k ∈Z)或πωx =2k π+3π4(k ∈Z),∴x =2k +14ω(k ∈Z)或x =2k +34ω(k ∈Z),∵直线y =a 与函数f (x )=2a sin(πωx +φ)的图象的相邻两个距离最近的交点的横坐标分别为2和4,∴令⎩⎪⎨⎪⎧2k +14ω=2,2k +34ω=4,解得k =18∉Z ,即不存在这样的k 符合题意,③错误. 综上,没有真命题. 答案:0。
(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。
第1讲三角函数的图象与性质——小题备考微专题1三角函数图象的平移伸缩『常考常用结论』1.“五点法”作图设z=ωx+φ,令z=0,π2,π,3π2,2π,求出x的值与相应的y的值,描点、连线可得.2.图象变换y=sin x向左(φ>0)或向右(φ<0),平移|φ|个单位y=sin (x+φ)横坐标变为原来的1ω(ω>0)倍,纵坐标不变y=sin (ωx+φ)纵坐标变为原来的A(A>0)倍,横坐标不变y=A sin (ωx+φ).『保分题组训练』1.将函数y=sin x的图象向左平移π4个单位,得到的图象的函数解析式是()A.y=sin(x−π4)B.y=sin x-π4C.y=sin(x+π4)D.y=sin x+π42.要得到函数y =cos (3x −π6)的图象,只需将y =cos 3x 的图象( ) A .向右平移π6B .向左平移π6C .向右平移π18D .向左平移π183.[2021·河北保定一模]已知函数f(x)=2sin x ,为了得到函数g(x)=2sin (2x −π3)的图象,只需( )A .先将函数f(x)图象上点的横坐标变为原来的2倍,再向右平移π6个单位 B .先将函数f(x)图象上点的横坐标变为原来的12,再向右平移π6个单位C .先将函数f(x)图象向右平移π6个单位,再将点的横坐标变为原来的12 D .先将函数f(x)图象向右平移π3个单位,再将点的横坐标变为原来的2倍4.(多选题)要得到函数y =sin (2x +π3)的图象,只要将函数y =sin x 的图象( )A .每一点的横坐标扩大到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位长度B .每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度 C .向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)D .向左平移π6个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变)『提分题组训练』1.[2021·河北张家口三模]为了得到函数f (x )=sin 13x +cos 13x 的图象,可以将函数g (x )=√2cos 13x 的图象( )A .向右平移3π4个单位长度 B .向右平移π4个单位长度C .向左平移3π4个单位长度D .向左平移π4个单位长度2.[2021·山东潍坊学情调研]将函数f(x)=sin (2x +π3)的图象向右平移a(a>0)个单位得到函数g(x)=cos (2x +π4)的图象,则a 的值可以为( )A.5π12B.7π12C.19π24D.41π243.函数y=sin(ωx+φ)(ω>0)的图象向左平移2π3的单位,所得到的图象与原函数图象的对称轴重合,则ω的最小值是()A.34B.1 C.2 D.324.[2021·山东青岛期末检测](多选题)要得到y=cos2x的图象C1,只要将y=sin(2x+π3)的图象C2怎样变化得到()A.将y=sin(2x+π3)的图象C2沿x轴方向向左平移π12个单位B.将y=sin(2x+π3)的图象C2沿x轴方向向右平移11π12个单位C.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向右平移5π12个单位D.先作C2关于x轴对称图象C3,再将图象C3沿x轴方向向左平移π12个单位微专题2三角函数的性质『常考常用结论』1.三角函数的单调区间y=sin x的单调递增区间是[2kπ−π2,2kπ+π2](k∈Z),单调递减区间是[2kπ+π2,2kπ+3π2](k∈Z);y=cos x的单调递增区间是[2kπ-π,2kπ](k∈Z),单调递减区间是[2kπ,2kπ+π](k∈Z);y=tan x的递增区间是(kπ−π2,kπ+π2)(k∈Z).2.三角函数的奇偶性与对称性y=A sin (ωx+φ),当φ=kπ(k∈Z)时为奇函数;当φ=kπ+π2(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ+π2(k∈Z)求得.y=A cos (ωx+φ),当φ=kπ+π2(k∈Z)时为奇函数;当φ=kπ(k∈Z)时为偶函数;对称轴方程可由ωx+φ=kπ(k∈Z)求得.y=A tan (ωx+φ),当φ=kπ(k∈Z)时为奇函数.3.三角函数的周期(1)y=A sin (ωx+φ)和y=A cos (ωx+φ)的最小正周期为2π|ω|,y=A tan (ωx+φ)的最小正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个最小正周期,相邻的对称中心与对称轴之间的距离是14个最小正周期;正切曲线相邻两对称中心之间的距离是12个最小正周期.『保分题组训练』1.下列函数中,周期为π,且在区间(π2,π)单调递增的是()A.y=|sin x|B.y=sin |x|C.y=cos 2x D.y=sin 2x2.已知函数f(x)=cos (2x+π3),则下列说法错误的是()A.f(x)的最小正周期是πB.f(x)的图象关于点(−5π12,0)对称C.f(x)在[−π6,π3]上为减函数D.f(x)的一条对称轴是x=π123.[2021·山东济宁质量检测](多选题)将函数f(x)=sin 2x的图象向右平移π4个单位后得到函数g(x)的图象,则函数g(x)具有性质()A.在(0,π4)上单调递增,为偶函数B.最大值为1,图象关于直线x=-3π2对称C.在(−3π8,π8)上单调递增,为奇函数D.周期为π,图象关于点(3π4,0)对称4.[2021·辽宁朝阳二模] (多选题)已知函数f (x )=|sin x ||cos x |,则下列说法正确的是( ) A. f (x )的图象关于直线x =π2对称 B. f (x )的周期为π2C .(π,0)是f (x )的一个对称中心 D. f (x )在区间[π4,π2]上单调递增『提分题组训练』1.[2021·淄博一模]已知f (x )=cos x (cos x +√3sin x )在区间[-π3,m ]上的最大值是32,则实数m 的最小值是( )A .π12 B .π3 C .-π12 D .π62.将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后,得到一个偶函数的图象,则|φ|的最小值为( )A .π12 B .π6 C .5π12D .-5π123.[2021·湖南六校联考](多选题)已知函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上,对称中心与对称轴x =π12的最小距离为π4,则下列结论正确的是( )A.函数f (x )的一个对称点为(5π12,0)B .当x ∈[π6,π2]时,函数f (x )的最小值为-√3C .若sin 4α-cos 4α=-45(α∈(0,π2)),则f (α+π4)的值为4−3√35D .要得到函数f (x )的图象,只需要将g (x )=2cos2x 的图象向右平移π6个单位 4.[2021·山东烟台一模](多选题)已知函数f (x )=2|sin x |+|cos x |-1,则( ) A .f (x )在[0,π2]上单调递增B .直线x =π2是f (x )图象的一条对称轴C.方程f(x)=1在[0,π]上有三个实根D.f(x)的最小值为-11.三角函数单调区间的求法:微专题3由图象求三角函数的解析式『保分题组训练』1.函数y=A sin (ωx+φ)的图象的一部分如图所示,则函数表达式可写成()A.y=2sin (2x+π3)B.y=sin (x+π12)C.y=√2sin (2x−5π6)D.y=2sin (2x+π6)2.函数f(x)=A sin (ωx+φ)(其中A>0,ω>0,|φ|<π2)的图象如图所示,为了得到f(x)的图象,只需将g (x )=A sin ωx 图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π12个单位长度 D .向右平移π12个单位长度3.设函数f (x )=sin (ωx −π4)(ω>0)的部分图象如图所示,且满足f (2)=0.则f (x )的最小正周期为( )A .169 B .16C .18D .984.[2021·全国乙卷]把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin (x −π4)的图象,则f (x )=( )A .sin (x2−7π12) B. sin (x 2+π12) C. sin (2x −7π12) D. sin (2x +π12)『提分题组训练』1.智能主动降噪耳机工作的原理如图1所示,是通过耳机两端的噪声采集器采集周围的噪音,然后通过听感主动降噪芯片生成相等的反向波抵消噪音.