七年级下册数学实际问题应用题
- 格式:docx
- 大小:39.73 KB
- 文档页数:5
应用题30道1.小明和小东各有课外书若干本,小明课外读物的数量是小东的2倍,小明送给小东10本后,小东课外读物的数量是小明剩余数量的3倍,求小明和小东原来各有课外读物有多少本?2.某商店出售的某种茶壶每只定价20元,茶杯每只3元,该商店在营销淡季规定一项优惠方法,即买一只茶壶赠送一只茶杯。
某顾客花了170元,买回茶壶和茶杯一共38只,问该顾客买回茶壶和茶杯各多少只?3.某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?4.一列快车长70米,慢车长80米。
若两车同向而行,快车从追上慢车到完全离开慢车所用的时间为20秒;若两车相向而行,则两车从相遇到离开所用的时间为4秒。
求两车每小时各行多少千米?5.已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度。
6.某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?7.在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?8.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?9.某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?10.某班同学去18千米的北山郊游。
1.芦山地震发生后我市决定向灾区捐献一批矿泉水和帐篷共3200件,其中矿泉水比帐篷多800件.(1)求矿泉水和帐篷各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批矿泉水和帐篷全部运往灾区中小学.已知每辆甲种货车最多可装矿泉水400件和帐篷100件,每辆乙种货车最多可装矿泉水和帐篷各200件.问安排甲、乙两种货车时有几种方案?请你帮助设计出来.2.列方程组或不等式组解应用题:为实现区域教育均衡发展,我区计划对A、B两类薄弱学校分别进行改造,根据预算,改造一所A类学校和两所B类学校共需资金230万元,改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)我区计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过380万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案?哪种改造方案所需资金最少,最少资金为多少?3.某饮料厂有甲,乙两条饮料灌装生产线,根据市场需求,计划平均每天灌装饮料700箱.如果两条生产线同时工作,则完成一天的生产任务需要工作7小时;如果两条生产线同时工作2.5小时后,再由乙生产线单独工作,则完成一天的生产任务还需10小时.(1)求甲、乙两条灌装生产线每小时各灌装多少箱饮料?(2)已知甲灌装生产线工作1小时的成本费用为550元,乙灌装生产线工作1小时的成本费用为495元,如果每天用于灌装生产线的成本费用不得超过7370元,那么甲灌装生产线每天至少工作多少小时?4.据统计资料,甲、乙两种作物的单位面积产值的比是1:2,现要把一块长AB 为200m、宽AD为100m的长方形土地,分为两块土地,分别种植这两种作物,使甲、乙两种作物的总产量的比是3:4.(1)如图1,若甲、乙两种作物的种植区分别为长方形ABFE和EFCD,此时设AE=xm,ED=ym,列方程组去x,y的值并写出种植甲、乙两种作物的面积;(2)若按如图2划分出一块三角形土地AEF种植一块作物,其余土地种植另一种作物,三角形土地AEF适合种哪种作物?为什么?AF应该取多长?(3)若按如图3划分出一块正方形土地AEGF种植一种作物,其余土地种植另一种作物,正方形AEGF适合种哪种作物?AF应该取多长?(结果用根号表示)(4)若按如图4划分出一块圆形土地种植一种作物,其余土地种植另一种作物,圆形土地是否适合种植其中某种作物,若适合,请说明适合种植哪种作物,并确定圆的半径,若不适合,请说明理由(π取3.142)5.为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B若购买A型公交车A型公交车2辆,B型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次.请你设计一个方案,使得购车总费用最少.解:(1)由题意得:,解这个方程组得:.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车x辆,购买B型公交车(10﹣x)辆,由题意得:,解得:6≤x≤8,有三种购车方案:①购买A型公交车6辆,购买B型公交车4辆;②购买A型公交车7辆,购买B型公交车3辆;③购买A型公交车8辆,购买B型公交车2辆.故购买A型公交车越多越省钱,所以购车总费用最少的是购买A型公交车8辆,购买B型公交车2辆.6.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家2015年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?解析(1)由题意,得②-①,得5(b+0.8)=25,解得b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,解得a=2.2.∴a=2.2,b=4.2.(2)当月用水量为30吨时,水费为17×3+13×5=116(元).又9 200×2%=184(元),116<184,∴小王家6月份的用水量可以超过30吨.设小王家6月份用水量为x吨,由题意,得17×3+13×5+6.8(x-30)≤184,6.8(x-30)≤184-116,解得x≤40.∴小王家6月份最多能用水40吨.7.某乳制品厂,现有鲜牛奶 10 吨.若直接销售,每吨可获利 500 元;若制成酸奶销售,每吨可获利 1200 元;若制成奶粉销售,每吨可获利 2000 元.本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶 3 吨;若制成奶粉,每天可加工鲜牛奶 1 吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在 4 天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4 天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好 4 天完成.你认为哪种方案获利多,请通过计算说明.8.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?9.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?解:(1)设甲种节能灯有x只,则乙种节能灯有y只,由题意得:,解得:,答:甲种节能灯有80只,则乙种节能灯有40只;(2)根据题意得:80×(30﹣25)+40×(60﹣45)=1000(元),答:全部售完120只节能灯后,该商场获利润1000元.10.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动,已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费16875元,若两校联合组团只需花费16575元.(1)两所学校报名参加旅游的学生共有多少人?(2)两所学校报名参加旅游的学生各有多少人?【分析】(1)设两校人数之和为a,由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)设甲学校人数为x人,乙学校人数为y人,根据题意若两校分别组团共需花费16875元,列方程组,求解即可.【解答】解:(1)设两校人数之和为a,若a>200,则a=16575÷75=221(人),若100<a≤200,则a=16575÷85=195(人).答:两所学校报名参加旅游的学生共有221人或195人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,,解得:.,解得:(不合题意,舍去);②当x>200时,或,解得:.答:甲学校报名201人,乙学校报名20人或甲学校报名135人,乙学校报名60人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据花费方式分情况讨论,设出未知数再列出方程组,注意舍去不合题意的结论.11为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.12.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.13.(8分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接2019年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?