人教版七年级下数学8.3实际问题与二元一次方程组同步练习(无答案)
- 格式:docx
- 大小:95.10 KB
- 文档页数:10
人教版七年级下册数学8.3实际问题与二元一次方程组(销售问题)训练1.在水果店里,小李买了5kg苹果、3kg梨,老板少要1元,收了90元;老王买了12kg苹果、6kg梨,老板按九折收钱,收了189元,该店苹果和梨的单价各是多少元?2.七(3)班的生活委员第一学期为班级买了3个垃圾桶和5个拖把,共用了55元,第二学期买了4个垃圾桶和6个拖把,其中垃圾桶价格是第一学期价格的8折,拖把价格不变,共用了64元.求第一学期购买垃圾桶和拖把的单价分别是多少?3.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?4.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?5.某彩电厂为响应国家家电下乡号召,计划生产A、B两种型号的彩电,两种型号的彩电生产成本和售价分别为:A型每台成本800元,售价1000元,B型每台成本1000元,售价1300元,经预算,彩电厂若投入成本64000元,两种彩电全部出售后,可获利18000元.(1)请问彩电厂生产A、B两种型号的彩电各多少台?(2)彩电厂计划将这两种彩电售出后获得的全部利润购买两种物品:体育器材和实验设备支援某希望小学.若体育器材每套6000元,实验设备每套3000元,把钱全部用尽且两种物品都购买的情况下,请求出所有的购买方案.6.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料,该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?7.张伯用100元钱从蔬菜批发市场批发了西红柿和豆角共70千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:(1)张伯当天批发西红柿和豆角各多少千克?(2)张伯当天卖完这些西红柿和豆角能赚多少钱?8.某电器商场销售进价分别为120元,190元的A,B两种型号的电风扇,如下表所示是近两周的销售情况:(1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进两种型号的电风扇共120台,并且全部销售完;该商场能否实现这120台电风扇的利润为6800元的目标?若能,请给出相应的采购方案,若不能,请说明理由.9.一个电器超市购进A、B两种型号的电风扇进行销售,已知购进2台A型号和3台B型号共用910元,购进3台A型号比购进2台B型号多用260元.(1)求A、B两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A、B两种型号的电风扇各多少台?10.东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?11.为响应政府“阳光体育”号召,西湖集团准备投入一部分资金,在西湖公园修建一批室外的乒乓球场和羽毛球场供市民免费使用.已知修建1个乒乓球场和2个羽毛球场共需要30万元,修建2个乒乓球场和5个羽毛球场共需要71万元.(1)问修建1个乒乓球场和1个羽毛球场分别需要多少万元?(2)西湖集团计划修建这样的乒乓球场和羽毛球场共11个,且投入资金刚好为100万元,问可以修建多少个羽毛球场?。
绝密★启用前8.3 实际问题与二元一次方程组班级:姓名:一、单选题1.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy y-=⎧⎨-=⎩2.某校啦啦操运动员进行分组训练,若每组4人,余2人,若每组5人,则缺3人,设运动员人数为x人,组数为y,则根据题意所列方程组为()A.4253y xx x=+⎧⎨+=⎩B.4253y xy x=+⎧⎨-=⎩C.4253y xy x=-⎧⎨=+⎩D.4253y xy x=-⎧⎨=-⎩3.小明的外婆送来满满一篮鸡蛋,这只篮子最多只能装55只鸡蛋,小明3只一数,结果剩下1只,但忘了数了多少次,只好重数,他5只一数剩下2只,可又忘了数了多少次.他准备再数时,妈妈笑着说“不用数了,共有()只.A.54 B.52 C.48 D.504.某学校的篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,设篮球有x个,足球有y个,可得方程组()A.32249x yy x=+⎧⎨-=⎩B.32249x yx y=+⎧⎨-=⎩C.23249x yx y=-⎧⎨=+⎩D.32249x yx y=-⎧⎨-=⎩5.某班同学参加运土劳动,一部分同学抬土,另一部分同学挑土.已知全班共用土筐64个,扁担41根,求抬土与挑土的各有多少人?如果设抬土的同学有x人,挑土的同学有y人,那么可得到的方程组应为()A.2642412yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2642412xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2642241xyx y⎧+=⎪⎨⎪+=⎩D.264241x yx y+=⎧⎨+=⎩6.甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒就能追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙.若甲、乙每秒分别跑x y、米,则列出方程组应是()A.5105442x yx y+=⎧⎨-=⎩B.5510424x yx y=+⎧⎨-=⎩C.()551042x yx y y-=⎧⎨-=⎩D.()()51042x yx y⎧-=⎪⎨-=⎪⎩7.某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种8.如图,在长为12cm,宽为9cm的长方形空地上,沿平行于长方形各边的方向分割出三个形状、大小完全相同的小长方形花圃,则其中一个小长方形花圃的周长是()A.10 B.12 C.16 D.14二、填空题9.如图1,在第一个天平上,物块A的质量等于物块B加上物块C的质量;如图2,在第二个天平上,物块A加上物块B的质量等于3个物块C的质量.已知物块A的质量为10g.请你判断:1个物块B的质量是____________g.10.A、B两地相距20千米,甲乙两人分别从A、B两地相向而行,2小时后在途中相遇,然后甲立即返回A地,乙继续向A地走,当甲回到A地时,乙距离A地还有2千米,则甲的速度为____千米/时,乙的速度为_____千米/时.11.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________12.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等。