已知某噪音的声波曲线y =A sin (ωx +π6)(A >0,ω>0)在[−π2,π2]上大致如图2所示,则通过听感主动降噪芯片生成相等的反向波曲线可以为( )A .y =2sin (πx +π6) B .y =2√33sin (2π5x −π3) C .y =2√33sin (4π5x −2π3)D .y =2sin (πx −5π6)2.[2021·山东德州一模](多选题)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,将函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )的图象,则下列关于函数g (x )的说法正确的是( )A .g (x )的最小正周期为2π3 B .g (x )在区间[π9,π3]上单调递增 C .g (x )的图象关于直线x =4π9对称D .g (x )的图象关于点(π9,0)成中心对称3.[2021·石家庄一模](多选题)函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象如图,把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )的图象,下列结论正确的是( )A .φ=π3B .函数g (x )的最小正周期为πC .函数g (x )在区间[−π3,π12]上单调递增 D .函数g (x )关于点(−π3,0)中心对称确定y =A sin (ωx +φ)+b (A >0,ω>0)的解析式的方法详解答案 二轮专题复习战略·数学(新高考)专题二 三角函数、解三角形 第1讲 三角函数的图象与性质微专题1 三角函数图象的平移伸缩保分题组训练1.解析:函数y =sin x 的图象向左平移π4个单位,得到y =sin (x +π4)的图象. 故选C . 答案:C2.解析:将y =cos 3x 的图象向右平移π18个长度单位,可得函数y =cos [3(x −π18)]=cos (3x −π6)的图象.故选C . 答案:C3.解析:对于A :先将函数f(x)图象上点的横坐标变为原来的2倍,得到y =2sin 12x ,故A 错误;对于B :先将函数f(x)图象上点的横坐标变为原来的12,得到y =2sin 2x ,再右移π6个单位,得到y =2sin 2(x −π6),即为y =2sin (2x −π3),故B 正确;对于C: 先将函数f(x)图象向右平移π6个单位,得到y =2sin (x −π6),再将点的横坐标变为原来的12,得到y =2sin (2x −π6),故C 错误;对于D: 先将函数f(x)图象向右平移π3个单位,得到y =2sin (x −π3),再将点的横坐标变为原来的2倍,得到y =2sin (12x −π3),故D 错误.故选B . 答案:B4.解析:(1)先伸缩后平移时:每一点的横坐标缩短到原来的12 (纵坐标不变),再将所得图象向左平移π6个单位长度,所以A 选项错误,B 选项正确.(2)先平移后伸缩时:向左平移π3个单位长度,再将所得图象每一点的横坐标缩短到原来的12 (纵坐标不变),所以C 选项正确,D 选项错误.故选BC .答案:BC提分题组训练1.解析:f (x )=sin 13x +cos 13x =√2cos (13x −π4)=√2cos [13(x −3π4)].故选A . 答案:A2.解析:由题意知,g(x)=cos (2x +π4)=sin (2x +3π4),其图象向左平移a 个单位得到函数f(x)=sin (2x +2a +3π4),而函数f(x)=sin (2x +π3),所以有2a +3π4=π3+2k π,a =-524π+k π,取k =1得a =1924π. 故选C . 答案:C3.解析:∵函数y =sin (ωx +φ)(ω>0)的图象向左平移2π3个单位,所得到的图象与原函数图象的对称轴重合,∴2π3=k·T2=kπω,即ω=32k ,k ∈Z , 令k =1,可得ω的最小值为32,故选D. 答案:D4.解析:对于A ,将y =sin (2x +π3)的图象C 2沿x 轴方向向左平移π12个单位,可得y =sin [2(x +π12)+π3]=sin (2x +π2)=cos 2x 的图象C 1,故选项A 正确;对于B ,将y =sin (2x +π3)的图象C 2沿x 轴方向向右平移11π12个单位也可得到,y =sin [2(x −11π12)+π3]=sin (2x −3π2)=cos 2x 的图象C 1,故选项B 正确;对于C ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向右平移5π12个单位,得到y =-sin [2(x −5π12)+π3]=-sin (2x −π2)=cos 2x 的图象C 1,故选项C 正确;对于D ,先作C 2关于x 轴对称,得到y =-sin (2x +π3)的图象C 3,再将图象C 3沿x轴方向向左平移π12个单位,得到的y =-sin [2(x +π12)+π3]=-sin (2x +π2)=-cos 2x 图象,故选项D 不正确.故选ABC.答案:ABC微专题2 三角函数的性质保分题组训练1.解析:对于A ,y =|sin x |的图象是将y =sin x 的图象中y 轴下方的图象翻折到上方得到的,故最小正周期为π;当x ∈(π2,π)时,y =sin x >0,∴y =|sin x |=sin x 在(π2,π)上单调递减,故A 不正确;对于B ,当x =-3π2时,y =sin |x |=-1,当x =-π2时,y =sin |x |=1≠-1,所以周期不是π,故B 不正确;对于C ,y =cos 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =cos 2x 单调递增,故C 正确;对于D ,y =sin 2x 的最小正周期为2π2=π,当x ∈(π2,π)时,2x ∈(π,2π),y =sin 2x 不是单调递增的,故D 不正确.故选C. 答案:C2.解析:对于函数f (x )=cos (2x +π3),它的最小正周期为2π2=π,故A 正确;令x =-5π12,可得f (x )=0,所以f (x )的图象关于点(−5π12,0)对称,故B 正确;当x ∈[−π6,π3]时,2x +π3∈[0,π],故f (x )在[−π6,π3]上为减函数,故C 正确;令x =π12,可得f (x )=0,故x =π12不是f (x )的一条对称轴,故D 错误.故选D. 答案:D3.解析:g (x )=sin 2(x −π4)=sin (2x −π2)=-cos 2x ,x ∈(0,π4),则2x ∈(0,π2),g (x )=-cos 2x 单调递增,为偶函数,A 正确,C 错误;最大值为1,当x =-3π2时2x =-3π,为对称轴,B 正确;T =2π2=π,取2x =π2+k π,∴x =π4+kπ2,k ∈Z ,当k =1时满足,图象关于点(3π4,0)对称,D 正确.故选ABD. 答案:ABD4.解析:因为函数f (x )=|sin x ||cos x |=|sin x cos x |=12|sin 2x |,画出函数图象,如图所示;由图可知,f (x )的对称轴是x =kπ4,k ∈Z ;所以x =π2是f (x )图象的一条对称轴, A 正确; f (x )的最小正周期是π2,所以B 正确;f (x )是偶函数,没有对称中心,C 错误;由图可知,f (x )=12|sin 2x |在区间[π4,π2]上是单调减函数,D 错误.故选AB. 答案:AB提分题组训练1.解析:f (x )=cos x (cos x +√3sin x )=√3sin x cos x +cos 2x =1+cos 2x2+√32sin 2x =sin (2x +π6)+12,由x ∈[-π3,m ]得2x +π6∈[-π2,2m +π6], 当2x +π6=2k π+π2,k ∈Z 时取得最大值, 故2m +π6≥π2,即m ≥π6.则实数m 的最小值是π6. 故选D. 答案:D2.解析:∵函数y =sin 2x +√3cos 2x =2sin (2x +π3),将函数y =sin 2x +√3cos 2x 的图象沿x 轴向左平移φ个单位后, 得到函数y =2sin (2x +2φ+π3),函数关于y 轴对称, ∴2φ+π3=k π+π2(k ∈Z ),∴φ=kπ2+π12(k ∈Z ),当k =0时,|φ|min =π12. 故选A. 答案:A3.解析:函数f (x )=2cos (ωx +φ)(ω>0,|φ|<π2)的图象上, 对称中心与对称轴x =π12的最小距离为14×2πω=π4,∴ω=2.再根据2×π12+φ=k π,k ∈Z ,可得φ=-π6,故 f (x )=2cos (2x −π6). 令x =5π12,可得f (x )=-1≠0,故A 错误;当x ∈[π6,π2]时,2x -π6∈[π6,5π6],故当2x -π6=5π6时,函数f (x )的最小值为-√3,故B正确;若sin 4α-cos 4α=sin 2α-cos 2α=-cos 2α=-45(α∈(0,π2)),∴cos 2α=45,sin 2α=√1−cos 22α=35,则f (α+π4)=2cos (2α+π2−π6)=-2sin (2α−π6)=-2sin 2αcos π6+2cos 2αsin π6=4−3√35,故C 正确;将g (x )=2cos 2x 的图象向右平移π6个单位,可得y =2cos (2x −π3)的图象,故D 错误.