【分析】(1)本题需根据题意设A型花和B型花每枝的成本分别是x元和y 元,根据题意列出方程组,即可求出A型花和B型花每枝的成本.(2)本题需先根据题意设按甲方案绿化的道路总长度为a米,根据题意列出不等式,解出结果;再求出工程的总成本即可得出答案.【解答】解:(1)设A型花和B型花每枝的成本分别是x元和y元,根据题意得:解得:所以A型花和B型花每枝的成本分别是5元和4元.(2)设按甲方案绿化的道路总长度为a米,根据题意得:1500﹣a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a)+4×5(1500﹣a)=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元.【点评】本题主要考查了一元一次不等式的应用,在解题时要注意根据题目中的数量关系列出不等式是解题的关键.14.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?【分析】(1)设x人加工G型装置,y人加工H型装置,利用每个工人每天能加工6个G型装置或3个H型装置得出等式求出答案;(2)利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.【解答】(1)解:设x人加工G型装置,y人加工H型装置,由题意可得:解得:,6×32÷4=48(套),答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2) 由题意可知:3(6x+4m)=3(80﹣x)×4,解得:.×4=240(个),6x+4m≥2406×+4m≥240.解得:m≥30.答:至少需要补充30名新工人才能在规定期内完成总任务.【点评】此题主要考查了一元一次方程的应用以及一元一次不等式的应用,根据题意正确得出等量关系是解题关键.。
人教版七年级下册数学8.3实际问题与二元一次方程组(销售问题)训练1.在水果店里,小李买了5kg苹果、3kg梨,老板少要1元,收了90元;老王买了12kg苹果、6kg梨,老板按九折收钱,收了189元,该店苹果和梨的单价各是多少元?2.七(3)班的生活委员第一学期为班级买了3个垃圾桶和5个拖把,共用了55元,第二学期买了4个垃圾桶和6个拖把,其中垃圾桶价格是第一学期价格的8折,拖把价格不变,共用了64元.求第一学期购买垃圾桶和拖把的单价分别是多少?3.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?4.元旦期间,甲、乙两个商场开展促销活动,甲商场实行“全场52折”的优惠;乙商场实行“满200元减100元”的优惠(如:某顾客购物320元,他需付款220元,购物420元,他也只需付款220元).(1)张丽想买商场标价都是850元的同一套衣服,她应该选择哪家商场?(2)李明发现在甲、乙商场购买一样标价六百多元的某商品,最后付款额是一样的,请问此商品的标价是多少元?(3)丙商场推出“先打折”,再“满200元减100元”的活动.李明发现在丙商场购买(2)中的商品,虽然标价一样但比在乙商场要多付25元钱,问丙商场先打了多少折后再参加活动?5.某彩电厂为响应国家家电下乡号召,计划生产A、B两种型号的彩电,两种型号的彩电生产成本和售价分别为:A型每台成本800元,售价1000元,B型每台成本1000元,售价1300元,经预算,彩电厂若投入成本64000元,两种彩电全部出售后,可获利18000元.(1)请问彩电厂生产A、B两种型号的彩电各多少台?(2)彩电厂计划将这两种彩电售出后获得的全部利润购买两种物品:体育器材和实验设备支援某希望小学.若体育器材每套6000元,实验设备每套3000元,把钱全部用尽且两种物品都购买的情况下,请求出所有的购买方案.6.某工厂计划生产甲、乙两种产品,已知生产每件甲产品需要4吨A种原料和2吨B种原料,生产每件乙产品需要3吨A种原料和1吨B种原料,该厂现有A种原料120吨,B种原料50吨.(1)甲、乙两种产品各生产多少件,恰好使两种原料全部用完?(2)去年每件甲产品售价为3万元,每件乙产品售价为5万元,根据市场调研情况,今年每件乙产品售价比去年下降10%,问每件甲产品应涨价多少万元,才能使甲乙产品全部出售后的总销售额达到144万元?7.张伯用100元钱从蔬菜批发市场批发了西红柿和豆角共70千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:(1)张伯当天批发西红柿和豆角各多少千克?(2)张伯当天卖完这些西红柿和豆角能赚多少钱?8.某电器商场销售进价分别为120元,190元的A,B两种型号的电风扇,如下表所示是近两周的销售情况:(1)求A、B两种型号的电风扇的销售单价;(2)若商场再购进两种型号的电风扇共120台,并且全部销售完;该商场能否实现这120台电风扇的利润为6800元的目标?若能,请给出相应的采购方案,若不能,请说明理由.9.一个电器超市购进A、B两种型号的电风扇进行销售,已知购进2台A型号和3台B型号共用910元,购进3台A型号比购进2台B型号多用260元.(1)求A、B两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A、B两种型号的电风扇各多少台?10.东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?11.为响应政府“阳光体育”号召,西湖集团准备投入一部分资金,在西湖公园修建一批室外的乒乓球场和羽毛球场供市民免费使用.已知修建1个乒乓球场和2个羽毛球场共需要30万元,修建2个乒乓球场和5个羽毛球场共需要71万元.(1)问修建1个乒乓球场和1个羽毛球场分别需要多少万元?(2)西湖集团计划修建这样的乒乓球场和羽毛球场共11个,且投入资金刚好为100万元,问可以修建多少个羽毛球场?。
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
1.小明去超市购买了一些商品,他给了收银员100元,收银员找给他12元。
请问小明总共支付了多少钱?答案:小明总共支付了88元。
因为小明给了收银员100元,收银员找给他12元,所以小明实际支付的钱数是100元 - 12元 = 88元。
2.小华和小明一起打篮球,小华投篮得分2分,小明投篮得分3分。
请问他们两个人总共得了多少分?答案:小华和小明总共得了5分。
因为小华得分是2分,小明得分是3分,所以他们两个人总共得分的和是2+3=5分。
3.小红有4本故事书,小丽有3本故事书,她们决定把所有的书都放在一个书架上。
请问书架上总共有多少本书?答案:书架上总共有7本书。
因为小红有4本书,小丽有3本书,所以书架上总共有的书的数量是4+3=7本。
4.小刚和小强都喜欢吃糖果,小刚吃了4颗糖果,小强吃了6颗糖果。
请问他们两个总共吃了多少颗糖果?答案:小刚和小强总共吃了10颗糖果。
因为小刚吃了4颗糖果,小强吃了6颗糖果,所以他们两个总共吃的糖果数量是4+6=10颗。
5.小莉买了2支铅笔,每支2元;又买了3本练习本,每本3元。
请问小莉总共花了多少钱?答案:小莉总共花了11元。
因为小莉买了2支铅笔和3本练习本,而每支铅笔2元,每本练习本3元,所以她总共花费是2×2+3×3=11元。
6.小张去市场买菜,他买了3斤猪肉,每斤10元;又买了2斤牛肉,每斤15元。
请问小张总共花了多少钱?答案:小张总共花了75元。
因为小张买了3斤猪肉和2斤牛肉,猪肉每斤10元,牛肉每斤15元,所以他的总花费是3×10+2×15=75元。
7.学校要举办一场运动会,需要学生购买统一的运动服。
运动服的价格是每套50元。
如果一个班级需要购买30套运动服,请问这个班级需要支付多少钱?答案:这个班级需要支付1500元。
因为每套运动服的价格是50元,班级需要购买30套运动服,所以总价是50×30=1500元。
8.一个农场有10头牛和5只羊,每头牛每天需要吃3千克的饲料,每只羊每天需要吃2千克的饲料。
七年级下册数学应用题分类精选30道追及问题:1、姐姐步行速度是75米/分,妹妹步行速度是45米/分。
在妹妹出发20分钟后,姐姐出发去追妹妹。
问:多少分钟后能追上?2.小张和小王,分别从甲乙两地出发步行,1小时30分后,小张走了甲乙两地距离的一半多1.5千米,此时与小王相遇。
小王的速度是3.7千米/小时,那么小张的速度是多少?3.甲乙两车从同一地点出发,沿着同一公路追赶前面的一个骑车人。
甲乙两车分别用10分钟、6分钟追上骑车人。
已知甲车速度是24千米/小时,乙车速度是30千米/小时,问两车出发时相距多少千米?4.一支部队排成1.2千米队行军,在队尾的张明要与在最前面的营长联系,他用6分钟时间追上了营长。
为了回到队尾,在追上营长的地方等待了18分钟。
如果他从最前头跑步回到队尾,那么用多少时间?5.甲乙两车分别从两地同时相向开出。
快车经过8小时到达乙地,慢车经过10小时到达甲地。
(1)相遇时,乙车行了360千米。
求两地距离。
(2)相遇时,乙离目的地还有360千米。
求两地距离。
(3)相遇时,乙比甲多行360千米。
求两地距离。
(4)两车在离中点处360千米相遇,求两地距离。
(5)5分钟后两车又相距360千米。
求两地距离。
6.家离图书馆4.8千米,弟弟从家出发以60米/分速度步行去图书馆。
15分钟后,哥哥骑自行车从家出发去追赶弟弟,自行车的速度是240米/分。