2020-2021学年初中数学人教版七年级下册第八章二元一次方程组8.3实际问题与二元一次方程组课后练习一、单选题1.我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A. {x +y =510x +3y =30B. {x +y =53x +10y =30C. {x +y =30x 10+y 3=5D. {x +y =30x 3+y 10=5 2.《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x 元,一亩坏田为y 元,根据题意列方程组得( )A. {x +y =100300x +7500y =10000B. {x +y =100300x +5007y =10000C. {x +y =1007500x +300y =10000D. {x +y =1005007x +300y =10000 3.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人,设全班有学生 x 人,分成 y 个小组,则可得到方程组为( )A. {7x +4=y 8x −3=yB. {7y =x +48x +3=xC. {7y =x −48y =x +3D. {7y =x +4,8y =x +34.王老师的数学课采用小组合作学习方式,把班上40名学生分成若干小组,如果要求每小组只能是5人或6人,则有几种分组方案A. 4B. 3C. 2D. 15.李老师一次购买单价分别为5元/瓶、8元/瓶的消毒液共用了90元,购买两种(两种都买)消毒液的数量和最多是( )A. 18瓶B. 17瓶C. 16瓶D. 15瓶6.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是( )A. 甲B. 乙C. 丙D. 丁7.在平面直角坐标系中,我们把横纵坐标均为整数的点称为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.例如:图中 △ABC 的与四边形 DEFG 均为格点多边形.格点多边形的面积记为 S ,其内部的格点数记为 N ,边界上的格点记为 L ,已知格点多边形的面积可表示为 S =N +aL +b ( a , b 为常数),若某格点多边形对应的 N =14 , L =7 ,则 S = ( )A. 16.5B. 17C. 17.5D. 188.已知关于x ,y 的方程组 {x +3y =4−a x −y =3a,其中 −3≤a ≤1 ,给出下列结论: ① {x =5y =−1是方程组的解; ②当 a =−2 时,x ,y 的值互为相反数;③当 a =1 时,方程组的解也是方程 x +y =4−a 的解;其中正确的是( )A. ①②B. ①③C. ②③D. 无法确定9.小明、小颖、小亮玩飞镖游戏,他们每人投靶 5 次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分 21 分,小亮得分 17 分,则小颖得分为( )A. 19 分B. 20 分C. 21 分D. 22 分10.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”这一章里,二元一次方程组是由算筹(算筹是中国古代用来记数、列式和进行演算的一种工具)来记录的.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示两位数时,个位用立式,十位用卧式.如图(1),从左到右列出的算筹数分别表示 x 、 y 的系数与相应的常数项,根据图(1)可列出方程组 {3x +y =177x +4y =23,则根据图(2)列出的方程组是( )A. {x +5y =32x +2y =14B. {x +5y =112x +4y =9C. {x +5y =212x +2y =9D. {x +5y =12x +2y =911.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()个球.A. 5B. 6C. 7D. 812.根据图中提供的信息,可知每个杯子的价格是()A. 51元B. 35元C. 8元D. 7.5元二、填空题13.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”其大意是:“今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?”设甲的钱数为x,乙的钱数为y,根据题意,可列方程组为________.14.两根铁棒直立于桶底水平的木桶中,在木桶中加入水后,一根露出水面的长度是它的总长度的13,另一根露出水面的长度是它的总长度的15,两根铁棒长度之和为220cm,此时木桶中水的深度是________ cm.15.关于x,y的方程组{3x−5y=2a2x+7y=a−18,有下列三种说法:其中说法正确的有________.(填序号)①当a=8时,x,y互为相反数;②x,y都是负整数的解只有1组;③ {x=21y=−3是该方程组的解.16.声音在空气中的传播速度v(m/s)随温度t(℃)的变化而变化,且v=at+b(a,b是常数).若当t=10时,v=336;当t=20时,v=342.则当v=324时,t=________.17.“众志成城,抗击疫情”,帅童到药店购买了两种物品,分别是单价为20元一盒的医用口罩和单价为10元一瓶的75%酒精,共花50元,则帅童购买的口罩盒数是________18.小慧带着妈妈给的现金去蛋糕店买蛋糕。
人教版七年级下学期8.3实际问题与二元一次方程组同步测试一、选择题1.既是方程23x y-=的解,又是方程3410x y+=的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.43xy=⎧⎨=⎩D.45xy=-⎧⎨=-⎩2.甲、乙两数这和为16,甲数的3倍等于乙数的5倍,若设甲数为x,乙数为y,则方程组(1)1635x yx y+=⎧⎨=⎩,;(2)1653x yx y+=⎧⎨=⎩,;(3)16530x yy x-=⎧⎨-=⎩,;(4)1653y xx y-=⎧⎪⎨=⎪⎩,中,正确的有()A.1组B.2组C.3组D.4组3.某校150名学生参加竞赛,平均分为55分,其中及格学生平均分为77分,不及格学生平均分为47分,则不及格学生的人数为()A.49B.101C.40D.1104.某个体商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,则这家商店在这次买卖中() A.不赔不赚 B.赚9元 C.赔8元 D.赔18元5.甲、乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,•那么这艘轮船在静水中的航速与水速分别是()A.24千米/时,8千米/时 B.22.5千米/时,2.5千米/时C.18千米/时,24千米/时 D.12.5千米/时,1.5千米/时6.今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x岁,妹妹y岁,依题意,得到的方程组是()A.23(2),2x yx y+=+⎧⎨=⎩B.23(2),2x yx y-=-⎧⎨=⎩C.22(2),3x yx y+=+⎧⎨=⎩D.23(2),3x yx y-=-⎧⎨=⎩7.某文具店出售单价分别为120元和80•元的两种纪念册,•两种纪念册每册都有30%的利润.某人共有1080元钱,欲买一定数量的某一种纪念册,若买单价为120•元的纪念册则钱不够,但经理知情后如数付给了他这种纪念册,结果文具店获利和卖出同数量的单价为80元的纪念册获利一样多,那么这个人共买纪念册()A.8册 B.9册 C.10册 D.11册8.某校初三(2)班40名同学为“希望工程”捐款,•共捐款100元.捐款情况如下表:表格中捐款2若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A .27,2366x y x y +=⎧⎨+=⎩B .27,23100x y x y +=⎧⎨+=⎩C .27,3266x y x y +=⎧⎨+=⎩D .27,32100x y x y +=⎧⎨+=⎩9.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.•一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )A .2场B .5场C .7场 C .9场10.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,•求两种球各有多少个?若设篮球有x 个,排球有y 个,依题意,得到的方程组是( )A .23,32x y x y =-⎧⎨=⎩B .23,32x y x y =+⎧⎨=⎩C .23,23x y x y =-⎧⎨=⎩D .23,23x y x y =+⎧⎨=⎩二、填空题11.某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了 枚,80分的邮票买了 枚。