故选BC. 答案:BC4.解析:A 选项,当x ∈[0,π2],f (x )=2sin x +cos x -1,f (x )不单调,A 错误, B 选项,f (π-x )=2|sin (π-x )|+|cos (π-x )|-1=2|sin x |+|cos x |-1=f (x ), ∴x =π2是它的一条对称轴,B 正确.C 选项,f (x )=1,即2|sin x |+|cos x |=2,当x ∈[0,π2],即2sin x +cos x =2,sin x =1或sin x =35,有两个零点;当x ∈[π2,π],2sin x -cos x =2,sin x =35,有1个零点,共3个零点;D 选项,若f (x )min =-1,即2|sin x |+|cos x |=0,需要|sin x |=0,且|cos x |=0矛盾,D 错误.故选BC. 答案:BC微专题3 由图象求三角函数的解析式保分题组训练1.解析:由图可知A =2,因为图象过点(0,1),所以2sin φ=1,所以取φ=π6, 因为图象过点(11π12,0),所以2sin (11π12ω+π6)=0,所以11π12ω+π6=2k π,k ∈Z ,即ω=2411k -211,k ∈Z ,当k =1时,ω=2,所以y =2sin (2x +π6).故选D.答案:D2.解析:根据函数f (x )=A sin (ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象,可得A =1,14T =5π12−π4=π6,即T =23π,∴ω=2π23π=3.将(π4,0)代入,可得f (π4)=sin (3×π4+φ)=0,则3×π4+φ=k π,k ∈Z ,∴φ=k π-3π4,k ∈Z ,又|φ|<π2,∴φ=π4,故f (x )=sin (3x +π4).故把g (x )=sin 3x 的图象向左平移π12个单位长度,即可得到f (x )=sin (3x +π4)的图象.故选C. 答案:C3.解析:因为f (2)=0,所以sin (2ω−π4)=0⇒2ω-π4=k π(k ∈Z )⇒ω=12k π+π8(k ∈Z ),设函数f (x )=sin (ωx −π4)(ω>0)的最小正周期为T ,由图可知{54T >2T <2,因为ω>0,所以有{54·2πω>22πω<2,⇒π<ω<5π4,因为ω=12k π+π8(k ∈Z ),所以74<k <94∵k ∈Z ∴k =2, 所以ω=98π,因此T =2π98π=169,故选A.答案:A4.解析:依题意,将y =sin (x −π4)的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin (x −π4) 将其图象向左平移π3个单位长度 → y =sin (x +π12)的图象 所有点的横坐标扩大到原来的2倍→ f (x )=sin (x2+π12)的图象.答案:B提分题组训练1.解析:由题图2可知:y =f (x )=A sin (ωx +π6)过(0,1),(56,0)两点,所以有y =f (0)=A sin π6=1⇒12A =1⇒A =2,f (56)=2sin (56ω+π6)=0⇒56ω+π6=k π(k ∈Z )⇒ω=(65k -15)π(k ∈Z ),当k =1时,y =f (x )=2sin (πx +π6),显然A 不符合题意,此时函数的周期为2ππ=2,要想抵消噪音,只需函数y =f (x )=2sin (πx +π6)向左或向右平移一个单位长度即可,即得到y =f (x +1)=2sin (πx +π+π6)=-2sin (πx +π6), 或y =f (x -1)=2sin (πx −π+π6)=2sin (πx −5π6),故选项D 符合,显然选项B ,C 的振幅不是2,不符合题意, 故选D. 答案:D2.解析:根据函数的图象:周期12T =5π12−(−π12)=π2,解得T =π,故ω=2. 进一步求得A =2.当x =5π12时,f (5π12)=2sin (5π6+φ)=-1,由于|φ|<π, 所以φ=2π3.所以f (x )=2sin (2x +2π3),函数f (x )的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g (x )=2sin (3x +π6)的图象,故对于A :函数的最小正周期为T =2π3,故A 正确;对于B :由于x ∈[π9,π3],所以3x +π6∈[π2,76π],故函数g (x )在区间[π9,π3]上单调递减,故B 错误;对于C :当x =4π9时,g (4π9)=2sin (4π3+π6)=-2,故函数g (x )的图象关于直线x =4π9对称,故C 正确;对于D :当x =π9时,g (π9)=2,故D 错误. 故选AC. 答案:AC3.解析:根据函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象, 可得T =2πω>11π12,且34T <11π12,∴ω∈(1811,2411).把(0,√3)代入,可得2sin φ=√3,∴φ=π3,或 φ=2π3.再把根据图象经过最高点(11π12,2),可得ω·11π12+φ=2k π+π2,k ∈Z . 当φ=π3时,ω·11π12+π3=2k π+π2,k ∈Z ,求得ω=211+24k11,不满足条件ω∈(1811,2411), 故φ=2π3,故A 错误. 此时,由ω·11π12+2π3=2k π+π2,k ∈Z ,求得ω=-211+24k 11,令k =1,可得ω=2,满足条件ω∈(1811,2411),故f (x )=2sin (2x +2π3).把函数f (x )的图象上所有的点向右平移π6个单位长度,可得到函数y =g (x )=2sin (2x +π3)的图象,故g (x )的最小正周期为2π2=π,故B 正确.当x ∈[−π3,π12],2x +π3∈[−π3,π2],故g (x )单调递增,故C 正确.令x =-π3,求得g (x )=-√3≠0,故g (x )的图象不关于点(−π3,0)中心对称,故D 错误. 故选BC.答案:BC。
高考数学二轮复习考点知识讲解与练习第29讲三角函数与解三角形热点问题核心热点真题印证核心素养三角函数的图象与性质2022·全国Ⅰ,7;2022·全国Ⅲ,16;2022·天津,8;2019·全国Ⅰ,11;2019·北京,9;2019·全国Ⅲ,12;2019·天津,7;2018·全国Ⅱ,10;2018·全国Ⅰ,16;2018·全国Ⅲ,15直观想象、逻辑推理三角恒等变换2022·全国Ⅰ,9;2022·全国Ⅱ,2;2022·全国Ⅲ,9;2019·全国Ⅱ,10;2019·浙江,18;2018·浙江,18;2018·江苏,16;2018·全国Ⅱ,15;2018·全国Ⅲ,4逻辑推理、数学运算解三角形2022·全国Ⅰ,16;2022·全国Ⅲ,7;2022·北京,17;2022·天津,16;2022·新高考山东,17;2022·浙江,18;2019·全国Ⅰ,17;2019·全国Ⅲ,18;2019·北逻辑推理、数学运算京,15;2019·江苏,15;2018·全国Ⅰ,17三角函数的图象与性质(必修4P147复习参考题A 组第9题、第10题)题目9 已知函数y =(sin x +cos x )2+2cos 2x . (1)求它的递减区间; (2)求它的最大值和最小值.题目10 已知函数f (x )=cos 4x -2sin x cos x -sin 4x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求f (x )的最小值及取得最小值时x 的集合.[试题评析]两个题目主要涉及三角恒等变换和三角函数的性质,题目求解的关键在于运用二倍角公式及两角和公式化为y =A sin(ωx +φ)+k 的形式,然后利用三角函数的性质求解. 【教材拓展】 已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z}, f (x )=4tan x cos x cos ⎝⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z),得-π12+k π≤x ≤5π12+k π(k ∈Z).设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4. 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.探究提高 1.将f (x )变形为f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3是求解的关键,(1)利用商数关系统一函数名称;(2)活用和、差、倍角公式化成一复角的三角函数.2.把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【链接高考】(2019·浙江卷)设函数f (x )=sin x ,x ∈R. (1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42的值域.解 (1)因为f (x +θ)=sin(x +θ)是偶函数, 所以,对任意实数x 都有sin(x +θ)=sin(-x +θ), 即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ, 故2sin x cos θ=0,所以cos θ=0. 