问:(1) 哥哥在离家多远处追上弟弟?(2) 哥哥追上弟弟后不久到达图书馆,又马上折回,过不久与弟弟相遇,那么相遇处离图书馆多少千米?环行跑道问题:1.小张和小王各自以一定的速度在周长为500米的跑道上跑步。
小王每分跑180米。
①小张和小王同时从一个地点出发,反向而行,75秒钟后两人相遇,求小张的速度?②小张和小王同时从一个地点出发,沿同一方向跑步,经过多少分钟两人第一次相遇?2.在600米环行跑道上,兄妹两同时从同一起点都按逆时针跑,每隔12分两人相遇一次;若两人反向跑,则每隔4分两人相遇一次。
七下数学应用题和答案做七年级数学应用题可以明智,学习可以促进人的成熟,以下是的七下数学应用题和答案相关资料,欢迎阅读!工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1,x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量,(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
2020-2021学年度初一数学第二学期人教(2012)七年级下册第八章二元一次方程组8.3实际问题与二元一次方程组同步练习一、选择题1.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y 斤,则可列方程组为( )A.56156x yx y y x+=⎧⎨-=-⎩B.65156x yx y y x+=⎧⎨+=+⎩C.56145x yx y y x+=⎧⎨+=+⎩D.65145x yx y y x+=⎧⎨-=-⎩2.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,503.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是()A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩6.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm27.如图,点O在直线AB上,OC为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x,y,那么下列求出这两个角的度数的方程是()A.18010x yx y+=⎧⎨=-⎩B.180310x yx y+=⎧⎨=-⎩C.180+10x yx y+=⎧⎨=⎩D.3180310yx y=⎧⎨=-⎩8.如果│x+y-1│和2-2x+y-3-2互为相反数,那么x-y的值为(-A.12xy=⎧⎨=⎩B.12xy=-⎧⎨=-⎩C.21xy=⎧⎨=-⎩D.21xy=-⎧⎨=-⎩9.利用两块长方体测量一张桌子的高度,首先按图①方式放置,再交换木块的位置,按图②方式放置,测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm10.某校运动员分组训练,若每组7人则余3人,若每组8人,则缺5人,设运动员的人数为x人,组数为y,则下列方程组正确的有()A.7385y xy x=+⎧⎨+=⎩B.7385x yx y+=⎧⎨-=⎩C.7385y xy x=-⎧⎨=+⎩D.7385y xy x=+⎧⎨+=⎩11.已知方程组35223x y kx y k+=+⎧⎨+=⎩,x与y的值之和等于2,则k的值等于()A.3B.4-C.4D.3-12.在一个3×3的方格中填写9个数,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图,方格中填写了一些数和字母,若它能构成一个三阶幻方,则m n+的值为()A.12B.14C.16D.18二、填空题13.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.14.已知方程组2231y x my x m-=⎧⎨+=+⎩的解满足方程x+3y=3,则m的值是________.15.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需_____元.16.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.17.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.18.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有______种购买方案.三、解答题19.长沙市某公园的门票价格如下表所示:某校九年级甲、乙两个班共100-多人去该公园举行毕业联欢活动,-其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;-如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人20.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.21.已知21xy=⎧⎨=⎩是二元一次方程组8-1mx nynx my+=⎧⎨=⎩的解,求2m-n的算术平方根.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?参考答案1.C2.B3.A4.B5.A6.A7.B8.C9.D10.C11.C12.B 13.-214.115.110016.45 1017.2753x yx y+=⎧⎨=⎩18.两19.甲班有55人,乙班有48人.20.(1)1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)2160.21.222.(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】实际问题与一元一次不等式(提高)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
七年级,数学,下册,应用题,道,二元,一次,二元一次方程组应用题1.甲乙二人,若乙给甲10元,则甲所有的钱为乙的3倍,若甲给乙10元,则甲所有的钱为乙的2倍多10元,求甲乙各拥有多少钱?假设甲乙二人各有钱x、y,若乙给甲10元,则甲乙二人此时各有钱x+10、y-10,甲所有的钱为乙的三倍,是x+10=3(y-10)同理,若甲给乙10元,则甲乙二人此时各有钱x-10、y+10甲所有的钱为乙的2倍多十元,是x-10=2(y+10)+10联立方程组,得出甲乙的钱数 200和802.一块矩形草坪的长比宽的2倍多10米,它的周长是132米,则宽和长分别是多少?设长为x,宽为yx=2y+102(x+y)=132 解得:x=56\3 y=142\33.某班学生有x人,准备分成y个组开展活动,若每个组7人,则余3人;若每个组8人,则差5人.求全班的人数和所分组数。
由题,所分组数=(5+3)÷(8-7)=8组学生人数=8×7+3=59人所以,一共有59个学生,分了8组4.三年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人?设某年级有女生x人,男生y人x+y=2462x-3=y接方程组得x=83y=1635.甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米?设甲乙两绳各长x,y米x+y=17x(1-1/5)=y+1即:x+y=17①4x-5y=5②①*5+②得9x=90x=10将x=10代入①解得y=7答:甲绳长10米,乙绳长7米.6.已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,求黄河、长江各长多少千米?假设长江长a千米黄河长b千米得出a-b=836……16b-5a=1284……2将1式×6得6a-6b=5016……32式+3式得a=6300所以b=5464所以长江长6300千米黄河长5464千米7.甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台?设甲店洗衣机台数为x,乙店洗衣机台数为y,那么x-12=y+12 ①x+12=3(y-12)+2②由①得y=x-24代入②得x+12=3(x-24-12)+2x=59y=358.有甲、乙两条绳子,其中甲绳长的3/8与乙绳长的1/3叠合后,全长238厘米,求甲乙两绳长各是多少厘米?设甲为X;乙为Y甲的3/8能与乙的1/3叠合故:3/8X=1/3Y;同时X+2/3Y=238求方程组得X= 136 Y=1539.小明春节原有压岁钱若干元,先用去一部分,剩余的钱为用去的2倍,后来又用掉600元,最后剩下的钱为原有的三分之一,问小明原来有压岁钱多少元?设:第一次用去X元,共有Y元2X=Y-X3(Y-X-600)=2X得:X=450 Y=135010.某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色的人数是涂红色人数的3,则晚会5上男、女生各有几人?解:设晚会上男生有x人,女生有y人,根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12,把x=12代入④,得y=21,所以答:晚会上男生12人,女生21人。