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.某校教师举行茶话会,若每桌坐12人,则空出一张桌子;若每桌坐10人,还有10人不能就坐,问:该校有多少名教师?共准备了多少张桌子?若设该校的教师有x人,共准备了y张桌子,则根据题意可列出方程组()A.B.C.D.2.把若干只鸡兔关在同一个笼子里,从上面数,有11个头;从下面数,有32条腿.则笼中的兔子共有()A.3只B.4只C.5只D.6只3.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为()A.4 B.5 C.6 D.74.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是()A.36 B.25 C.61 D.165.如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm6.我国民间流传着许多趣味算题,他们多以顺口溜的形式表达,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?()A.3个老头4个梨B.4个老头3个梨C.5个老头6个梨D.7个老头8个梨7.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,39.某同学上学时步行,回家时坐车,路上一共用90min,若往返都坐车,全部行程只需要30min,若往返都步行,全部行程需要(假定步行、坐车的平均速度不变)()A.100 min B.120 min C.150 min D.160 min10.已知某三种图书的价格分别为10元,15元,20元.某学校计划恰好用500元购买上述图书30本,每种图书至少一本,则不同的购书方案有()种.A.10 B.9 C.12 D.1111.某果农要用绳子捆扎甘蔗,有三种规格的绳子可以使用:长绳子1米,每根能捆7根甘蔗;中等长度的绳子0.6米,每根能捆5根甘蔗;短绳子0.3米,每根能捆3根甘蔗.果农最后捆扎好了23根甘蔗,则果农总共最少使用多少米的绳子()A.2.9 B.2.7 C.2.4 D.2.112.某体育文具用品店老板两次购进排球,篮球的个数和费用如表:已知店老板两次购进排球,篮球的单价一样,且一个排球和一个篮球的总价为100元,则b 的值是()A.224 B.276 C.280 D.332二.填空题(共5小题)13.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.14.某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价为元,售价为元.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为元.三.解答题(共5小题)18.“春蕾”爱心社给甲、乙两所学校捐赠图书共5000本,已知捐给甲校的图书比捐给乙校的2倍少700本,求捐给甲、乙学校图书各多少本?19.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.20.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.21.某工厂去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?22.滴滴快车是一种便捷的出行工具,计价规则如表:小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的三分之一少2分钟,问他俩谁先出发?先出发多少分钟?参考答案1-5:ACBDB 6-10:ABACB 11-12:CB13\、14、200;30015、516、1017、4018、设捐给甲校图书x本,捐给乙校图书y本,依题意,得:解得:答:捐给甲校图书3100本,捐给乙校图书1900本.19、设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.20、买鹅的人数有9人,鹅的价格为70文21、设去年总产值为x万元,总支出为y万元,根据题意得:解得:答:去年的总产值、总支出各是1800万元、1500万元.22、:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x-y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为3(分钟),∴小明比小亮先出发,先出发的时间=15-6-3=6(分钟),答:明比小亮先出发,先出发6分钟。
实际问题与二元一次方程组同步测试试题(一)一.选择题1.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把6m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.2种B.3种C.4种D.5种2.“十一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.3.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种4.学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种5.《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为()A.B.C.D.6.小方、小程两人相距6km,两人同时出发相向而行,1h相遇;同时出发同向而行,小方3h可追上小程.两人的平均速度各是多少?若设小方的平均速度是xkm/h,小程的平均速度是ykm/h,则下列方程组不正确的是()A.B.C.D.7.疫情期间,小明要用16元钱买A、B两种型号的口罩,两种型号的口罩必须都买,16元全部用完.若A型口罩每个3元,B型每个2元,则小明的购买方案有()A.2种B.3种C.4种D.5种8.班级为了奖励优秀学生花100元买甲乙两种奖品共24件,其中甲种奖品每件5元,乙种奖品每件3元,若设购买甲种奖品x件,乙种奖品y件,则所列方程组正确的是()A.B.C.D.9.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的三分之二,那么乙也共有钱50.问甲、乙两人共带了多少钱?设甲带钱为x,乙带钱为y,根据题意,可列方程组为()A.B.C.D.10.校运动会期间,甲、乙、丙、丁四位班长一起到学校小卖部购买相同单价的棒冰和相同单价的矿泉水,四位班长购买的数量及总价如表所示,若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18272415矿泉水(瓶)30454025总价(元)396585528330A.甲B.乙C.丙D.丁二.填空题11.甲、乙两厂生产同一种水泥,都计划把全年的水泥销往开州,这样两厂的水泥就能占有开州市场同类水泥的.然而实际情况并不理想,甲厂仅有的水泥、乙厂仅有的水泥销到了开州,两厂的水泥仅占了开州市场同类水泥的,则甲厂该水泥的年产量与乙厂该水泥的年产量的比为.12.