又θ∈[0,2π),因此θ=π2或3π2. (2)y =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π122+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫x +π42=sin 2⎝ ⎛⎭⎪⎫x +π12+sin 2⎝⎛⎭⎪⎫x +π4=12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π6+12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x +π2=1-12⎝ ⎛⎭⎪⎫32cos 2x -32sin 2x=1-32cos ⎝⎛⎭⎪⎫2x +π3.由于x ∈R ,知cos ⎝ ⎛⎭⎪⎫2x +π3∈[-1,1],因此,所求函数的值域为⎣⎢⎡⎦⎥⎤1-32,1+32.三角函数与平面向量【例题】(2021·湘赣十四校联考)已知向量m =(sin x ,-1),n =(3,cos x ),且函数f (x )=m ·n .(1)若x ∈⎝⎛⎭⎪⎫0,π2,且f (x )=23,求sin x 的值;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =7,△ABC 的面积为332,且f ⎝⎛⎭⎪⎫A +π6=73b sin C ,求△ABC 的周长.[自主解答]解 (1)f (x )=m ·n =(sin x ,-1)·(3,cos x ) =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.∵f (x )=23,∴sin ⎝⎛⎭⎪⎫x -π6=13.又∵x ∈⎝ ⎛⎭⎪⎫0,π2,∴x -π6∈⎝ ⎛⎭⎪⎫-π6,π3,∴cos ⎝⎛⎭⎪⎫x -π6=223.∴sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π6+π6=13×32+223×12=3+226. (2)∵f ⎝⎛⎭⎪⎫A +π6=73b sin C , ∴2sin A =73b sin C ,即6sin A =7b sin C . 由正弦定理可知6a =7bc . 又∵a =7,∴bc =6.由已知△ABC 的面积等于12bc sin A =332,∴sin A =32. 又∵A ∈⎝⎛⎭⎪⎫0,π2,∴A =π3.由余弦定理,得b 2+c 2-2bc cos A =a 2=7,故b 2+c 2=13, ∴(b +c )2=25,∴b +c =5, ∴△ABC 的周长为a +b +c =5+7.探究提高 1.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先利用三角公式对三角函数式进行“化简”;然后把以向量共线、向量垂直、向量的数量积运算等形式出现的条件转化为三角函数式;再活用正、余弦定理对边、角进行互化. 2.这种问题求解的难点一般不是向量的运算,而是三角函数性质、恒等变换及正、余弦定理的应用,只不过它们披了向量的“外衣”.【尝试训练】(2021·沧州质检)已知a =(53cos x ,cos x ),b =(sin x,2cos x ),函数f (x )=a ·b +|b |2.(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调减区间;(3)当π6≤x ≤π2时,求函数f (x )的值域.解 f (x )=a ·b +|b |2=53cos x sin x +2cos 2x +sin 2x +4cos 2x =53sin x cos x +sin 2x +6cos 2x =532sin 2x +1-cos 2x 2+3(1+cos 2x ) =532sin 2x +52cos 2x +72=5sin ⎝⎛⎭⎪⎫2x +π6+72.(1)f (x )的最小正周期T =2π2=π. (2)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z).∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z).(3)∵π6≤x ≤π2,∴π2≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, ∴1≤5sin ⎝⎛⎭⎪⎫2x +π6+72≤172. ∴当π6≤x ≤π2时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,172.解三角形【例题】(12分)(2022·全国Ⅱ卷)△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值. [规范解答]解 (1)由正弦定理和已知条件得用正弦定理化角为边BC 2-AC 2-AB 2=AC ·AB .①2′由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .② 由①②得cos A =-12. 用余弦定理化边为角4′因为0<A <π,所以A =2π3.6′ (2)由正弦定理及(1)得AC sin B=AB sin C=BC sin A=23,8′从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B . 故BC +AC +AB =3+3sin B +3cos B=3+23sin ⎝ ⎛⎭⎪⎫B +π3. 两角和正弦公式的逆用10′又0<B <π3,所以当B =π6时,△ABC 周长取得最大值3+2 3. 三角函数性质的应用12′❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点步骤一定要写全,如第(1)问中只要写出0<A <π就有分,没写就扣1分,第(2)问中0<B <π3也是如此.❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时要写清得分关键点,如第(1)问中由正弦定理得BC 2-AC 2-AB 2=AC ·AB ,由余弦定理得BC 2=AC 2+AB 2-2AC ·AB ·cos A ,第(2)问中ACsin B=AB sin C=BC sin A=23等.❸保证正确得计算分:解题过程中计算准确,是得满分的根本保证,如第(1)问中,cos A =-12,若计算错误,则第(1)问最多2分;再如第(2)问3+3sin B +3cos B =3+23sin ⎝⎛⎭⎪⎫B +π3化简如果出现错误,则第(2)问最多得2分.……利用正弦、余弦定理,对条件式进行边角互化……由三角函数值及角的范围求角……由正弦、余弦定理及条件式实现三角恒等变换……利用角的范围和三角函数性质求出最值……检验易错易混,规范解题步骤得出结论【规范训练】(2022·浙江卷)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2b sin A -3a =0. (1)求角B 的大小;(2)求cos A +cos B +cos C 的取值范围. 解 (1)由正弦定理,得2sin B sin A =3sin A ,故sin B =32,由题意得B =π3. (2)由A +B +C =π,得C =2π3-A . 由△ABC 是锐角三角形,得A ∈⎝ ⎛⎭⎪⎫π6,π2 .由cos C =cos ⎝⎛⎭⎪⎫2π3-A =-12cos A +32sin A ,得 cos A +cos B +cos C =32sin A +12cos A +12=sin ⎝⎛⎭⎪⎫A +π6+12∈⎝⎛⎦⎥⎤3+12,32. 故cos A +cos B +cos C 的取值范围是⎝ ⎛⎦⎥⎤3+12,32.1.(2019·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a , 3c sin B =4a sin C . (1)求cos B 的值; (2)求sin ⎝ ⎛⎭⎪⎫2B +π6的值.解 (1)在△ABC 中,由正弦定理b sin B=c sin C,得b sin C =c sin B .又由3c sin B =4a sin C , 得3b sin C =4a sin C ,即3b =4a . 因为b +c =2a ,所以b =43a ,c =23a . 由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin 2B =2sin B cos B =-158, cos 2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6 =-158×32-78×12=-35+716. 2.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z), 解得k π-π6≤x ≤k π+π3(k ∈Z), ∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝⎛⎭⎪⎫2A +π3=-1, ∴cos ⎝⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3, ∴2A +π3=π,即A =π3. ∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.3.