卜人入州八九几市潮王学校第九讲实际问题与二元一次方程组一、知识梳理:考点1常见的一些等量关系1.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.2.产品配套问题:解这类问题的根本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间是,各局部劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 速度×时间是=路程.顺水速度=静水速度+水流速度.逆水速度=静水速度-水流速度.6.存贷款问题利息=本金×利率×期数.本息和〔本利和〕=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数).年利率=月利率×12. 月利率=年利率×121. 各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:假设一个两位数的个位数字为a ,十位数字为b ,那么这个两位数可以表示为10b+a .8.方案问题在解决问题时,常常需合理安排.需要从几种方案中,选择最正确方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最正确方案.要点诠释:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最正确方案.考点2实际问题与二元一次方程组列方程组解应用题,是把“未知〞转换成“〞的重要方法,它的关键是把量和未知量联络起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组〔分析题意,找出两个等量关系,根据等量关系列出方程组〕;解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.要点诠释:〔1〕解实际应用问题必须写“答〞,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;〔2〕“设〞、“答〞两步,都要写清单位名称;〔3〕一般来说,设几个未知数就应该列出几个方程并组成方程组.二、课堂精讲:〔一〕和差倍分问题例1.甲乙丙三个工厂一共同筹办一所厂校,所出经费不同,其中甲厂出总数的27,乙厂出甲丙两厂和的12,丙厂出了16000元,问这所厂校总经费是多少?甲乙两厂各出多少?【随堂演练一】根据如图提供的信息,求一个热水瓶的价格.〔二〕配套问题例2.某服装厂消费一批某种款式的秋装,每2米的某种布料可做上衣的衣身3个或者衣袖5只.现方案用132米这种布料消费这批秋装〔不考虑布料的损耗〕,应分别用多少布料才能使做的衣身和衣袖恰好配套?【随堂演练二】某家具厂消费一种方桌,设计时13m3m的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可消费多少张方桌?〔提示:一张方桌有一个桌面,4条桌腿〕.〔三〕工程问题例3.一批机器零件一共840个,假设甲先做4天,乙参加合做,那么再做8天才能完成;假设乙先做4天,甲参加合做,那么再做9天才能完成,问:两人每天各做多少个零件【随堂演练三】古运河是的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两个工程队先后接力完成.A工程队每天整治12米,B工程队每天整治8米,一共用时20天.求A、B两工程队分别整治河道多少米.〔四〕利润问题例4.某商场投入13800元资金购进甲、乙两种矿泉水一共500箱,矿泉水的本钱价和销售价如表所示:〔1〕该商场购进甲、乙两种矿泉水各多少箱?〔2〕全部售完500箱矿泉水,该商场一共获得利润多少元?【随堂演练四】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品一共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,一共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗〔五〕行程问题例5.A、B两地相距480千米,一列慢车从A地开出,一列快车从B地开出.(1)假设两车同时开出相向而行,那么3小时后相遇;假设两车同时开出同向(沿BA方向)而行,那么快车12小时可追上慢车,求快车与慢车的速度;(2)假设慢车先开出l小时,两车相向而行,那么快车开出几小时可与慢车相遇【随堂演练五】两列火车从相距810km的两城同时出发,出发后10h相遇;假设第一列火车比第二列火车先出发9h,那么第二列火车出发5h后相遇,问这两列火车的速度分别是多少?〔六〕存贷款问题例6.蔬菜种植专业户徐先生要办一个小型蔬菜加工厂,分别向银行申请了甲,乙两种贷款,一共13万元,徐先生每年须付利息6075元,甲种贷款的年利率为6%,乙种贷款的年利率为%,那么甲,乙两种贷款分别是多少元?〔七〕数字问题例7.有一个两位数,个位上的数比十位上的数大5,假设把这两个数的位置对换,那么所得的新数与原数的和是143,求这个两位数.【随堂演练六】一个两位数的十位数字与个位数字之和是7,假设把这个两位数加上45,那么恰好成为把个位数字和十位数字对调后组成的数,那么这个两位数是多少?〔八〕方案选择问题例8.某种饮料有大箱和小箱两种包装,3大箱、2小箱一共92瓶;5大箱、3小箱一共150瓶.求:①2大箱、5小箱分别有饮料多少瓶?②假设一大箱、一小箱饮料分别标价48元、25元,且两种包装的饮料质量完全一样,请问购置哪种包装的饮料更合算?【随堂演练七】某高校一共有5个大餐厅和2个小餐厅,经过测试同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.〔1〕求1个大餐厅、1个小餐厅分别可供多少名学生就餐;〔2〕假设7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.三.小结:和差倍分问题;产品配套问题;工程问题;利润问题;行程问题;存贷款问题;数字问题;方案问题列方程组解应用题,是把“未知〞转换成“〞的重要方法,它的关键是把量和未知量联络起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.3.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组〔分析题意,找出两个等量关系,根据等量关系列出方程组〕;解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.四、课后稳固练习一、选择题1.有一些苹果箱,假设每只装苹果25kg,那么剩余40kg无处装;假设每只装30kg,那么还有20个空箱,这些苹果箱有()A.12只B.6只C.112只D.128只2.幸福七年级学生到礼堂开会,假设每条长椅坐5人,那么少10条长椅,假设每条长椅坐6人,那么又多余2条长椅,设学生有x人,长椅有y条,依题意得方程组()A.5105662x yx y=+⨯⎧⎨=-⨯⎩B.51062x yx y=-⎧⎨=+⎩C.5105662x yx y=-⨯⎧⎨=+⨯⎩D.51062x yx y=+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,一共花了400元,李娜家去了4个大人和2个小孩,一共花了400元,王斌家方案去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?〔〕A.300元B.310元 C.320元 D.330元4.两个水池一共储水40吨,假设甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是〔〕A.甲池21吨,乙池19吨B.甲池22吨,乙池18吨C.甲池23吨,乙池17吨D.甲池24吨,乙池16吨5.某校七年级(2)班40名同学为地震灾区捐款,一共捐了100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚,假设设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可列方程组()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩6.甲乙两地相距100千米,一艘轮船往返两地,顺流用4小时,逆流用5小时,那么这艘轮船在静水中的船速与水流速度分别是〔〕7.一个两位数,它的十位上的数字x比个位上的数字y大1,假设颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数所列的方程组正确的选项是〔〕A.1()()9x yx y y x-=⎧⎨+++=⎩,B.110()9x yx y y x=+⎧⎨+=++⎩,C.110109x yx y y x=+⎧⎨+=+-⎩,D.110109x yx y y x=+⎧⎨+=++⎩,8.今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x 岁,妹妹y岁,依题意,得到的方程组是〔〕A.23(2),2x yx y+=+⎧⎨=⎩B.23(2),2x yx y-=-⎧⎨=⎩C.22(2),3x yx y+=+⎧⎨=⎩D.23(2),3x yx y-=-⎧⎨=⎩9.