“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货A和B,已知A和B的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额.于是小明又购买了A、B各一件,这样就能参加超市的促销活动,最后刚好付款1305元.小明经仔细计算发现前面粗略测算时把A和B的单价看反了,那么小明实际总共买了件年货.13.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是.14.在国新办4月2日举行的疫情期间中国海外留学人员安全问题新闻发布会上,外交部副部长马朝旭透露,3月份全球疫情加速扩散后,中国已经安排A与B两种型号的包机9架次,从伊朗、意大利等国接回包括留学人员在内的中国公民1457人.其中A型包机每架次坐满158人,B型包机每架次坐满163人,则A型包机有架,B型包机有架.15.在如图所示的广义三阶幻方中分别给出了3个数,试分别求出x,y的值为.三.解答题16.因“抗击疫情”需要,学校决定再次购进一批医用一次性口罩及KN95口罩共1000只,已知1只医用一次性口罩和10只KN95口罩共需113元;3只医用一次性口罩和5只KN95口罩共需64元.问:一只医用一次性口罩和一只KN95口罩的售价分别是多少元?17.安化风景优美,物产丰富,一外地游客到某特产专营店,准备购买黑茶和豆腐乳两种盒装特产.若购买3盒黑茶和2盒豆腐乳共需450元;购买1盒黑茶和3盒豆腐乳共需255元.(1)请分别求出每盒黑茶和每盒豆腐乳价格;(2)该游客购买了4盒黑茶和2盒豆腐乳,共需多少元?18.我国古代算书《四元玉鉴》记载“二果问价”问题:“九百九十九文钱,甜果苦果买一千;甜果九个十一文,苦果七个四文钱.试问甜苦果几个,又问各该几个钱?”其大意是:“现有九百九十九文钱,共买甜果和苦果一千个;九个甜果十一文钱,七个苦果四文钱.请问甜果和苦果各买多少个,各花多少文钱?”(1)每个甜果文钱,每个苦果文钱.(2)求甜果和苦果各买多少个,各花多少文钱?19.某水果店5月份购进甲、乙两种水果共花费1720元,其中甲种水果13元/千克,乙种水果16元千克;6月份,这两种水果的进价上调为:甲种水果15元/千克,乙种水果20元/千克,该店6月份购进这两种水果的数量与5月份都相同,却多支付货款280元.(1)求该店6月份购进甲、乙两种水果分别是多少千克?(2)该店6月份甲种水果售价为20元/千克,乙种水果售价为26元/千克,在甲种水果出售55千克、乙种水果全部售完后,商店决定对甲种水果打折处理,在售完全部水果后,获得的总利润为400元,问甲种水果打几折?参考答案与试题解析一.选择题1.【解答】解:设截成2m的彩绳x根,1m的彩绳y根,由题意可得2x+y=6,∵不造成浪费,∴x,y是正整数,∴或或或,则共有4种不同截法,故选:C.2.【解答】解:依题意,得:.故选:A.3.【解答】解:设可以购买x支康乃馨,y支百合,依题意,得:2x+3y=30,∴y=10﹣x.∵x,y均为正整数,∴,,,,∴小明有4种购买方案.故选:B.4.【解答】解:设购买了A种奖品x个,B种奖品y个,根据题意得:15x+25y=200,化简整理得:3x+5y=40,得y=8﹣x,∵x,y为正整数,∴,,∴有2种购买方案:方案1:购买了A种奖品5个,B种奖品5个;方案2:购买了A种奖品10个,B种奖品2个.故选:A.5.【解答】解:依题意得:,故选:A.6.【解答】解:依题意,得:,即或.故选:C.7.【解答】解:设可以购买x个A型口罩,y个B型口罩,依题意,得:3x+2y=16,∴y=8﹣x.又∵x,y均为正整数,∴,,∴小明有2种购买方案.故选:A.8.【解答】解:依题意,得:.故选:B.9.【解答】解:依题意,得:.故选:B.10.【解答】解:设红豆棒冰的单价为x元,矿泉水的单价为y元,依题意,得:18x+30y=396,∴3x+5y=66,∴27x+45y=9(3x+5y)=594,24x+40y=8(3x+5y)=528,15x+25y=5(3x+5y)=330,∴乙的总价算错了.故选:B.二.填空题(共5小题)11.【解答】解:设甲厂该水泥的年产量为a,乙厂该水泥的年产量b,(a+b)÷=(a+b)÷,解得,,即甲厂该水泥的年产量与乙厂该水泥的年产量的比为1:3,故答案为:1:3.12.【解答】解:1305+99=1404,设A的单价为x元,共买a件;B的单价为y元,共买b件,由题意得:,①+②得:(a+b﹣1)(x+y)=2709,∵2709=3×3×7×43,且已知A和B的单价总和是100到200之间的整数,∴x+y=3×43=129(元),∴a+b﹣1=2709÷129=21,∴a+b=22(件).故答案为:22.13.【解答】解:设1颗草莓味糖果m元,1颗牛奶味糖果n元,由题意得:10(0.4+m+n)×(1+30%)=23.4,解得:m+n=1.4,∴甲种糖果的成本价为:10×(0.4+1.4)=18(元),乙种糖果的成本价为:20×0.4+5(m+n)=8+5×1.4=15(元).设甲种糖果有x袋,乙种糖果有y袋,则:18x×30%+15y×20%=(18x+15y)×24%,解得:=.∴该公司销售甲、乙两种袋装糖果的数量之比是.故答案为:.14.【解答】解:设A型包机有x架,B型包机有y架,依题意,得:,解得:.故答案为:2;7.15.【解答】解:依题意,得:,解得:.故答案为:﹣1,2.三.解答题(共4小题)16.【解答】解:设一只医用一次性口罩售价为x元,一只KN95口罩的售价为y元,依题意,得:,解得:.答:一只医用一次性口罩售价为3元,一只KN95口罩的售价为11元.17.【解答】解:(1)设每盒黑茶x元,每盒豆腐乳y元,由题意得,,解得,答:每盒黑茶120元,每盒豆腐乳45元;(2)把每盒黑茶和豆腐乳的价格分别为120元,45元代入,可得:4×120+2×45=570(元),答:该游客购买了4盒黑茶和2盒豆腐乳,共需570元.18.【解答】解:(1)每个甜果的价格=(文),每个苦果的价格=(文),故答案为:,;(2)设甜果买x个,苦果买y个,根据题意,得,解得,∴(文),(文),答:甜果买了657个,花了803文钱,苦果买了343个,花了196文钱.19.【解答】解:(1)设该店6月份购进甲、乙两种水果分别是x千克,y千克,由题意可得,解得:,答:该店6月份购进甲、乙两种水果分别是120千克,10千克;(2)设甲种水果打m折,由题意可得:400=(26﹣20)×10+(20﹣15)×55+(20×﹣15)×(120﹣55),∴m=8,答:甲种水果打8折.。
《8.3实际问题与二元一次方程组》一、选择题(每小题只有一个正确答案)1.在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x名学生,列出方程组为()A. B. C. D.2.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D. 96mm23.甲、乙两人分别从相距40千米的两地同时出发,若同向而行,则5小时后,快者追上慢者;若相向而行,则2小时后,两人相遇,那么快者速度和慢者速度(单位:千米/小时)分别是()A. 14和6B. 24和16C. 28和12D. 30和104.某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A. 50、100B. 50、56C. 56、126D. 100、1265.我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100 匹马恰好拉了 100 片瓦,已知 1 匹大马能拉3 片瓦,3 匹小马能拉 1 片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. B. C. D.6.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x人,分成y个小组,则可得方程组()A.74{83x yx y+=-=B.7y4{83xy x=++=C.7y4{83xy x=-=+D.7y+4{83xy x==+7.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组()A.42{43x yx y+==B.42{34x yx y+==C.42{1134x yx y-==D.42{43y xx y+==二、填空题8.某公司向银行申请了甲 、乙两种贷款,共计68万元,每年需付出8.42万元利息。