已知函数f (x )=cos x (cos x +3sin x ).(1)求f (x )的最小值;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,S △ABC =334,c =7,求△ABC 的周长.解 (1)f (x )=cos x (cos x +3sin x )=cos 2x +3sin x cos x =1+cos 2x 2+32sin 2x =12+sin ⎝⎛⎭⎪⎫2x +π6. 当sin ⎝⎛⎭⎪⎫2x +π6=-1时,f (x )取得最小值-12. (2)f (C )=12+sin ⎝ ⎛⎭⎪⎫2C +π6=1,∴sin ⎝⎛⎭⎪⎫2C +π6=12, ∵C ∈(0,π),2C +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2C +π6=5π6,∴C =π3.∵S △ABC =12ab sin C =334,∴ab =3. 又(a +b )2-2ab cos π3=7+2ab , ∴(a +b )2=16,即a +b =4,∴a +b +c =4+7, 故△ABC 的周长为4+7.4.(2021·东北三省三校联考)已知在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若b 2tan A =a 2tan B ,2sin 2A +B 2=1+cos 2C .(1)求角A 的大小; (2)若点D 为AB 上一点,满足∠BCD =45°,且CD =32-6,求△ABC 的面积. 解 (1)由2sin 2A +B2=1+cos 2C 得1-cos(A +B )=2cos 2C ,即2cos 2C -cos C -1=0, 解得cos C =-12(cos C =1舍去),故C =120°. 因为asin A =bsin B ,b 2tan A =a 2tan B ,所以sin 2B sin A cos A =sin 2A sin B cos B, 即sin A ·cos A =sin B cos B ,故sin 2A =sin 2B ,因此A =B 或A +B =90°(舍去),故A =30°.(2)由(1)知△ABC 为等腰三角形,设BC =AC =m ,由S △ABC =S △ACD +S △BCD 得12m 2·sin 120°=12m · CD ·sin 45°+12m ·CD ·sin 75°,整理得32m=CD⎝⎛⎭⎪⎫22+2+64=()32-6×32+64,解得m=23,故S△ABC=12m2·sin 120°=3 3.5.(2021·郑州调研)已知△ABC的内角A,B,C所对的边分别是a,b,c,其面积S=b2+c2-a24.(1)若a=6,b=2,求cos B;(2)求sin(A+B)+sin B cos B+cos(B-A)的最大值.解(1)∵S=b2+c2-a24,∴12bc sin A=b2+c2-a24,即sin A=b2+c2-a22bc=cos A,则tan A=1,又A∈(0,π),∴A=π4.由正弦定理asin A =bsin B,得622=2sin B,∴sin B=66,又a>b,∴cos B=1-16=306.(2)由第(1)问可知,A=π4,sin(A +B )+sin B cos B +cos(B -A )=sin ⎝ ⎛⎭⎪⎫B +π4+sin B cos B +cos ⎝⎛⎭⎪⎫B -π4 =22sin B +22cos B +sin B cos B +22cos B +22sin B =2(sin B +cos B )+sin B cos B ,令t =sin B +cos B ,则t 2=1+2sin B cos B ,sin(A +B )+sin B cos B +cos(B -A )=2t +12(t 2-1), 令y =12t 2+2t -12=12(t +2)2-32,t ∈(0,2], ∴当t =2,即B =π4时, sin(A +B )+sin B cos B +cos(B -A )取得最大值52.。
第2讲 平面向量、解三角形【课前热身】第2讲 平面向量、解三角形(本讲对应学生用书第4~6页)1.(必修4 P76习题7改编)在矩形ABCD 中,O 是对角线的交点,若BC u u u r =e 1,DC u u u r =e 2,则OC u u u r= .【答案】12(e 1+e 2)【解析】因为O 是矩形ABCD 对角线的交点,BCu u u r =e 1,DCu u u r =e 2,所以OCu u u r =12(BC u u u r +DC u u u r)=12(e 1+e 2).2.(必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x+1),若a ⊥b ,则实数x= . 【答案】3【解析】因为a ⊥b ,所以a ·b =0,所以12-3x-3=0,解得x=3.3.(必修5 P10练习2改编)在锐角三角形ABC 中,设角A ,B 所对的边分别为a ,b.若2a sin B=3b ,则角A= .【答案】π3【解析】在△ABC 中,由正弦定理及已知得2sin A·sin B=3sin B ,因为B 为△ABC的内角,所以sin B ≠0,所以sinA=32.又因为△ABC 为锐角三角形,所以A ∈π02⎛⎫ ⎪⎝⎭,,所以A=π3.4.(必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k= 时,向量k a -b 与a +3b 平行.【答案】-13【解析】由题设知向量a 与b 不平行,因为向量k a -b 与a +3b 平行,所以1k =-13,即k=-13.5.(必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=7,b=43,c=13,则△ABC 最小的内角为 .【答案】π6【解析】因为13<43<7,所以C<B<A ,又因为cosC=222-2a b c ab +=2743⨯⨯=32,所以C=π6.【课堂导学】平面向量与三角函数综合例1 (2016·淮安5月信息卷)已知向量m =(cos α,sin α),n =(3,-1),α∈(0,π).(1)若m ⊥n ,求角α的大小; (2)求|m +n |的最小值.【解答】(1)因为m =(cos α,sin α),n =(3,-1),且m ⊥n ,所以3cos α-sin α=0,即tan α=3.又因为α∈(0,π),所以α=π3.(2)因为m +n =(cos α+3,sin α-1),所以|m +n |=22(cos 3)(sin -1)αα++=523cos -2sin αα+=π54cos 6α⎛⎫++ ⎪⎝⎭. 因为α∈(0,π),所以α+ππ7π666⎛⎫∈ ⎪⎝⎭,,故当α+π6=π,即α=5π6时,|m +n |取得最小值1.正弦定理、余弦定理的应用例2 (2016·苏州暑假测试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin2-2A B+sin A sin B=22+.(1)求角C 的大小;(2)若b=4,△ABC 的面积为6,求c 的值.【解答】(1)sin2-2A B+sin A sin B=1-cos(-)2A B+2sin sin2A B=1-cos cos-sin sin2A B A B+2sin sin2A B=1-cos cos sin sin2A B A B+=1-(cos cos-sin sin)2A B A B=1-cos()2A B+=1-cos(π-)2C=1cos2C+=22+,所以cos C=22.又0<C<π,所以C=π4.(2)因为S=12ab sin C=12a×4×sinπ4=2a=6,所以a=32.因为c2=a2+b2-2ab cos C=(32)2+42-2×32×4×22=10,所以c=10.变式1(2016·南通一调)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=ab.(1)求角C的大小;(2)若c=2a cos B,b=2,求△ABC的面积.【解答】(1)在△ABC中,由(a+b-c)(a+b+c)=ab,得222-2a b cab+=-12,即cosC=-12.因为0<C<π,所以C=2π3.(2)方法一:因为c=2a cos B,由正弦定理,得sin C=2sin A cos B.因为A+B+C=π,所以sin C=sin(A+B ),所以sin(A+B )=2sin A cos B ,即sin A cos B-cos A sin B=0, 所以sin(A-B )=0.又-π3<A-B<π3,所以A-B=0,即A=B ,所以a=b=2. 所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.方法二:由c=2a cos B 及余弦定理,得c=2a×222-2a c b ac +,化简得a=b ,所以△ABC 的面积为S △ABC =12ab sin C=12×2×2×sin 2π3=3.变式2 (2016·南通、扬州、淮安、宿迁、泰州二调)在斜三角形ABC 中,tan A+tan B+tan A tan B=1.(1)求角C 的大小; (2)若A=15°,2,求△ABC 的周长.【解答】(1)因为tan A+tan B+tan A tan B=1, 即tan A+tan B=1-tan A tan B.