为了参加国际铁人三项〔游泳、自行车、长跑〕系列赛业余组的比赛,李明针对自行车和长跑工程进展专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段一共5千米,用时15分钟.设自行车路段的长度为x米,长跑路段的长度y米.那么方程组正确的选项是〔〕A. B.C. D.二、填空题10.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.11.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题一共得70分,那么他做对了______道题.12.“六一〞儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天一共售出门票3000张,一共收入15600元,那么这一天售出了成人票________张,儿童票__________张.13.小龙和小刚两人玩“打弹珠〞游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子〞.小刚却说:“只要把你珠子的13给我,我就有10颗〞,那么小刚的弹珠颗数是颗.14.学生问教师:“您今年多大了〞教师幽默地说:“我像你这么大时,你刚1岁;你到我这么大时,我已37岁了〞.那么教师如今的年龄是岁.三、解答题15.一个两位数,十位上的数字与个位上数字和是8,将十位上数字与个位上数字对调,得到新数比原数的2倍多10.求原来的两位数.16.小华从家里到的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,那么他从家里到需10min,从到家里需15min.问:从小华家到的平路和下坡路各有多远?17.某同学在A、B两家超发现他看中的随身听的单价一样,书包单价也一样.随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元(2)某假期该同学上街,恰好赶上商家促销,超A所有商品打八折销售,超B全场购满100元返购物券30元(销售缺乏100元不返券,购物券全场通用),但他只带了400元钱,假设他只在一家超购置看中的这两样物品,你能说出他可以选择在哪一家购置吗假设两家都可以选择,在哪一家购置更钱。
人教版七年级下册数学二元一次方程组应用题(几何问题)一、单选题1.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图1;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图2那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.2135mm B.2120mm C.2108mm D.296mm2.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入形状、大小完全相同的四个小长方形后得图①、图①,已知大长方形长为a,大长方形未被覆盖的部分均用阴影表示,则图①阴影部分周长与图①阴影部分周长的差是(用含a的代数式表示()A.a-B.a C.12a-D.123.如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD.若设小长方形的长为x,宽为y,则可列方程组()A.74627y x yx y++=⎧⎨=⎩B.74627y x yy x++=⎧⎨=⎩C.2(7)4627y x yx y++=⎧⎨=⎩D.2(7)4627x x yx y++=⎧⎨=⎩4.用如图①中的长方形和正方形纸板作侧面和底面,做成如图①的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m n +的值可能是( )A .2018B .2019C .2020D .2021 5.如图,长为12,宽为m 的长方形,被7个大小相同的边长分别为a b ,的小长方形分割成对称的图案(图中每个小于平角的角都为直角),则下列选项正确的是( )①4312,22a b a b m +=⎧⎨+=⎩;①212,3122b m a m =-⎧⎪⎨=-⎪⎩;①若8m =,则40b a =⎧⎨=⎩;①若m 为正整数,则, a b 不可能同时为正整数.A .①①①B .①①①C .①①①D .①①① 6.如图,AB BC ⊥,垂足为B ,ABD ∠的度数比DBC ∠的度数的两倍少36︒,设ABD ∠和DBC ∠的度数分别为x ︒,y ︒,那么下面可以求出这两个角的度数的方程组是( )A .9036x y x y +=⎧⎨=-⎩B .90236x y x y +=⎧⎨=-⎩C .90362x y x y +=⎧⎨=-⎩D .290236x x y =⎧⎨=-⎩ 7.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d,则b c +的值为( )A.3-B.2-C.1-D.08.如图,两根铁棒直立于桶底水平的木桶中,在桶中另加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为110cm,此时木桶中水的深度是()A.60cm B.50cm C.40cm D.30cm二、填空题9.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为________cm2.10.已知两个角的两边分别平行,并且这两个角的差是20°,则这两个角分别等于_____.11.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为____cm2.12.两个长方形的长与宽的比都是2:1,大长方形的宽比小长方形的宽多3cm,大长方形的周长是小长方形周长的2倍,则大长方形的周长是___________cm.13.如图,在长方形ABCD中,放入6个形状、大小相同的长方形,所标尺寸如图所示,求图中阴影部分面积_______.14.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于_____度.15.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.16.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是______. 17.一副三角板按如图方式摆放,且①1的度数比①2的度数大54°,则①2=_____.18.一个长方形的长减少5cm,宽增加2cm,就成为一个正方形,并且这两个图形的面积相等,则正方形的边长为__________.三、解答题19.小丽手中有块周长为120cm的长方形硬纸片,其长比宽多10cm.(1)求长方形的面积;(2)现小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为7:5,面积为2805cm的长方形纸片,试判断小丽能否成功,并说明理由.20.用8张全等的小长方形纸片拼成了图①所示的大长方形,然后用这些纸片又拼成了图①所示的大正方形,但中间却多了一个面积为4cm2的小正方形的洞.求小长方形纸片的长与宽.21.工作人员从仓库领取如图①中的长方形和正方形纸板作侧面和底面,做成如图①的竖式和横式的两种无盖纸盒若干个,恰好使领取的纸板用完.(1)下表是工作人员两次领取纸板数的记录:①仓库管理员在核查时,发现一次记录有误.请你判断第几次的记录有误,并说明理由;①记录正确的那一次,利用领取的纸板做了竖式与横式纸盒各多少个?(2)若工作人员某次领取的正方形纸板数与长方形纸板数之比为1:3,请你求出利用这些纸板做出的竖式纸盒与横式纸盒个数的比值.。
再探实际问题与二元一次方程组(一)学习要求:能对所研究的问题抽象出基本的数量关系,通过列二元一次方程组解实际问题,培养分析问题和解决问题的能力. 一、填空题:1.若载重3吨的卡车有x 辆,载重5吨的卡车比它多4辆,它们一共运货y 吨,用含x 的式子表示y 为______.2.小强有x 张10分邮票,y 张50分邮票,则小强这两种邮票的总面值为______. 3.已知两数和为25,两数差为15,则这两个数为______.4.一个长方形周长是44cm ,长比宽的3倍少10cm ,则这个长方形的面积是______. 二、选择题:5.用4700张纸装订成两种挂历500本,其中甲种每本7张纸,乙种每本13张纸.若甲种挂历有x 本,乙种挂历有y 本,则下面所列方程组正确的是( ).(A)⎩⎨⎧=+=+.4700713,500y x y x(B)⎩⎨⎧=+=+.4700137,500y x y x(C)⎩⎨⎧=-=+.4700713,500y x y x(D)⎩⎨⎧=-=+.4700137,500y x y x6.甲、乙两数和为42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x ,乙数为y ,则下列方程组正确的是( ).(A)⎩⎨⎧⋅==+y x y x 34,42(B)⎩⎨⎧⋅==+y x y x 43,42(C)⎩⎨⎧==+.43,4234y x y x(D)⎩⎨⎧==+.34,4243y x y x三、列方程组解应用题:7.某单位组织了200人到甲、乙两地旅游,到甲地的人数是到乙地的人数的2倍少10人.到两地参加旅游的人数各是多少?8.一种口服液有大小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶,大盒、小盒每盒各装多少瓶?.9.某车间工人举行茶话会,如果每桌12人,还有一桌空着,如果每桌10人,则还差两个桌子,此车间共有工人多少名?(二)综合运用诊断一、填空题:10.式子y =kx +b ,当x =2时,y =11;当x =-2时,y =-17;则k =______,b =______.11.在公式2021at t v s +=中,当t =1时,s =13;当t =2时,s =42.则v 0=______,a =______,并且当t =3时,s =______. 二、选择题:12.出境旅游者问某童:你有几个兄弟、几个姐妹,答:“有几个兄弟就有几个姐妹。