实际问题与二元一次方程组分类知能点1 销售和利润问题1.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚70元,•后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损110元,则该商场每件羊绒衫的进价为_____,标价为_______.2.某种彩电原价是1 998元,若价格上涨x%,那么彩电的新价格是______元;若价格下降y%,那么彩电的新价格是_______元.3.某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润由m%提高到(m+6)%,则m的值为(). A.10 B.12 C.14 D.174.在我国股市交易中,每买一次要交千分之七点五的各种费用,某投资者以每股10元的价格买入上海股票1 000股,当该股票涨到12元时全部卖出,•该投资者的实际赢利为().A.2 000元 B.1 925元 C.1 835元 D.1 910元5.某商场欲购进甲、乙两种商品共50件,甲种商品每件进价为35•元,•利润率是20%,乙种商品每件进价为20元,利润率是15%,共获利278元,则甲、•乙两种商品各购进多少件?◆知能点2 利率、利税问题6.某公司存入银行甲、乙两种不同性质的存款共20万元,甲、•乙两种存款的年利率分别为1.4%和3.7%,该公司一年共得利息(不计利息税)6 250•元,•则甲种存款______,乙种存款______.7.某人以两种形式一共存入银行8 000元人民币,其中甲种储蓄的年利率为10%,乙种储蓄的年利率为8%,一年共得利息860元,若设甲种存入x元,乙种存入y元,根据题意列方程组,得_________.8.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,•甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少.•若设甲、乙两种贷款的数额分别为x万元和y万元,则(). A.x=15,y=20 B.x=12,y=23 C.x=20,y=15 D.x=23,y=12◆开放探索创新9.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,•请你研究一下商场的进货方案.◆中考真题实战10.(重庆)为了解决农民工子女入学难的问题,•我市建立了一套进城农民工子女就学的保障机制,其中一项是免交“借读费”.据统计,2004年秋季有5 000•名农民工子女进入主城区中小学学习,预测2005•年秋季进入主城区中小学学习的农民工子女将比2004年有所增加,其中小学增加20%,中学增加30%,这样2005•年秋季将新增1 160名农民工子女在主城区中小学学习.如果按小学生每年的“借读费”500•元,中学生每年的“借读费”1000元计算,求2005年新增的1 160名中小学生共免收多少“借读费”.11.(南通)张栋同学到百货大楼买了两种型号的信封共30个,其中买A•型号的信封用了1元5角,买B型号的信封用了1元2角,B型号的信封每个比A型号的信封便宜2分,则两种型号信封的单价各是多少元?知能点1 行程问题1.甲、乙两人相距45km,甲的速度是7km/h,乙的速度为3km/h,两人同时出发,(1)若同向而行,甲追上乙需_______h;(2)若相向而行,甲、乙需______h相遇;(3)若同向而行,乙先走1h,甲再追乙,经过______h甲可追上乙.2.两人在400m的圆形跑道上练习赛跑,方向相反时每32s相遇一次,•方向相同时每3min相遇一次,若设两人速度分别为x(m/s)和y(m/s)(x>y),•则由题意列出方程组为_________.3.A,B两地相距20km,甲从A地,乙从B地同时出发相向而行,经过2h相遇,相遇后,甲立即返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2km,则两人的速度分别为________.4.一只船在一条河上的顺流速度是逆流速度的3倍,则这只船在静水中的速度与水流速度之比为:_________.5.已知某铁路桥长800m,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45s,整列火车完全在桥上的时间是35s ,求火车的速度和长度.知能点2 配套问题6.张阿姨要把若干个苹果分给小朋友们吃,若每人2个,则多1个;若每人3个,•则缺2个,苹果有_______个,小朋友有_______个.7.两台拖拉机共运水泥35t ,其中一台比另一台多运7t ,•则这两台拖拉机分别运送了水泥_______t 和_________t .8.如图所示,周长为34的长方形ABCD 被分成7个大小完全一样的小长方形,•则每个小长方形的面积为( ).A .30B .20C .10D .149.一个长方形周长为30,若它的长减少2,宽增加3,就变成了一个正方形,设该长方形长为x ,宽为y ,则可列方程组为( ). 2()30303015....23232323x y x y x y x y A B C D x y x y x y x y +=+=-=+=⎧⎧⎧⎧⎨⎨⎨⎨-=+-=++=-+=-⎩⎩⎩⎩10.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,•一个盒身与两个盒底配成一个完整盒子,问:用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?◆规律方法应用11.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1•个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?12.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.•已知过去两次租用这两种货车的情况如下表:第一次 第二次 甲货车辆数(单位:辆) 2 5 乙货车辆数(单位:辆)36 累计运货吨数(单位:吨) 15.535现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,•如果按每吨付运费30元计算,则货主应付运费多少元?◆开放探索创新13.小颖在拼图时发现8个一样大小的矩形,恰好可以拼成一个大的矩形,•如图(1)所示.小彬看见了,说:“我来试一试”.结果小彬七拼八凑,拼成如图(2)那样的正方形.中间还留下一个洞,恰好是边长为2mm 的小正方形. 你能帮他们解开其中的奥秘吗?◆中考真题实战14.(长沙)某工厂第一季度生产甲、乙两种机器共480台,改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器要比第一季度增产10%,乙种机器产量要比第一季度增产20%,该厂第一季度生产甲、乙两种机器各多少台?。