因为在斜三角形ABC 中,1-tan A tan B ≠0,所以tan(A+B )=tan tan 1-tan tan A BA B +=1,即tan(180°-C )=1,tan C=-1. 因为0°<C<180°,所以C=135°.(2)在△ABC 中,A=15°,C=135°,则B=180°-A-C=30°.由正弦定理sin BC A =sin CAB =sin ABC ,得sin15BC o =°sin30CA=2=2,故BC=2sin 15°=2sin(45°-30°)=2(sin 45°cos 30°-cos 45°sin 30°)=6-2 2,CA=2sin 30°=1.所以△ABC的周长为AB+BC+CA=2+1+6-22=2622++.平面向量与解三角形综合例3(2016·无锡期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量a=(sin B-sin C,sin C-sin A),b=(sin B+sin C,sin A),且a⊥b.(1)求角B的大小;(2)若b=c·cos A,△ABC的外接圆的半径为1,求△ABC的面积.【解答】(1)因为a⊥b,所以a·b=0,即sin2B-sin2C+sin A(sin C-sin A)=0,即sin A sin C=sin2A+sin2C-sin2B,由正弦定理得ac=a2+c2-b2,所以cos B=222-2a c bac+=12.因为B∈(0,π),所以B=π3.(2)因为c·cos A=b,所以bc=222-2b c abc+,即b2=c2-a2,又ac=a2+c2-b2,b=2R sin3,解得a=1,c=2.所以S△ABC =12ac sin B=3.变式(2016·苏锡常镇二调)在△ABC中,内角A,B,C的对边分别是a,b,c,已知向量m=(cos B,cos C),n=(4a-b,c),且m∥n.(1)求cos C的值;(2)若c=3,△ABC的面积S=15,求a,b的值.【解答】(1)因为m∥n,所以c cos B=(4a-b)cos C,由正弦定理,得sin C cos B=(4sin A-sin B)cos C,化简得sin(B+C)=4sin A cos C.因为A+B+C=π,所以sin(B+C)=sin A.又因为A∈(0,π),所以sin A≠0,所以cos C=14.(2)因为C∈(0,π),cos C=14,所以sin C=21-cos C=11-16=15.因为S=12ab sin C=15,所以ab=2.①因为c=3,由余弦定理得3=a2+b2-12ab,所以a2+b2=4,②由①②,得a4-4a2+4=0,从而a2=2,a=2(a=-2舍去),所以a=b=2.【课堂评价】1.(2016·镇江期末)已知向量a=(-2,1),b=(1,0),则|2a+b|=. 【答案】13【解析】因为2a+b=(-3,2),所以|2a+b|=22(-3)2+=13.2.(2016·南京学情调研)已知向量a=(1,2),b=(m,4),且a∥(2a+b),则实数m=.【答案】2【解析】方法一:由题意得a=(1,2),2a+b=(2+m,8),因为a∥(2a+b),所以1×8-(2+m)×2=0,故m=2.方法二:因为a∥(2a+b),所以存在实数λ,使得λa=2a+b,即(λ-2)a=b,所以(λ-2,2λ-4)=(m,4),所以λ-2=m且2λ-4=4,解得λ=4,m=2.3.(2016·南京、盐城一模)在△ABC中,设a,b,c分别为内角A,B,C的对边,若a=5,A=π4,cos B=35,则c=.【答案】7【解析】因为cos B=35,所以B∈π2⎛⎫⎪⎝⎭,,从而sin B=45,所以sin C=sin(A+B)=sinA cos B+cos A sin B=2×35+2×45=72,又由正弦定理得sinaA=sincC,即52 =72c,解得c=7.4.(2016·全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=.(第4题)【答案】-10【解析】如图,作AD ⊥BC交BC 于点D ,设BC=3,则AD=BD=1,AB=2,AC=5.由余弦定理得32=(2)2+(5)2-2×2×5×cos A ,解得cos A=-10.5.(2016·南通一调)已知在边长为6的正三角形ABC 中,BD u u u r =12BC u u u r ,AE u u u r=13AC u u u r ,AD 与BE 交于点P ,则PB u u u r ·PD u u ur 的值为 .(第5题)【答案】274【解析】如图,以BC 为x 轴,AD 为y 轴,建立平面直角坐标系,不妨设B (-3,0),C (3,0),则D (0,0),A (0,33),E (1,23),P 330⎛ ⎝⎭,,所以PB u u u r ·PD u u ur =|PD u u u r |2=233⎝⎭=274.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第3~4页.【检测与评估】第2讲 平面向量、解三角形一、 填空题1.(2016·苏州暑假测试)设x ,y ∈R ,向量a =(x ,1),b =(2,y ),且a +2b =(5,-3),则x+y= .2.(2016·盐城三模)已知向量a ,b 满足a =(4,-3),|b |=1,|a -b |=21,则向量a ,b 的夹角为 .3.(2016·全国卷Ⅱ)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A=45,cos C=513,a=1,则b= .4.(2016·天津卷)在△ABC 中,若AB=13,BC=3,∠C=120°,则AC= .5.(2016·南京三模)如图,在梯形ABCD 中,AB ∥CD ,AB=4,AD=3,CD=2,AM u u u u r =2MD u u u u r .若AC u u u r ·BM u u u u r =-3,则AB u u u r ·AD u u u r = .(第5题)6.(2016·无锡期末)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围为 .7.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若b a +ab =6cos C ,则tan tan C A +tan tan CB = .8.(2016·苏北四市摸底)在△ABC 中,AB=2,AC=3,角A 的平分线与AB 边上的中线交于点O ,若AO u u u r =x AB u u u r+y AC u u u r (x ,y ∈R ),则x+y 的值为 .二、 解答题9.(2016·苏北四市期末)已知在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sin A=35,tan(A-B )=-12.(1)求tan B 的值; (2)若b=5,求c 的值.10.(2016·徐州、连云港、宿迁三检)如图,在梯形ABCD 中,已知AD ∥BC ,AD=1,BD=210,∠CAD=π4,tan ∠ADC=-2.(1)求CD 的长; (2)求△BCD 的面积.(第10题)11.(2016·南京三模)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边.若向量m =(a ,cos A ),向量n =(cos C ,c ),且m ·n =3b cos B.(1)求cos B 的值;(2)若a ,b ,c 成等比数列,求1tan A +1tan C 的值.【检测与评估答案】第2讲 平面向量、解三角形一、 填空题1. -1 【解析】由题意得a +2b =(x+4,1+2y )=(5,-3),所以4512-3x y +=⎧⎨+=⎩,,解得1-2x y =⎧⎨=⎩,,所以x+y=-1.2. π3【解析】设向量a ,b 的夹角为θ,由|a -b|=,得21=(a -b )2=a 2+b 2-2a ·b =25+1-2·5·cos θ,即cos θ=12,所以向量a ,b 的夹角为π3.3. 2113 【解析】因为cos A=45,cos C=513,且A ,C 为三角形的内角,所以sin A=35,sin C=1213,所以sin B=sin(A+C )=sin A cos C+cos A sin C=6365.由正弦定理得sin b B =sin aA ,解得b=2113.4. 1【解析】设AC=x,由余弦定理得cos 120°=29-13 23xx+⋅⋅=-12,即x2+3x-4=0,解得x=1或x=-4(舍去),所以AC=1.5.32【解析】方法一:设ABu u u r=4a,ADu u u r=3b,其中|a|=|b|=1,则DCu u u r=2a,AMu u u u r=2b.由ACu u u r·BMu u u u r=(ADu u u r+DCu u u r)·(BAu u u r+AMu u u u r)=-3,得(3b+2a)·(2b-4a)=-3,化简得a·b=18,所以ABu u u r·ADu u u r=12a·b=32.方法二:建立平面直角坐标系,使得A(0,0),B(4,0),设D(3cos α,3sin α),则C(3cos α+2,3sin α),M(2cos α,2sin α).