人教版七年级下册数学8.3 实际问题与二元一次方程组(方案问题)应用题训练1.某货运公司有A,B两种型号的汽车,用两辆A型车和一辆B型车装满货物一次可运货10吨;用一辆A型车和两辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车和B型车,一次运完,且恰好每辆车都装满货物.(1)一辆A型车和一辆B型车都装满货物分别可运货多少吨?(2)请帮该物流公司设计可行的租车方案.2.“五一”国际劳动节,某校决定组织甲乙两队参加义务劳动,并购买队服.下面是服装厂给出的服装的价格表:经调查:两个队共75人(甲队人数不少于40人),如果分别各自购买队服,两队共需花费5600元,请回答以下问题:(1)如果甲,乙两队联合起来购买服装,那么比各自购买服装最多可以节省多少元?并说明理由.(2)甲、乙两队各有多少名学生?3.为奖励期中考试成绩优秀的学生,某校准备购买一批笔记本和圆珠笔作为奖品,已知购买1个笔记本和2支圆珠笔需21元,购买2本笔记本和3支圆珠笔需39元.(1)求笔记本和圆珠笔的单价.(2)学校准备购买笔记本20个,圆珠笔若干,文具店给出两种优惠方案:方案一:购买一个笔记本送1支圆珠笔.方案二:购买圆珠笔10支以上时,其中有10支按原价付款,超出10支的部分按原价的八折优惠,笔记本不打折.若学校购买圆珠笔100支,则选择哪种方案更合算?请说明理由.4.某校初中七年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元.(1)若分班购票,则共应付1240元,求两班各有多少名学生?(2)请您计算一下,若两班合起来购票,能节省多少元钱?(3)若两班人数均等,您认为是分班购票合算还是集体购票合算?5.为庆祝中国共产党成立100周年,七年级学生开展“好读书,读好书”向党献礼活动,学校图书馆准备采购党史和文学名著两类图书,每类图书单价相同.如果购买8本党史书,10本文学名著需花费310元;如果购买15本党史书,20本文学名著需花费600元.(1)求党史书和文学名著的单价.(2)该校预计购买200本党史书和180本文学名著共需花费多少元钱?6.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m的值.7.某生态柑橘园现有柑橘21吨,计划租用A、B两种型号的货车将柑橘运往外地销售.已知满载时,用3辆A型车和2辆B型车一次可运柑橘13吨;用4辆A型车和3辆B型车一次可运柑橘18吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用,A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载请帮柑橘园设计租车方案;8.为开拓学生的视野,全面培养和提升学生的综合素质,让学生感受古都洛阳的悠久历史,某中学组织七年级师生共390人开展研学活动,学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车2辆,B型车5辆,则刚好坐满;若租用A型车5辆,B型车3辆,则空余15个座位.(1)求A、B两种车型各有多少个座位?(2)若租用同一种车,且A型车租金为1600元/辆,B型车租金为1850元/辆,要使每位师生都有座位,怎样租车更合算?9.某中学七年级一班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,七年级二班同学在同一商场购买了A品牌足球3个、B品牌足球1个,共花费230元.(1)求A,B两种品牌足球的价格各为多少元?(2)为响应“足球进校园”的号召,学校使用专项经费1500元全部用来购买A,B两种品牌的足球供学生使用(要求两种足球都必须购买,专项经费必须用完),那么学校有多少种不同的购买方案?请分别求出每种方案购买A,B两种品牌足球的个数.10.某工厂现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A、B两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,3辆A型货车和1辆B型货车一次共运货13吨;2辆A型货车和3辆B型货车一次共运货18吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?(2)为了按计划完成本次货物运送,该工厂要同时租用A、B两种型号的货车各几辆?请列出所有的租车方案.11.某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车,2名熟练工和3名新工人每月可安装14辆电动汽车(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?12.人间四月天,正是枇杷成熟时,果农现欲将一批枇杷运往外地销售,若用2辆A 型车和1辆B型车载满枇杷一次可运走10吨;用1辆A型车和2辆B型车载满枇杷一次可运走11吨.现有枇杷22吨,计划同时租用A型车和B型车,一次运完,且恰好每辆车满载.(1)1辆A型车和1辆B型车满载枇杷一次可分别运送多少吨?(2)若1辆A型车需租金100元/次,1辆B型车需租金120元/次,请选出费用最少的租车方案.13.某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.(1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?(2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.14.某地筹集了重要物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运能力和运费如下表所示:(假设每辆车均满载)(1)全部物资可用甲型车8辆,乙型车5辆,丙型车________辆来运送.(2)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,该地打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?15.在疫情防控期间,某中学为保障广大师生生命健康安全,欲从商场购进一批免洗手消毒液和84消毒液.如果购买30瓶免洗手消毒液和80瓶84消毒液,共需花费1280元,如果购买40瓶免洗手消毒液和110瓶84消毒液,共需花费1740元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打九折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液80瓶,84消毒液70瓶,请问学校选用哪种方案更节约钱?16.河南灵宝苹果为中华苹果之翘楚,被誉为“中华名果”,某水果超市计划从灵宝购进“红富士”与“新红星”两个品种的苹果.已知2箱红富士苹果的进价与3箱新红星苹果的进价的和为282元,且每箱红富士苹果的进价比每箱新红星苹果的进价贵6元.(1)求每箱红富士苹果的进价与每箱新红星苹果的进价分别是多少元?(2)若超市准备购买红富士和新红星两种苹果共50箱,且红富士的数量不少于新红星的13,请设计出最省钱的购买方案,并说明理由.17.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)市场调用了甲、乙、丙三种车型共16辆参与运送(每种车型至少1辆),问:有几种车辆分配方案?哪种方案运费最省?18.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用180万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案.19.某景点的门票价格规定如表某校八年级(1)(2)两班共102人去游览该景点,其中(1)班以每人12元购票,(2)班以每人10元购票,一共付款1118元.(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票最节省?可节省多少钱?20.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满,请你设计出所有的租车方案.参考答案:1.