实际问题与二元一次方程组过关练习一、选择题1. 夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A,B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( )A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩2. 某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程组正确的是A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩3. 甲、乙两人骑自行车同时从相距65km的两地相向而行,2h相遇,若甲比乙每小时多骑2.5km,则乙的速度是每小时A.12.5kmB. 15kmC.17.5kD. 20km4.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元若只买8支玫瑰,则她所带的钱还剩下( )A.31元B.30元C.25元D.19元5. 我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是( )A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩二、填空题6.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.某队前16场比赛中负6场得26分,则该队胜场.7 一个两位数的各位数字之和为8,十位数字与个位数字互换后,所得新数比原数小18,则原来的两位数是.8. 某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.现计划用16天正好完成加工任务,则该公司应安排天精加工, 天粗加工.9. 某同学家离学校8千米,每天骑自行车上学和放学.有一天上学时顺风,从家到学校共用25分钟,放学时逆风,从学校回家共用时35分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意,列出方程组为.10. 根据图中给出的信息,求每件T恤衫和每瓶矿泉水的价格,设每件T恤衫和每瓶矿泉水的价格分别为x元和y元,列方程组为.三、解答题11. 某商店分别以标价的8折和9折卖了两件不同品牌的衬衫A和B,共收款364元,已知A,B两件衬衫的标价和是420元,则打折前购买2件A衬衫和1件B 衬衫共需多少元?12. 为奖励表现优秀的学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规若干.文具店给出两种优惠方案:方案一:购买一个文具袋送1个圆规方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折若学校购买圆规100个,则选择哪种方案更合算?请说明理由13. 为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆,学校向租车公司租赁A,B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A,B两种车型各有多少个座位;(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B型车,怎样租车能使座位恰好坐满且租金最少,并求出最少租金.14小明在拼图时,发现8个大小一样的长方形,恰好拼成一个大的长方形,如图①所示.小红看见了,说:“我来试一试”.结果拼成如图②所示的正方形,中间还留有一个洞,恰好是边长2cm的小正方形,你能算出每个长方形的长与宽是多少吗?15某服装厂生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子,现在此种布料600米,请你帮助设计一下,该如何分配布料,才能使运动服成套而不至于浪费,能生产多少套运动服?16某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图②),再将它们制作甲、乙两种无盖的长方体小盒(如图①),现将300张长方形硬纸片和150张长方形硬纸片全部用于制作这两种小盒,可以做成甲、乙两种小盒多少个?(注:图①种向上的一面无盖)17茜茜受《乌鸦喝水》故事的启发,利用量筒、大球和小球进行了如下操作,请根据图中给出的信息,解答下列问题:(1)放入一个小球上面升高cm,放入一个大球水面升高cm.(2)如果要使水面上升到50cm,应放入大球,小球各各多少各?18某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元?19现有一段长为180米的河道整治任务,由AA,B两工程队先后接力完成,A工程队每天整治12米,B工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:()()⎩⎨⎧=+=+yxyx812乙:()()⎪⎩⎪⎨⎧=+=+812yxyx根据甲、乙两名同学所列的方程组,请你分别指出未知量x,y表示的意义,人后在括号内不全甲、乙两名同学所列的方程组:甲:x表示:,y表示;乙:x表示:,y表示;(2)求A、B两个工程队分别整治河道多少米,(写出完整解答过程)20请根据图中信息回答下列问题(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯,若某人想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算?请说明理由.21据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把琵琶运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满琵琶一次可运货12吨,用3辆甲型车和4辆乙型车装满琵琶一次课运货17吨,现有21吨琵琶,计划同时租用甲型车m辆,乙型车n辆一次运完,且恰好每辆车都装满琵琶,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满琵琶一次可分别运货多少吨?(2)请你帮个体商贩张杰设计租车方案,共有多少种租车方案?22如图,A,B两地由公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是A地的2倍,这家厂从A地购买原料,制成食品卖到B地,已知公路运价为1.5元(千米·吨),铁路运价为1元(千米·吨).这两次运输(第一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元.问:(1)这家食品厂到A地的距离是多少千米?(2)这家食品长此次买进的原料每吨5000元,卖出的食品每吨1000元,这批食品销售完后工厂共获利多少元?。