由ACu u u r·BMu u u u r=-3,得(3cos α+2,3sin α)·(2cos α-4,2sin α)=-3,化简得cos α=18,所以ABu u u r·ADu u u r=12cos α=32.6.23⎛⎤⎥⎝⎦,【解析】如图,设α=ABu u u r,β=ACu u u r,则β-α=BCu u u r,∠ABC=60°,设α与β的夹角为θ,则0°<θ<120°,由正弦定理可得°||sin(120-)θα=°||sin60β,所以|α|=233sin(120°-θ).因为0°<θ<120°,所以0°<120°-θ<120°,所以0<sin(120°-θ)≤1,所以0<|α|≤23.(第6题)7. 4 【解析】b a +ab =6cos C ⇒6ab cos C=a 2+b 2⇒3(a 2+b 2-c 2)=a 2+b 2⇒a 2+b 2=232c ,所以tan tan C A +tan tan CB =sin cosC C ·cos sin sin cos sin sin B A B A A B +=sin cos C C ·sin()sin sin A B A B +=1cos C ·2sin sin sin C A B =2222-aba b c +·2c ab =22223-2c c c=2222c c =4.8. 58 【解析】如图,在△ABC 中,AD 为∠BAC 的平分线,CE 为AB 边上的中线,且AD ∩CE=O.在△AEO 中,由正弦定理得sin AE AOE ∠=sin EOEAO ∠.在△ACO 中,由正弦定理得sin AC AOC ∠=sin COCAO ∠,两式相除得AE AC =EO OC .因为AE=12AB=1,AC=3,所以EO OC =13,所以CO u u u r =3OE u u u r ,即AO u u u r -AC u u u r =3(AE u u u r -AO u u ur ),即4AO u u u r =3AE u u u r+AC u u u r ,所以4AO u u u r =32AB u u ur +AC u u u r ,从而AO u u u r =38AB u u u r +14AC u u u r .因为AO u u u r =x AB u u u r+y ACu u u r ,所以x=38,y=14,所以x+y=58.(第8题)二、 解答题9. (1) 方法一:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tan A=sin cos A A =34.由tan(A-B )=tan -tan 1tan ?tan A B A B +=-12,得tan B=2.方法二:在锐角三角形ABC 中,由sin A=35,得cos A=21-sin A =45,所以tanA=sin cos A A =34.又因为tan(A-B )=-12,所以tan B=tan[A-(A-B )]=tan -tan(-)1tan tan(-)A A B A A B +=31--42311-42⎛⎫ ⎪⎝⎭⎛⎫+⨯ ⎪⎝⎭=2. (2) 由(1)知tan B=2,得sin B=255,cos B=55, 所以sin C=sin(A+B )=sin A cos B+cos A sin B=11525,由正弦定理sin bB =sin cC ,得c=sin sin b C B =112.10. (1) 因为tan ∠ADC=-2,且∠ADC ∈(0,π),所以sin ∠ADC=255,cos ∠ADC=-55. 所以sin ∠ACD=sinππ--4ADC ∠⎛⎫ ⎪⎝⎭ =sin ∠ADC+π4=sin ∠ADC ·cos π4+cos ∠ADC ·sin π4=,在△ADC 中,由正弦定理得CD=·sin sin AD DACACD ∠∠=.(2) 因为AD ∥BC ,所以cos ∠BCD=-cos ∠ADC=,sin ∠BCD=sin ∠ADC=.在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos ∠BCD , 即BC 2-2BC-35=0,解得BC=7,所以S △BCD =12BC ·CD ·sin ∠BCD=12×7=7.11. (1) 因为m ·n =3b cos B ,所以a cos C+c cos A=3b cos B. 由正弦定理得sin A cos C+sin C cos A=3sin B cos B , 所以sin(A+C )=3sin B cos B , 所以sin B=3sin B cos B.因为B 是△ABC 的内角,所以sin B ≠0,所以cos B=13.(2) 因为a ,b ,c 成等比数列,所以b 2=ac. 由正弦定理得sin 2B=sin A ·sin C.因为cos B=13,B 是△ABC 的内角,所以sinB=,又1tan A +1tan C =cos sin A A +cos sin C C =cos ?sin sin ?cos sin sin A C A CA C +⋅ =sin()sin sin A C A C +⋅=sin sin sin B A C=2sin sin B B =1sin B=.。
第二篇 专题一 第2讲一、选择题1.已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( A ) A .53B .23C .13D .59【解析】由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0, 所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53. 2.若sin α=-35,且a ∈⎝⎛⎭⎫π,3π2,则1-tanα21+tanα2=( D ) A .12B .-12C .2D .-2【解析】sin α=-35,可得2sin α2cosα2sin 2α2+cos 2α2=-35,所以2tanα2tan 2α2+1=-35,解得tan α2=-3或tan α2=-13,又a ∈⎝⎛⎭⎫π,3π2,∴α2∈⎝⎛⎭⎫π2,3π4, ∴tan α2=-3,故1-tanα21+tanα2=1-(-3)1+(-3)=-2.故选D.3.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知b =2,且2a cos B -a cos C =c cos A +a -b ,则△ABC 面积的最大值是( B )A .32B .3C .2D .5【解析】由正弦定理得:2sin A cos B -sin A cos C =sin C cos A +sin A -sin B , 所以2sin A cos B =sin (A +C )+sin A -sin B =sin A , 又由0<A <π,可得sin A >0, 则有cos B =12,又0<B <π,则sin B =32, 由余弦定理得:cos B =a 2+c 2-b 22ac =12,所以a 2+c 2=ac +4≥2ac ,所以ac ≤4(当且仅当a =c =2时等号成立), 则S △ABC =12ac sin B ≤12×4×32=3,故选B.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A =2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为( D )A .1+7B .2+7C .4+7D .5+7【解析】在△ABC 中,a cos B +b cos A =2c cos C , 则sin A cos B +sin B cos A =2sin C cos C , 即sin (A +B )=2sin C cos C ,∵sin (A +B )=sin C ≠0,∴cos C =12,∴C =π3,由余弦定理可得,a 2+b 2-c 2=ab , 即(a +b )2-3ab =c 2=7,又S =12ab sin C =34ab =332,∴ab =6,∴(a +b )2=7+3ab =25,即a +b =5, ∴△ABC 的周长为a +b +c =5+7.5.设α,β为锐角,且2α-β=π2,tan αcos βx +sin β=1,则x =( A )A .1B .2C .3D .2【解析】∵2α-β=π2,∴β=2α-π2,∴tan αcos ⎝⎛⎭⎫2α-π2x +sin ⎝⎛⎭⎫2α-π2=1,即tan αsin 2αx -cos 2α=1,∴x =cos 2α+tan αsin 2α=cos 2α+2sin 2α=1,故选A.6.已知△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且(a -b )·sin A =c sin C -b sin B ,若△ABC 的面积为33,则c 的最小值为( A )A .23B .43C .2D .4【解析】∵(a -b )·sin A =c sin C -b sin B ,∴a 2-ab =c 2-b 2,∴a 2+b 2-c 2=ab , ∴cos C =a 2+b 2-c 22ab =12,∵0<C <π, ∴C =π3,∵S =12ab sin C =33,∴ab =12,∵c 2=a 2+b 2-ab ≥2ab -ab =12(当且仅当a =b =23时取等号), ∴c ≥23,∴c 的最小值为23, 故选A.7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =23,c =3,A +3C =π,则下列结论正确的是( D )A .cos C =63B .sin B =23C .a =3D .S △ABC =2【解析】因为A +3C =π,A +B +C =π,所以B =2C .