(1)一辆A型车和一辆B型车都装满货物分别可运货3吨、4吨;(2)该物流公司共有以下三种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.2.(1)甲、乙两队联合起来购买服装比各自购买服装最多可以节省350元;(2)甲队有40名学生,乙队有35名学生.3.(1)笔记本每本为15元,圆珠笔每支为3元;(2)方案一更合算,理由见解析4.(1)一班有48人,二班有56人;(2)304元;(3)集体购票合算5.(1)党史书的单价为20元,文学名著的单价为15元;(2)6700元6.(1)购买足球4个,购买排球8个;(2)87.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.8.(1)每辆A型车有45个座位,每辆B型车有60个座位;(2)选择方案二,只租用B型车时最划算,总费用为12950元.9.(1)A种品牌足球的价格50元,B种品牌足球的价格80元;(2)学校有3种购买足球的方案,方案一:购买A品牌足球22个、B品牌足球5个;方案二:购买A品牌足球14个、B品牌足球10个;方案三:购买A品牌足球6个、B品牌足球15个.10.(1)一辆A型车能满载货物3吨,一辆B型车能满载货物4吨;(2)见解析11.(1)每名熟练工每月可以安装4辆电动汽车,每名新工人每月可以安装2辆电动汽车;(2)40名12.(1)1辆A型车载满枇杷一次可运送3吨,1辆B型车载满枇杷一次可运送4吨;(2)租用2辆A型车,4辆B型车,最少租车费为680元13.(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.14.(1)4;(2)分别需要甲、乙两种车型为8辆和10辆;(3)甲车2辆,乙车5辆,丙车7辆,需运费7500元15.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是16元、10元;(2)方案二更节约钱16.(1)每箱红富士苹果的进价为60元,每箱新红星苹果的进价为54元;(2)购买红富士13箱,新红星37箱时费用最少,见解析.17.(1)需要甲种车型8辆,乙种车型10辆;(2)有两种分配方案,调用甲种车型4辆.乙种车型10辆、丙种车型2辆参与运送,运费最省.18.(1)A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元;(2)共3种购买方案,方案一:购进A型车6辆,B型车3辆;方案二:购进A型车4辆,B型车8辆;方案三:购进A型车2辆,B型车13辆.19.(1)一班学生49名,二班学生53名;(2)两班联合起来购票最节省,可节省302元20.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;。
2020--2021学年七年级下册第八章《二元一次方程组》实际应用常考题专练(一)1.列二元一次方程组解应用题:某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 502.在元旦期间,某商场投入13800元资金购进甲、乙两种商品共500件,两种商品的成本价和销售价如下表所示:成本价销售价商品单价(元/件)甲24 36乙33 48(1)该商场购进两种商品各多少件?(2)这批商品全部销售完后,该商场共获利多少元?3.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.4.在疫情防控期间,某中学为保障广大师生生命健康安全购进一批免洗手消毒液和84消毒液.如果购买100瓶免洗手消毒液和150瓶84消毒液,共需花费1500元;如果购买120瓶免洗手消毒液和160瓶84消毒液,共需花费1720元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)某药店出售免洗手消毒液,满150瓶免费赠送10瓶84消毒液.若学校从该药店购进免洗手消毒液和84消毒液共230瓶,恰好用去1700元,则学校购买免洗手消毒液多少瓶?5.我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房24 20北国超市20 18(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?6.列方程组解应用题某校组织“大手拉小手,义卖献爱心”活动,计划购买黑、白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花2400元购买了黑、白两种颜色的文化衫100件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35(1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.7.某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?普通(元/间/天)豪华(元/间/天)三人间150 300双人间140 4008.宝应县是江苏省青少年足球训练基地,每年都举行全县中小学生足球联赛.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分.2004年的联赛中某校足球队参加了16场比赛,共得30分.已知该队只输了2场,那么这个队胜了几场平了几场?9.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上的觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上、树下的鸽子有一样多了.”你知道树上、树下各有多少只鸽子吗?10.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10%,乙种机器产量要比第一季度增产20%.该厂第一季度生产甲、乙两种机器各多少台?参考答案1.解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.2.解:(1)设商场购进甲种商品x件,购进乙种商品y件,由题意得:,解得:,答:商场购进甲种商品300件,购进乙种商品200件.(2)根据题意得:300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.3.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755,解得:x=21,∴毛笔的单价为:x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)①设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解之得:y=44.5 (不符合题意).∴陈老师肯定搞错了.②设单价为21元的钢笔为z支,签字笔的单价为a元,则根据题意,得21z+25(105﹣z)=2447﹣a.∴4z=178+a,∵a、z都是整数,∴178+a应被4整除,∴a为偶数,又因为a为小于10元的整数,∴a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以签字笔的单价可能2元或6元.故答案为:2元或6元.4.解:(1)设每瓶免洗手消毒液的价格为x元,每瓶84消毒液的价格为y元,依题意,得:,解得:.答:每瓶免洗手消毒液的价格为9元,每瓶84消毒液的价格为4元.(2)设学校从该药店购买免洗手消毒液a瓶,则购买84消毒液(230﹣a)瓶.①当a<150时,9a+4(230﹣a)=1700,解得:a=156>150,∴a=156不符合题意,舍去;②当a≥150时,9a+4(230﹣a﹣10)=1700,解得:a=164.答:学校从该药店购买免洗手消毒液164瓶.5.解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.6.解:(1)设学校购进黑色文化衫x件,白色文化衫y件,依题意,得:,解得:.答:学校购进黑色文化衫80件,白色文化衫20件.(2)(45﹣25)×80+(35﹣20)×20=1900(元).答:该校这次义卖活动所获利润为1900元.7.解:设三人普通房和双人普通房各住了x、y间.根据题意,得化简得:,②﹣①×5得:y=13,将y=13代入①得:x=8,∴(7分)答:三人间普通客房、双人间普通客房各住了8、13间.8.解:方法一:设这个队胜了x场,平了y场,根据题意得解得答:这个队胜了8场,平了6场.方法二:设这个队胜了x场,则平了(14﹣x)场,根据题意得3x+(14﹣x)=30解得x=8则14﹣x=6答:这个队胜了8场,平了6场.9.解:设树上有x只鸽子,树下有y只鸽子.由题意可:,整理可得:,解之可得:.答:树上原有7只鸽子,树下有5只鸽子.10.解:设该厂第一季度生产甲种机器x台,乙种机器y台.依题意得:,解得.故该厂第一季度生产甲种机器220台,乙种机器260台.。
1.学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆
大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少
...2300元,求最省钱的租车..要有一名教师,且总的租车费用不超过
方案.