8.3实际问题与二元一次方程组同步练习一.选择题1.小明到文具店购买文具,他发现若购买4支钢笔、2支铅笔、1支水彩笔需要50元,若购买1支钢笔、3支铅笔、4支水彩笔也正好需要50元,则购买1支钢笔、1支铅笔、1支水彩笔需要()A.10元B.20元C.30元D.不能确定2.某玩具车间每天能生产甲种玩具零件100个或乙种玩具零件200个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x天,生产乙种玩具零件y天,则有()A.B.C.D.3.用一根绳子环绕一棵大树,若环绕大树3周,则绳子还多5尺;若环绕大树4周,则绳子又少了2尺,这根绳子有多长?环绕大树一周需要多少尺?设绳子有x尺,环绕大树一周需要y 尺,所列方程组中正确的是()A.B.C.D.4.狗年来临,小兰要做玩偶小狗和小鱼作为新年礼物,她去市场买了36米布,每米布可以做小狗25个,或者小鱼40个,小兰将1只小狗和2只小鱼配成一套礼物,结果发现布没有剩余,恰好配套做成了礼物.若设用x米布做小狗,用y米布做小鱼,则可列()A.B.C.D.5.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.已知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为()A.B.C.D.6.在《九章算术》中记载一道这样的题:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,甲、乙持钱各几何?”题目大意是:甲、乙两人各带若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50,如果乙得到甲所有钱的,那么乙也共有钱50.甲、乙两人各需带多少钱?设甲需带钱x,乙带钱y,根据题意可列方程组为()A.B.C.D.7.《九章算术》是我国古代数学的经典著作,书中记载:今有上禾七秉,损实一斗,益之下禾两秉,而实一十斗;下禾八秉,益实一斗,于上禾二秉,而实一十斗.问上、下禾实一秉各几何?其意思为:现有七捆上等稻子和两捆下等稻子打成谷子,再减去一斗谷子,最后得到十斗谷子;八捆下等稻子和两捆上等稻子打成谷子,再加上一斗谷子,最后得到十斗谷子.问一捆上等稻子和一捆下等稻子各打谷子多少斗?设一捆上等稻子和一捆下等稻子分别打成谷子x斗,y斗,则可建立方程组为()A.B.C.D.8.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y尺,则下列符合题意的方程组是()A.B.C.D.9.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容积各是多少斛?”设1个大容器的容积为x斛,1个小容器的容积y斛,则根据题意可列方程组()A.B.C.D.10.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,所列方程组正确的是()A.B.C.D.二.填空题11.小新出生时父亲28岁,现在父亲的年龄是小新的3倍还多2岁,则现在小新的年龄是岁.12.某校七年级的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得71分,那么他答对了题.13.为了保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总质量为460克;第二天收集1号电池2节,5号电池3节,总质量为240克,则1号电池每节重为克,5号电池每节重为克.14.我国古代数学著作《九章算术》中记载:“今有大器五小器一容九斛,大器一小器五容三斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒9斛(斛,音hu,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒3斛,问1个大桶和1个小桶分别可以盛斛酒.15.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用,已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车,若他们缆车费用的总花费为4100元,则此旅行团共有人.参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元三.解答题16.为加强美育教育,学校计划开设书法特色课程,需购买钢笔、毛笔共100支,据调查,某商城每支钢笔的价格为20元,每支毛笔的价格为30元,经双方议价,按9折销售,学校共付款2430元,求购买钢笔、毛笔各多少支?17.(列二元一次方程组解应用题)运动会结束后,八年一班准备购买一批明信片奖励积极参与的同学,计划用班费180元购买A、B两种明信片共20盒,已知A种明信片每盒12元,B种明信片每盒8元,求应购买A、B两种明信片各几盒.18.某中学为了响应“足球进校园”的号召,在商场购买A、B两种品牌的足球,已知购买一个B品牌足球比购买一个A品牌足球多30元,购买2个A品牌足球和3个B品牌足球共需340元.(1)求购买一个A品牌足球和一个B品牌足球各需多少元?(2)该中学决定购买A、B两种品牌足球共50个,恰商场对两种品牌足球的售价进行调整,A品牌足球售价比原来提高8%,B品牌足球按原售价的九折出售,如果此次购买A、B两种品牌足球总费用为3060元,那么该中学购进B品牌足球多少个?参考答案一.选择题1.解:设购买1支钢笔、1支铅笔、1支水彩笔分别需要x、y、z元,根据题意得:,①+②得:5x+5y+5z=100,所以x+y+z=20,故选:B.2.解:由题意可得,,故选:B.3.解:依题意得:.故选:D.4.解:依题意得:.故选:C.5.解:若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为:.故选:B.6.解:设甲需带钱x,乙带钱y,根据题意,得:,故选:D.7.解:依题意得:.故选:C.8.解:由题意可得,,故选:B.9.解:设大容器的容积为x斛,小容器的容积为y斛,根据题意得:,故选:A.10.解:依题意得:.故选:C.二.填空题11.解:设小新现在的年龄为x岁,父亲现在的年龄是y岁,由题意得:,解得:,即现在小新的年龄是13岁,故答案为:13.12.解:设小王答对了x道题,答错了y道题,依题意得:,解得:.故答案为:19道.13.解:设1号电池每节重xg,5号电池每节重yg,列方程组得,解得.答:1号电池每节的质量为90g,5号电池每节的质量为20g.故答案为:90,20.14.解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则:,解得:;故答案为:,.15.解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人),故答案为:16.三.解答题16.解:设购买钢笔x支,毛笔y支,依题意得:,解得:.答:购买钢笔30支,毛笔70支.17.解:设应购买A种明信片x盒,B种明信片y盒,依题意得:,解得:.答:应购买A种明信片5盒,B种明信片15盒.18.解:(1)设购买一个A品牌足球需要x元,购买一个B品牌足球需要y元,依题意得:,解得:.答:购买一个A品牌足球需要50元,购买一个B品牌足球需要80元.(2)设该中学购进B品牌足球m个,则购进A品牌足球(50﹣m)个,依题意得:50×(1+8%)(50﹣m)+80×0.9m=3060,解得:m=20.答:该中学购进B品牌足球20个.。
实际问题与二元一次方程组一、选择题1、某校课外小组的学生分组课外活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x 和应分成的组数y.