由正弦定理b sin B =c sin C ,得23sin 2C =3sin C ,即232sin C cos C =3sin C ,所以cos C =33,故A 错误;因为cos C =33,所以sin C =63,所以sin B =sin 2C =2sin C cos C =2×63×33=223,故B 错误;因为cos B =cos 2C =2cos 2C -1=-13,所以sin A =sin (B +C )=sin B cos C +cos B sin C =223×33+⎝⎛⎭⎫-13×63=69,则cos A =539,所以a 2=b 2+c 2-2bc cos A =(23)2+32-2×23×3×539=1,所以a =1,故C 错误;S △ABC =12bc sin A =12×23×3×69=2,故D 正确.8.已知f (x )=12(1+cos 2x )sin 2x (x ∈R ),则下面结论不正确的是( D )A .f (x )的最小正周期T =π2B .f (x )是偶函数C .f (x )的最大值为14D .f (x )的最小正周期T =π【解析】因为f (x )=14(1+cos2x )(1-cos 2x )=14(1-cos 22x )=14sin 22x =18(1-cos4x ),∵f (-x )=f (x ),∴T =2π4=π2,f (x )的最大值为18×2=14.故选D.二、填空题9.已知tan ⎝⎛⎭⎫π4+α=12,则sin 2α-cos 2α1+cos2α=__-56__. 【解析】因为tan ⎝⎛⎭⎫π4+α=12,所以tan π4+tan α1-tan π4tan α=12, 即1+tan α1-tan α=12,解得tan α=-13,所以sin 2α-cos 2α1+cos2α=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.10.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b +a sin C =2a sin B -csin B -sin A ,则A=__π4__.【解析】由正弦定理a sin A =b sin B =c sin C, 得b +ac =2a sin B -cb -a, 整理得b 2-a 2=2ac sin B -c 2, 即b 2+c 2-a 2=2ac sin B =2bc sin A , 由余弦定理得,b 2+c 2-a 2=2bc cos A , ∴2bc cos A =2bc sin A ,即cos A =sin A , ∴tan A =1,∴A =π4.11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =a ⎝⎛⎭⎫cos C +33sin C ,a =2,c =263,则角C =__π4__.【解析】由b =a ⎝⎛⎭⎫cos C +33sin C ,得sin B =sin A ⎝⎛⎭⎫cos C +33sin C .因为sin B =sin [π-(A +C )]=sin (A +C ),所以sin A cos C +cos A sin C =sin A cos C +33sin A sin C (sin C ≠0),所以cos A =33sin A ,所以tan A = 3.因为0<A <π,所以A =π3.由正弦定理a sin A =csin C,得sin C =22.因为0<C <2π3,所以C =π4. 12.(2022·山东省师范大学附中月考)在△ABC 中,设角A ,B ,C 对应的边分别为a ,b ,c ,记△ABC 的面积为S ,且4a 2=b 2+2c 2,则S a 2的最大值为6.【解析】由题意知,4a 2=b 2+2c 2⇒b 2=4a 2-2c 2=a 2+c 2-2ac cos B , 整理,得2ac cos B =-3a 2+3c 2⇒cos B =3(c 2-a 2)2ac, 因为⎝⎛⎭⎫S a 22=⎝ ⎛⎭⎪⎫12ac sin B a 22=⎝⎛⎭⎫c sin B 2a 2=c 2(1-cos 2B )4a 2, 代入cos B =3(c 2-a 2)2ac,整理得⎝⎛⎭⎫S a 22=-116⎝⎛⎭⎫9×c 4a4-22×c 2a 2+9,令t =c 2a 2,则⎝⎛⎭⎫S a 22=-116(9t 2-22t +9)=-116⎝⎛⎭⎫3t -1132+1036,所以⎝⎛⎭⎫S a 22≤1036,所以S a 2≤106,故S a 2的最大值为106. 三、解答题13.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3sin C cos A =22sin A sin B ,22b =3c .(1)求A ;(2)若D 是AB 边的中点,CD =5,求△ABC 的面积. 【解析】(1)因为3sin C cos A =22sin A sin B , 由正弦定理,可得3c cos A =22b sin A . 结合22b =3c ,则有sin A =cos A ,所以tan A =1, 又因为A ∈⎝⎛⎭⎫0,π2,所以A =π4. (2)因为22b =3c ,D 是AB 边的中点,所以AD =2b 3. 在△ACD 中,由余弦定理得CD 2=AD 2+b 2-2AD ·b cos A ,即(5)2=⎝⎛⎭⎫2b 32+b 2-2·2b 3·b cos π4, 解得b =3或b =-3(舍去), 则c =2 2.故△ABC 的面积S =12bc sin A =12×3×22×22=3.。
(一)三角函数、解三角形专练
1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C =c (3cos B -cos A ).
(1)求
sin B
sin A
的值; (2)若c =7a ,求角C 的大小.
2.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b ,1),n =(2a -c ,cos C ),且m ∥n .
(1)若b 2
=ac ,试判断△ABC 的形状; (2)求y =1-2cos 2A
1+tan A
的值域.
3.已知函数f (x )=2sin x cos x +23cos 2
x -3. (1)求函数y =f (x )的最小正周期和单调递减区间;
(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中a =7,若锐角A 满足
f ⎝ ⎛⎭
⎪⎫A 2-π6=3,且sin B +sin C =13314,求△ABC 的面积.
4.如图,在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,
BD =2AD .
(1)求AD 的长; (2)求△ABC 的面积.
答 案
1.解:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ),
∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B ,
即sin(A +C )=3sin(C +B ),
即sin B =3sin A ,∴
sin B
sin A
=3. (2)由(1)知b =3a ,∵c =7a ,
∴cos C =
a2+b2-c22ab =a2+9a2-7a22×a×3a =3a26a2=1
2
,
∵C ∈(0,π),∴C =π
3
.
2.解:(1)由已知,m ∥n ,则2b cos C =2a -c ,
由正弦定理,得2sin B cos C =2sin(B +C )-sin C , 即2sin B cos C =2sin B cos C +2cos B sin C -sin C .
在△ABC 中,sin C ≠0,因而2cos B =1,则B =π
3
.
又b 2=ac ,b 2=a 2+c 2
-2ac cos B ,
因而ac =a 2+c 2-2ac cos π3
,即(a -c )2
=0,
所以a =c ,△ABC 为等边三角形.
(2)y =1-
2cos 2A 1+tan A
=1-
2(cos2A -sin2A )
1+
sin A cos A
=1-2cos A (cos A -sin A )
=sin 2A -cos 2A
=2sin ⎝ ⎛⎭⎪⎫2A -π4,其中A ∈⎝ ⎛⎭
⎪⎫0,2π3.
因而所求函数的值域为(-1,2 ].
3.解:(1)f (x )=2sin x cos x +23cos 2
x -3=sin 2x +3cos 2x =2sin ⎝ ⎛⎭
⎪⎫2x +π3,
因此f (x )的最小正周期为T =
2π
2
=π. 由2k π+π2≤2x +π3≤2k π+3π
2
(k ∈Z ),
得x ∈⎣⎢⎡⎦
⎥⎤k π+π12
,k π+7π12(k ∈Z ),
所以f (x )的单调递减区间为⎣
⎢⎡⎦
⎥⎤k π+π12
,k π+7π12(k ∈Z ).
(2)由f ⎝ ⎛⎭
⎪⎫A 2
-π6=2sin ⎣⎢⎡⎦
⎥⎤2⎝ ⎛⎭⎪⎫A 2-π6+π3=2sin A =3,。