2.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元
(1) 若商场同时购进其中两种不同型号电视机共50台,问甲、乙各有多少台?
(2) 若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案
(3) 若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,哪种获利最多?
3.某学校计划在总费用不超过2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要一名教师.现有甲,乙两种大客车,它们的载客量和租金如下表:
甲种客车乙种客车
载客量(人/辆)45 30
租金(元/辆)400 280
(1)若设租甲种客车x(辆),根据题意,求出x的取值.
(2)有几种租车方案?最少的租车费用是多少?
4.2台大收割机和5台小收割机均工作2天共收割小麦3.6公顷,3台大收割机和2台小收割机均工作5天,共收割小麦8公顷.
(1)1台大收割机和1台收割机每天各收割小麦多少公顷?
(2)设大收割机每台租金600元/天,小收割机每台租金120元/天,某农场准备租用两种收割机共15台,要求大收割机的数量不少于小收割机的一半,若每天总租金不超过5000元,若设大收割机要a台,①共有几种租赁方案?写出解答过程;②那种租赁方案每天收割小麦最多?
5.在“五•一”期间,某公司组织318名员工到雷山西江千户苗寨旅游,旅行社承诺每辆车安排有一名随团导游,并为此次旅行安排8名导游,现打算同时租甲、乙两种客车,其中甲种客车每辆载客45人,乙种客车每辆载客30人.
(1)请帮助旅行社设计租车方案.
(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,旅行社按哪种方案租车最省钱?此时租金是多少?
(3)旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游随团导游,为保证所租的每辆车安排有一名导游,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案如何安排?
6.列方程组(或不等式组)解应用题.
某文具店老板购甲、乙两种练习本,第一次购甲种练习本50本和乙种练习本50本,共花费750元,第二次购甲种练习本30本和乙种练习本60本共花费750元.
(1)甲种练习本和乙种练习本的进价各是多少元?
(2)现在文具店老板用500元去购买甲、乙两种练习本,根据平时销售量发现,两种练习本销售量的和超过60本,销售甲种练习本的利润率是20%,乙种练习本的利润率是30%,若要求销售这批练习本至少获利135元,求可购买乙种练习本的数量?
7.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
8.某学校为了表彰进步学生,需要购进一批文具套装作为奖品,套装内包含一个笔盒和一支笔,A和B两个商店均以同样的价格出售同样的笔盒和笔,笔盒每个20元,笔每支5元,但是在A商店购买超过100套装以后,再购买一笔盒就送一支笔,在B商店购买超过150套装以后,超出的套装打六折。
(1)(2分)若该团要购买180套套装,则在A商店需付元,在B商店需付元。
(2)(8分)请你根据购买量的多少,帮助学校确定到哪家商店来购买该奖品?
9.如图,有三种类型的防护栏,分别是普通型、A型、B型,防护栏由横杆(如图AB),纵杆(如AD),以及横杆与纵杆结合处的联结点(如点A)构成.A型比普通型多一条横杆,B型比普通型多两条横杆
(1) 通过计算,补充填写下表:
(2) 防护栏的成本由横杆和纵杆的材料费以及联结点的加工费组成,每个联结点的加工费为1元,而材料费中横杆的单价与纵杆的单价不相等(材料损耗及其它因素忽略不计).现已知A型防护栏和B型防护栏的成本分别为120元、88元,试求出普通型防护栏的成本(3) 现有横杆材料27米和纵杆材料15米,用于制作A型防护栏和B型防护栏共10面,请你帮助设计出符合题意的制作方案
10为了更好地治理木兰溪水质,保护环境,市治污公司决定购买10台污水处理设备,现有A B两种设备,A B单价分别为a万元/台 b万元/台月处理污水分别为240吨/月 200吨/月,经调查买一台A型设备比买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
(1)求a、b的值.
(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?
(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.
11.芦山地震发生后我市决定向灾区捐献一批矿泉水和帐篷共3200件,其中矿泉水比帐篷多800件.
(1)求矿泉水和帐篷各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批矿泉水和帐篷全部运往灾区中小学.已知每辆甲种货车最多可装矿泉水400件和帐篷100件,每辆乙种货车最多可装矿泉水和帐篷各200件.问安排甲、乙两种货车时有几种方案?请你帮助设计出来.
12.列方程组或不等式组解应用题:
为实现区域教育均衡发展,我区计划对A、B两类薄弱学校分别进行改造,根据预算,改造一所A类学校和两所B类学校共需资金230万元,改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)我区计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过380万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案?哪种改造方案所需资金最少,最少资金为多少?
13,。
某饮料厂有甲,乙两条饮料灌装生产线,根据市场需求,计划平均每天灌装饮料700箱.如果两条生产线同时工作,则完成一天的生产任务需要工作7小时;如果两条生产线同时工作2.5小时后,再由乙生产线单独工作,则完成一天的生产任务还需10小时.(1)求甲、乙两条灌装生产线每小时各灌装多少箱饮料?
(2)已知甲灌装生产线工作1小时的成本费用为550元,乙灌装生产线工作1小时的成本费用为495元,如果每天用于灌装生产线的成本费用不得超过7370元,那么甲灌装生产线每天至少工作多少小时?
14.据统计资料,甲、乙两种作物的单位面积产值的比是1:2,现要把一块长AB为200m、宽AD为100m的长方形土地,分为两块土地,分别种植这两种作物,使甲、乙两种作物的总产量的比是3:4.
(1)如图1,若甲、乙两种作物的种植区分别为长方形ABFE和EFCD,此时设AE=xm,
ED=ym,列方程组去x,y的值并写出种植甲、乙两种作物的面积;
(2)若按如图2划分出一块三角形土地AEF种植一块作物,其余土地种植另一种作物,三角形土地AEF适合种哪种作物?为什么?AF应该取多长?
(3)若按如图3划分出一块正方形土地AEGF种植一种作物,其余土地种植另一种作物,正方形AEGF适合种哪种作物?AF应该取多长?(结果用根号表示)
(4)若按如图4划分出一块圆形土地种植一种作物,其余土地种植另一种作物,圆形土地是否适合种植其中某种作物,若适合,请说明适合种植哪种作物,并确定圆的半径,若不适合,请说明理由(π取3.142)。