依题意可得方程组( )A 、{3875+==+x y x yB 、{y x y x =+=-3758C 、{3758-=+=x y x yD 、{3758+=+=x y x y 2、一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50∘,若设∠1=x ∘,∠2=y ∘,则可得到方程组为( )A. B. C. D.3、一个笼中装有x 只鸡,y 只兔子,它们共有8个头,22只脚,列出二元一次方程组是( )A 、B 、C 、D 、4、一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则x,y 的值为( )A 、{13=x 2=yB 、{14x 1=y =C 、{151==x yD 、{142==x y5、将一正方形按如图方式分成n 个全等矩形,上,下各横排两个,中间竖排若干个,则n 的值为( )A 、12B 、10C 、8D 、166、小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 克,乙种水果y 千克,则可列方程组为( )A 、{28=6y 4x 2y =x ++B 、{284y 6x 2y =x =++C 、{28642=+-=y x y xD 、{28642=+-=x y y x7、一商贩第一天卖出鲫鱼30kg ,草鱼50kg ,共获毛利310元,第二天卖出鲫鱼25kg ,草鱼45kg ,共获毛利265元,照这样计算,若该商贩某月卖出鲫鱼700kg ,草鱼1200kg ,则能获毛利 ( )A.7500元B.7300元C.6500元D.8200元8、超市中有A ,B 两种饮料,小洋买了5瓶A 种饮料和4瓶B 种饮料一共花了18元,其中B 种饮料比A 种饮料贵0.3元,若设A 中饮料的单价为x 元,B 种饮料的单价为y 元,可列方程组为( ) A. B. C. D.9、一筐苹果和一筐梨共100千克,其中苹果的质量比梨的质量的2倍少8千克,设苹果有x 千克,梨有y 千克,则列出的方程组为( )A 、{82x =y 100y x +=+B 、{100y x 82y =x =++C 、{82100-==+x y y xD 、{10082=+-=x y y x10、甲乙两人从同一地点出发,同向而行,甲骑车,乙步行,若乙先行12km ,那么甲用21h 追上乙,如果乙先走1h ,甲只用21h 追上乙,那么乙步行的速度是( ) A.6km/h B.12km/h C.18km/h D.36km/h11、一个两位数,它的十位、个位数字和为5,则符合这个条件的两位数共有( )A.4个B.5个C.6个D.无数个12、某校150名学生参加数学竞赛,平均分为55分,其中及格学生平均77分,不及格学生平均47分,则不及格学生人数是( )A. 49B. 101C. 110D. 40二、填空题13、王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了___千克。
14、张华与李明所在地相距15千米,他们同时出发,若同向而行,张华用3小时追上李明,若相向而行,两人1小时后相遇,则张华与李明的速度分别是和 .15、水利工人挖土和运土,平均每人挖土5m3或运土3m3,如果安排a人挖土b人运土,恰好使挖的土能及时运走,则a:b=_____.16、长方形的周长是106cm,长比宽的3倍多1cm,则长方形的面积是。
15、某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,则多5个,那么这个哨卡共有名战士,箱中有个苹果。
17、甲乙二人从相距12 km的两地同时出发,同向而行,甲3 h可追上乙;相向而行,1 h相遇,求二人的速度各是多少?若设甲的速度为x km/h,乙的速度是y km/h,则可列方程组为。
18、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆。
现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中型汽车有辆,小型汽车有辆。
三、解答题19、某高校共有5个大餐厅和2个小餐厅。
经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐。
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由。
20、已知甲、乙两种商品的原单价之和为100元,因市场变化,甲种商品降价10%,乙种商品提价5%,调价后,甲、乙两种商品的单价之和比原单价之和提高了2%,问:甲、乙两种商品的原单价各是多少元?21、去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?22、一批同学到学校礼堂观看模拟法庭主题活动,若每 3 人坐一张长条椅,则有 25 人没有座位;若每 4 人坐一张长条椅,则刚好有 4 张长条椅空出,问有多少名学生,多少张长条椅?23、小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元。
求每支中性笔和每盒笔芯的价格。
24、近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A. B两种设备,已知:购买1台A种设备和2台B种设备需要3.5万元;购买2台A种设备和1台B种设备需要2.5万元。
(1)求每台A种、B种设备各多少万元?(2)根据学校实际,需购进A种和B种设备共30台,总费用不超过30万元,请你通过计算,求至少购买A种设备多少台?25、甲、乙两人都以不变速度在环形路上跑步。
相向而行,每隔2分两人相遇一次,同向而行,每隔6分相遇一次,已知甲比乙跑得快,求甲、乙每分各跑多少圈?26、今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人。
求该市今年外来和外出旅游的人数。
27、某服装店用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价-进价),这两种服装的进价,标价如表所示。
(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?28、甲、乙两位同学同时为校文化艺术节制作彩旗。
已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?29、李明家和陈刚家都从甲、乙两供水点购买同样的一种桶装矿泉水,李明家第一季度从甲、乙两供水点分别购买了10桶和6桶,共花费51元;陈刚家第一季度从甲、乙两供水点分别购买了8桶和12桶。
且在乙供水点比在甲供水点多花18元钱。
若只考虑价格因素,通过计算说明到哪家供水点购买这种桶装矿泉水更便宜一些?30、某铁桥长1000米,一列火车从桥上通过,从车头上桥到车尾离桥共用1分钟,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度。
31、浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机。
已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元。
问购买一块电子白板和一台投影机各需要多少元?32、古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空、问多少房间多少客?”(题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就分有7人没地方住;若每间房住9人,则空出一间房。
问有多少房间,多少客人?)33、将一批重490吨的货物分配给甲、乙两船运输。
现在甲、在已运走的货物中,甲船比乙船多运30吨.求分配给甲、乙两船的任务数分别是多少吨?34、为鼓励居民节约用电,某市自2016年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格。
我市一位同学家2015年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元。
已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的收费情况,计算这位居民4、5月份的电费分别为多少元?35、小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?36、某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分。
甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?。